• サイトマップ
  • アクセス
  • English


メンバー

木下 和久 (きのした かずひさ)

研究の興味

染色体形成・分配と細胞分裂のメカニズム

学歴

1993 東北大学理学部生物学科卒業
1995 京都大学大学院理学研究科生物物理学専攻修士課程修了
1998 京都大学大学院理学研究科生物科学専攻博士後期課程修了(博士(理学)取得)

このページのトップへ

研究歴/職歴

1998 京都大学大学院理学研究科 日本学術振興会特別研究員
1998-2000 欧州分子生物学研究所 (EMBL) Postdoctoral Fellow
2000-01 マックス・プランク分子細胞生物学遺伝学研究所 Postdoctoral Fellow
2001-06 マックス・プランク分子細胞生物学遺伝学研究所 Staff Scientist
2006-07 京都大学大学院生命科学研究科 研究員
2007-現在 理化学研究所 専任研究員

このページのトップへ

受賞・学会活動等

1998 日本学術振興会特別研究員
1998-2000 Human Frontier Science Program Long-Term Fellowship
2002 上原記念生命科学財団リサーチフェローシップ
2008-10 特定領域研究「細胞周期フロンティア―増殖と分化相関」公募研究班員
2004- 日本分子生物学会会員

このページのトップへ

発表論文

  • Yoshida, M. M., K. Kinoshita, K. Shintomi, Y. Aizawa and T. Hirano. (2024). Regulation of condensin II by self-suppression and release mechanisms. Mol Biol Cell. 35:ar21.
    PMID: 38088875
  • Yamamoto, T., K. Kinoshita and T. Hirano. (2023). Elasticity control of entangled chromosomes: Crosstalk between condensin complexes and nucleosomes. Biophys J. 122:3869-3881.
    PMID: 37571823
  • Tane, S., K. Shintomi, K. Kinoshita, Y. Tsubota, M. M. Yoshida, T. Nishiyama and T. Hirano. (2022). Cell cycle-specific loading of condensin I is regulated by the N-terminal tail of its kleisin subunit. eLife. 11:e84694.
    PMID: 36511239
  • Yoshida, M. M., K. Kinoshita, Y. Aizawa, S. Tane, D. Yamashita, K. Shintomi and T. Hirano. (2022). Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays. eLife. 11:e78984.
    PMID: 35983835
  • Kinoshita, K., Y. Tsubota, S. Tane, Y. Aizawa, R. Sakata, K. Takeuchi, K. Shintomi, T. Nishiyama and T. Hirano. (2022). A loop extrusion-independent mechanism contributes to condensin I-mediated chromosome shaping. J Cell Biol. 221:e202109016.
    PMID: 35045152
  • Hara, K., K. Kinoshita, T. Migita, K. Murakami, K. Shimizu, K. Takeuchi, T. Hirano and H. Hashimoto. (2019). Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex. EMBO Rep. 20:e47183.
    PMID: 30858338
  • Sakai, Y., A. Mochizuki, K. Kinoshita, T. Hirano and M. Tachikawa. (2018). Modeling the functions of condensin in chromosome shaping and segregation. PLoS Comput Biol. 14:e1006152.
    PMID: 29912867
  • Kinoshita, K. and T. Hirano. (2017). Dynamic organization of mitotic chromosomes. Curr Opin Cell Biol. 46:46-53.
    PMID: 28214612
  • Kinoshita, K., T. J. Kobayashi and T. Hirano. (2015). Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. Dev Cell. 33:94-106.
    PMID: 25850674
  • Brunet, S., J. Dumont, K. W. Lee, K. Kinoshita, P. Hikal, O. J. Gruss, B. Maro and M. -H. Verlhac. (2008). Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One. 3:e3338.
    PMID: 18833336
  • Brouhard, G. J., J. H. Stear, T. L. Noetzel, J. Al-Bassam, K. Kinoshita, S. C. Harrison, J. Howard and A. A. Hyman. (2008). XMAP215 is a processive microtubule polymerase. Cell. 132:79-88.
    PMID: 18191222
  • Mori, D., Y. Yano, K. Toyo-oka, N. Yoshida, M. Yamada, M. Muramatsu, D. Zhang, H. Saya, Y. Y. Toyoshima, K. Kinoshita, A. Wynshaw-Boris and S. Hirotsune. (2007). NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation and TACC3 recruitment. Mol Cell Biol. 27:352-367.
    PMID: 17060449
  • Aoki, K., Y. Nakaseko, K. Kinoshita, G. Goshima and M. Yanagida. (2006). Cdc2 phosphorylation of the fission yeast Dis1 ensures accurate chromosome segregation. Curr Biol. 16:1627-1635.
    PMID: 16920624
  • Kinoshita, K., T. L. Noetzel, I. Arnal, D. N. Drechsel and A. A. Hyman. (2006). Global and local control of the microtubule destabilizing activity of a catastrophe kinesin MCAK/XKCM1. J Muscle Res Cell Motil. 27:107-114.
    PMID: 16450057
  • Kinoshita, K., T. L. Noetzel, L. Pelletier, K. Mechtler, D. N. Drechsel, A. Schwager, M. Lee, J. W. Raff and A. A. Hyman. (2005). Aurora A phosphorylation of TACC3/Maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol. 170:1047-1055.
    PMID: 16172205
  • Barros, T. P., K. Kinoshita, A. Hyman and J. W. Raff. (2005). Aurora A kinase activates D-TACC/Msps complexes exclusively at centrosomes during mitosis to stabilize astral microtubules. J Cell Biol. 170:1039-1046.
    PMID: 16186253
  • Özlü, N., M. Srayko, K. Kinoshita, B. Habermann, E. T. O’ Toole, T. Müller-Reichert, N. Schmalz, A. Desai and A. A. Hyman. (2005). An essential function of the C. elegans ortholog of TPX2 is to localize activated Aurora A kinase to mitotic spindles. Dev Cell. 9:237-248.
    PMID: 16054030
  • Noetzel, T. L., D. N. Drechsel, A. A. Hyman and K. Kinoshita. (2005). A comparison of the ability of XMAP215 and tau to inhibit the microtubule destabilizing activity of XKCM1. Philos Trans R Soc Lond B Biol Sci. 360:591-594.
    PMID: 15905143
  • Schaar, B. T., K. Kinoshita and S. K. McConnell. (2004). Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron. 41:203-213.
    PMID: 14741102
  • Kinoshita, K., B. Habermann and A. A. Hyman. (2002). XMAP215: a key component of the dynamic microtubule cytoskeleton. Trends Cell Biol. 12:267-273.
    PMID: 12074886
  • Kinoshita, K., I. Arnal, A. Desai, D. N. Drechsel and A. A. Hyman. (2001). Reconstitution of physiological microtubule dynamics using purified components. Science. 294:1340-1343.
    PMID: 11701928
  • Popov, A. V., A. Pozniakovsky, I. Arnal, C. Antony, A. J. Ashford, K. Kinoshita, R. Tournebize, A. A. Hyman and E. Karsenti. (2001). XMAP215 regulates microtubule dynamics through two distinct domains. EMBO J. 20:397-410.
    PMID: 11157747
  • Zumbrunn, J., K. Kinoshita, A. A. Hyman and I. S. Nathke. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol. 11:44-49.
    PMID: 11166179
  • Tatebe, H., G. Goshima, K. Takeda, T. Nakagawa, K. Kinoshita and M. Yanagida. (2001). Fission yeast living mitosis visualized by GFP-tagged gene products. Micron. 32:67-74.
    PMID: 10900382
  • Tournebize, R., A. Popov, K. Kinoshita, A. J. Ashford, S. Rybina, A. Pozniakovsky, T. U. Mayer, C. E. Walczak, E. Karsenti and A. A. Hyman. (2000). Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol. 2:13-19.
    PMID: 10620801
  • Nakaseko, Y., K. Nabeshima, K. Kinoshita and M. Yanagida. (1996). Dissection of fission yeast microtubule associating protein p93Dis1: regions implicated in localization and microtubule interaction. Genes Cells. 1:633-644.
    PMID: 9078390
  • Kinoshita, K., T. Nemoto, K. Nabeshima, H. Kondoh, H. Niwa and M. Yanagida. (1996). The regulatory subunits of fission yeast protein phosphatase 2A (PP2A) affect cell morphogenesis, cell wall synthesis and cytokinesis. Genes Cells. 1:29-45.
    PMID: 9078365
  • Nabeshima, K., H. Kurooka, M. Takeuchi, K. Kinoshita, Y. Nakaseko and M. Yanagida. (1995). p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev. 9:1572-1585.
    PMID: 7628693

