

密度汎関数法にもとづく 最新の化学理論

Savinの 長距離 補正法

LDA交換汎関数に対する長距離補正

[A. Savin, in 'Recent Developments and Applications of Modern Density Functional Theory' (Elsevier, Amsterdam, 1996).]

2電子演算子を誤差関数により短距離部分と長距離部分に分割 $\frac{1}{r_{12}} = \frac{1 - erf(\mu r_{12})}{r_{12}} + \frac{erf(\mu r_{12})}{r_{12}}$ 1.75 יד 1.5 יד 1.25 של 1.25 יד 1.25 יד 1.25 יד 1.25 短距離部分については、LDA交換汎関数を分割して使う 0.5 $a_{\sigma} = \mu / (2k_{F\sigma}), k_{F\sigma} = (6\pi^2 \rho_{\sigma})^{1/3}$ 0.25 1 2 3 4 interelectron distance r₁₂ $E_x^{sr} = -\frac{3}{2} \left(\frac{3}{4\pi}\right)^{1/3} \sum \int \rho_\sigma^{4/3} (1 - \frac{8}{3}a_\sigma)^{1/3} \sum \int \rho_\sigma$ × $[\sqrt{\pi}erf(\frac{1}{2a_{\sigma}}) + (2a_{\sigma} - 4a_{\sigma}^{3})exp(-\frac{1}{4a_{\sigma}^{2}}) - 3a_{\sigma} + 4a_{\sigma}^{3}])d^{3}\mathbf{r}$ 長距離部分については、Hartree-Fock交換を分割して使う $E_{x}^{\ lr} = -\frac{1}{2} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \int d^{3}\mathbf{r}_{1} d^{3}\mathbf{r}_{2} \phi_{i\sigma}^{*}(\mathbf{r}_{1}) \phi_{j\sigma}^{*}(\mathbf{r}_{2}) \frac{erf(\mu r_{12})}{r_{12}} \phi_{j\sigma}(\mathbf{r}_{1}) \phi_{i\sigma}(\mathbf{r}_{2})$

GGA交換汎関数に対する長距離補正

[H. likura, T. Tsuneda, T. Yanai and K. Hirao, J. Chem. Phys., 115, 3540, 2001.]

Savinの方法はGGA交換汎関数には適用できない GGA交換汎関数には、LDA交換汎関数のように、対応する密度行列が存在しない

$$P_{1\sigma}^{LDA}(\mathbf{R}+\frac{\mathbf{r}}{2},\mathbf{R}-\frac{\mathbf{r}}{2}) = 3\frac{j_1(k_{F\sigma}\mathbf{r})}{k_{F\sigma}\mathbf{r}}\rho_{\sigma}(\mathbf{R})$$

GGA汎関数は、(Fermi)運動量に勾配補正することで与えられると仮定

$$k_{F\sigma} \Longrightarrow k_{\sigma} = \left(\frac{9\pi}{K_{\sigma}^{GGA}}\right)^{1/2} \rho_{\sigma}^{1/3}$$

一般的なGGA交換汎関数に対する 短距離表現($a_{\sigma} = \mu/(2k_{\sigma})$):

$$E_x^{sr} = -\frac{1}{2} \sum_{\sigma} \int \rho_{\sigma}^{4/3} K_{\sigma} (1 - \frac{8}{3} a_{\sigma} [\sqrt{\pi} erf(\frac{1}{2a_{\sigma}}) + (2a_{\sigma} - 4a_{\sigma}^{-3}) \exp(-\frac{1}{4a_{\sigma}^{-2}}) - 3a_{\sigma} + 4a_{\sigma}^{-3}]) d^3\mathbf{r}$$

反応障壁エネルギー計算への適用

化学反応障壁エネルギー計算. [N. Kawakami, T. Tsuneda, and K. Hirao, in preparation]

Calculated barrier energies for various reactions in kcal/mol.

Reaction	LC-BOP	BOP	B3LYP	Expt.
$CH_3F+H\rightarrow CH_2F+H_2$	7.3	3.4	5.9	9.0
$NH_3+H\rightarrow NH_2+H_2$	12.3	4.7	7.5	11.4
$C_2H_6+H\rightarrow C_2H_5+H_2$	6.8	2.8	4.9	7.3
CH₃CI+CI ⁻ →CI ⁻ +CH₃CI	3.8	-3.8	-2.1	2.9
CH₃Br+Br⁻→Br⁻+CH₃Br	2.6	-5.5	-3.9	1.7
$1,2,4,5-C_2N_4H_2 \rightarrow N_2+2HCN$	50.5	27.3	39.7	51.8
H ₂ O+OH→OH+H ₂ O	1.8	-2.0	3.8	8.6
NH ₃ +O→NH ₂ +OH	1.6	4.9	3.5	8.1
CH₄+OH→CH₃+H₂O	-0.1	—	1.3	4.7
NH ₃ +OH→NH ₂ +H ₂ O	-4.2	0.7	-3.2	1.4

LC 法は、O原子が中 心的に関与する反応 以外の反応の障壁エ ネルギーを明らかに 改善する

長距離相互作用の欠

如は反応障壁エネル

ギー過小評価の一因

生成エネルギーと遷移状態構造計算への適用

	Reaction	LC-BOP	BOP	B3LYP	Expt.
生成エネルギー計算値 (kcal/mol). 6-311++(2d,2p) 基底	CH ₄ +H→CH ₃ +H ₂	1.8	-4.4	-2.3	9.0
	H₂S+H→HS+H₂	—13.8	-17.9	-16.2	—13.8
	CH₄+NH₂→CH₃+NH₃	-3.6	-10.7	-1.7	-2.6
	CH₃F+H→CH₂F+H₂	-4.0	-9.3	-6.7	-3.8
Ⅰ℃はけ生成エクルギーを改善	CH₃CI+H→CH₃+HCI	-20.4	-25.2	-23.4	-19.4
	CH₃Br+OH→CH₂Br+OH	-7.6	-8.1	-5.4	-1.2
	NH ₃ +O→NH ₂ +OH	1.4	8.1	1.0	6.7

Reaction	LC-BOP	BOP	B3LYP	Expt.	
X=F R _{cx}	1.821	1.907	1.859	1.826	
R _{CH}	1.076	1.076	1.070	1.069	
X=CI R _{cx}	2.305	2.404	2.359	2.307	CH ₃ X+X ⁻ →X ⁻ +CH ₃ 反応の遷移状態構造(Å).
R _{CH}	1.074	1.075	1.069	1.070	
X=Br R _{cx}	2.457	2.566	2.518	2.466	LC汎関数は、きわめて正しい
R _{CH}	1.074	1.075	1.069	1.074	遷移状態構造を与える

反応障壁過小評価の原因は何か?

	LC法が改善C ₂ H ₆ +H→C ₂ H ₅ +H ₂ NH ₃ +H→NH ₂ +H ₂	H_2 +H→H+ H_2 H_2 O+H→OH+ H_2 CH_3 F+H→CH_3+HF CF_4 +H→CF_3+HF
	$CH_4+CH_3\rightarrow CH_3+CH_4$ $CF_3+H_2\rightarrow CHF_3+H$	CH ₃ Cl+H→CH ₃ +ClH
B3LYP	$C_2H_5+H_2 \rightarrow C_2H_6+H$ $CH_2Br+H_2 \rightarrow CH_3Br+H$	CH ₃ Br+H→CH ₃ +BrH
で改善	$CH_4 + NH \rightarrow CH_3 + NH_2$ $N_2O + BI \rightarrow N_2 + BIO$	CH ₃ Cl+Cl ⁻ →Cl ⁻ +CH ₃ Cl
	$CH_4 + NH_2 \rightarrow CH_3 + NH_3$	CH ₃ Br+Br→Br+CH ₃ Br
Н тН8→Н 8тН	$HOOH \rightarrow H_2OO$ $CH_2+H_2 \rightarrow CH_2+H$	$1,2,4,5-C_2N_4H_2 \rightarrow N_2+2HCN$
	$C_5H_8 \rightarrow C_5H_8$	CH ₃ Cl+H→CH ₂ Cl+H ₂
PH ₂ +H ₂ →PH ₃ +H	$\begin{array}{c} CH_4+H{\rightarrow}CH_3+H_2 & HOC+{\rightarrow}HCO+\\ SiH_4+H{\rightarrow}SiH_3+H_2 & H_2CO{\rightarrow}H_2+CO\\ GeH_4{\rightarrow}GeH_2+H_2 & CH_3F+H{\rightarrow}CH_2F+H_2 \end{array}$	CH ₃ F+F ⁻ →F ⁻ +CH ₃ F
どれも改善しな HC(OH)CHC(O) HC(O)CHC(OH H ₂ +O→H+OH(は い H→)H ?) $(H_2S+H\to H_2+HS NH_3+C)$ $(H_2S+H\to H_2+HS NH_3+C)$ $(H_3Br+O\to CH_2Br+OH PH_3+F)$ $(H_2O+OH\to OH+H_2O CHF_3+C)$ $(H_4+OH\to CH_3+H_2O CHF_3+C)$	SIC)法が改善 DH→NH ₂ +H ₂ O I→PH ₂ +H ₂ -O→CF ₃ +OH -OH→CF ₃ +H ₂ O