このページのトップへ

日本語総説

  • 木下和久(2018)コンデンシンによる分裂期染色体構築の分子メカニズム. 実験医学(増刊「染色体の新常識」) 36:2956-2963.
  • 木下和久、平野達也(2015)コンデンシンIによる染色体の軸構造の形成機構. ライフサイエンス 新着論文レビュー http://first.lifesciencedb.jp/archives/10028
  • 木下和久、平野達也(2011)SMC ATPase: コンデンシンとコヒーシンのコアサブユニット. 生体の科学 62:446-449.
  • 木下和久(2010)細胞周期M期におけるコンデンシンの動態とリン酸化による制御機構. 「細胞周期フロンティア」(共立出版) pp.70-76.
  • 木下和久、佐谷秀行(2006)スピンドル微小管の細胞分裂期におけるダイナミクス. 蛋白質核酸酵素(増刊「細胞骨格と接着」) 51:761-766.
  • 木下和久(2006)ゲノムを次世代に伝えるナノファイバー −スピンドル微小管のダイナミクス. 蛋白質核酸酵素 51:197-205.
  • 木下和久(2005)細胞分裂における微小管の役割とその動態制御. 分子細胞治療 4:467-473.
  • 船引宏則、木下和久(2005)いかにして動的スピンドルがつくられるのか? 実験医学(増刊「細胞周期の最前線」) 23:1366-1370.
  • 木下和久(1999)分裂酵母の染色体分配におけるスピンドル動態制御. 実験医学(増刊「癌と細胞周期」) 17:682-687.

このページのトップへ


独立行政法人 理化学研究所 平野染色体ダイナミクス研究室 〒351-0198 埼玉県和光市広沢2-1
Copyright RIKEN, Japan. All rights reserved.

RIKEN