3.2. 最適化有効ポテンシャル(OEP)法 OEP法の定式

局所的な軌道依存交換相関汎関数を決定する方法

OEP法とは、線形応答積分方程式を解いて軌道依存な有効交換相関 ポテンシャルを求めながら、1電子Schrödinger方程式を解く方法 [Sharp and Hornton, PR, 90, 317, 1953; Talman and Shadwick, PRA, 14, 36, 1976.] $\left\{ \left[-\frac{1}{2} \nabla^2 + v_{\text{oep}}(\mathbf{R}) \right] \phi_i = \varepsilon_i \phi_i \right\}$ $\int v_{\text{oep}}(\mathbf{R}) = v(\mathbf{R}) + \int \frac{\rho(\mathbf{R'})}{|\mathbf{R} - \mathbf{R'}|} d^3 \mathbf{R'} + v_{xc}^{\text{eff}}(\mathbf{R})$ 有効交換相関ポテンシャルvxceffは積分方程式を解いて計算(Excは軌道依存) $\int d^{3}\mathbf{r}' \chi_{s}(\mathbf{r},\mathbf{r}') v_{xc}^{\text{eff}}(\mathbf{r}') = t(\mathbf{r}) = \int d^{3}\mathbf{r}' \sum_{a}^{\infty} \frac{\partial \mathcal{E}_{xc}}{\partial \phi_{a}(\mathbf{r}')} \frac{\partial \phi_{a}(\mathbf{r}')}{\partial v_{s}(\mathbf{r})}, \quad \chi_{s}(\mathbf{r},\mathbf{r}') = \frac{\partial \rho(\mathbf{r})}{\partial v_{s}(\mathbf{r}')} = 4 \sum_{a}^{\text{occ unocc}} \frac{\phi_{a}(\mathbf{r})\phi_{s}(\mathbf{r})\phi_{s}(\mathbf{r})\phi_{s}(\mathbf{r})}{\mathcal{E}_{a} - \mathcal{E}_{s}}$ Hartree-Fock交換のみの場合、 $t(\mathbf{r}) = 4 \sum_{a}^{\text{occ unocc}} \frac{\phi_{a}(\mathbf{r})\phi_{s}(\mathbf{r})\langle\phi_{s}|\hat{v}_{x}^{\mathsf{HF}}|\phi_{a}\rangle}{\mathcal{E}_{a} - \mathcal{E}_{s}}, \quad \hat{v}_{x}^{\mathsf{HF}} = -\sum_{b}^{\text{occ}} \frac{\phi_{b}(\mathbf{r})\phi_{b}(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|}$ 積分方程式の解き方は2通り 1. 数値グリッドを使った求積法→原子など球形の計算系のみ 2. 基底関数を使った解析的解法→分子や固体に適用可能だが、問題あり

KLI近似と電子相関の取り込み

Krieger-Li-lafrate近似と局所化Hartree-Fock近似 [KLI, PRA, 46, 5453, 1992; Della Salla and Görling, JCP, 118, 10439, 2003.]

積分方程式はGauss基底関数ベースでは正しい解を与えられない。 この問題に対するアプローチとして、KLI近似などの方法が提案された。

 $v_x^{\text{approx}} = v_x^{\text{Slater}} + 2 \sum_{a,b}^{\text{occ}\neq\text{HOMO}} \frac{\phi_a(\mathbf{r})\phi_b(\mathbf{r})}{\rho(\mathbf{r})} \langle \phi_a | \hat{v}_x^{\text{approx}} - \hat{v}_x^{\text{HF}} | \phi_b \rangle \quad \mathbf{a} = \mathbf{b} \rightarrow \mathbf{KLI} \underbrace{\text{III}}_{a} \underbrace{\mathbf{h}}_{a} \underbrace$ a≠b→局所化HF近似 $v_x^{\text{Slater}} = 2 \sum_{a,b}^{\text{occ}} \frac{\phi_a(\mathbf{r})\phi_b(\mathbf{r})}{\rho(\mathbf{r})} \int d^3\mathbf{r} \frac{\phi_a(\mathbf{r})\phi_b(\mathbf{r})}{|\mathbf{r}-\mathbf{r}|}$

⇒非局所なHF交換の局所化に相当

積分方程式の解法の違いと電子相関の取り込み方

摂動エネルギー不変の直接的方法: Holleboom-Baerends法 [Holleboom et al., JCP, 89, 3638, 1988.] 1. 摂動エネルギー項を軌道で展開 [Görling and Levy, PRA, 50, 196, 1994.] 2.2次摂動項を補助基底を使って 展開後、数値計算 [Hirata et al., JCP, 115, 1635, 2001.]

電子密度不変の間接的方法: Sham-Schlüter法 [Sham and Schlüter, PRL, 51, 1888, 1983.] $0 = \oint \frac{d\omega}{2\pi i} \iint d^3 \mathbf{r}_1 d^3 \mathbf{r}_2 \chi_{\text{oep}}(\mathbf{r}, \mathbf{r}_1, \omega) \Big[\Sigma^{xc}(\mathbf{r}_1, \mathbf{r}_2, \omega) - v_{xc}^{\text{oep}}(\mathbf{r}_1) \delta(\mathbf{r}_1, \mathbf{r}_2) \Big] \chi(\mathbf{r}_2, \mathbf{r}, \omega)$ **1.** Σ×cを交換+2次摂動で直接計算 [Godby, Sham et al., PRL, 56, 2415, 1986.] 2.2次摂動項を補助基底を使って展開 [Shigeta and Hirao, submitted.]

3.3. 厳密交換法 静的電子相関を取り組んだ密度汎関数法

過去の静的電子相関をあらわに考慮に入れた密度汎関数法

分数占有数密度汎関数法
A. Nagy, …
分数占有数状態を取り扱える
密度汎関数法にもとづく方法
[J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, PRL, 49, 1691, 1982.]

多配置波動関数にもとづく 密度汎関数法
J. Grafenstein, D. Cremer, P. A.
Malmqvist, S. Yamanaka, …
CASSCF波動関数を使ったDFT
[J. Grafenstein and D. Cremer, CPL, 316, 569, 2000 etc.]
問題点:相関エネルギーのダブルカウ ンティング回避への対策、計算時間

OPTX交換汎関数 N. C. Handy, A. J. Cohen, ... 交換汎関数を拡大することで静的相関を含める [N. C. Handy and A. J. Cohen, Mol. Phys., 99, 403, 2001.] $E_x^{OPTX}[\rho] = -\sum_{\sigma} \int d^3 \mathbf{r} \left\{ 1.05151 \times \frac{3}{4} \left(\frac{6}{\pi}\right)^{1/3} + 1.43169 \times \left(\frac{0.006 x_{\sigma}^2}{1+0.006 x_{\sigma}^2}\right)^2 \right\} \rho_{\sigma}^{4/3}$ 問題点:物理的背景の希薄さ、一般性の欠如

Post-Hartree-Fock法:反対スピン静的電子相関

Hartree-Fock交換を利用して静的電子相関を見積もる方法 [A. D. Becke, JCP, 119, 2972, 2003; JCP, 122, 064101, 2005.]

交換孔の非局在性を利用して静的相関に対する相関孔を構築する ビン電子の交換孔 $h_{x\sigma}(\mathbf{r}_1,\mathbf{r}_2) = -\frac{1}{\rho_{\sigma}(\mathbf{r})} \left| \sum_{i} \phi_{i\sigma}^*(\mathbf{r}_1) \phi_{i\sigma}(\mathbf{r}_2) \right|^2$ 交換孔は電子1個に規格化で $\int d^3 \mathbf{r}_2 h_{x\sigma}(\mathbf{r}_1,\mathbf{r}_2) = -1$ 交換孔は電子1個に規格化される σ スピン電子の交換孔 多中心系では、交換孔は非局所化されて1電子分より少なくなると仮定 平行スピン電子間の相関は弱くなり、反対スピン電子の反発が大きく なるはずであり、交換孔はより深くなる。→増加分が静的電子相関 $f = \min \begin{pmatrix} 1 - N_{x\alpha}^{eff}, \\ N_{x\beta}^{eff}, \\ d^{3}\mathbf{r}_{2}h_{x\sigma}(\mathbf{r}_{1}, \mathbf{r}_{2}) = -1 \end{pmatrix} = 0$ $E_{xc} = E_{x}^{exact} + \frac{1}{2} \int d^{3}\mathbf{r}_{f} \rho_{\alpha} U_{x\beta} + \frac{1}{2} \int d^{3}\mathbf{r}_{f} \rho_{\beta} U_{x\alpha}$ $U_{x\sigma}(\mathbf{r}_{1}) = \int d^{3}\mathbf{r}_{2} \frac{h_{x\sigma}(\mathbf{r}_{1}, \mathbf{r}_{2})}{r_{12}}$ $I_{x\sigma}(\mathbf{r}_{1}) = \int d^{3}\mathbf{r}_{2} \frac{h_{x\sigma}(\mathbf{r}_{1}, \mathbf{r}_{2})}{r_{12}}$

Post-Hartree-Fock法:平行スピン静的電子相関

反対スピンの静的電子相関のみでは、スピン分極系で適切な結果を出さない 例:O₂の解離エネルギーは30kcal/mol過小評価 平行スピン電子間の静的電子相関: $h_{xc\sigma} = h_{x\sigma} + f h_{x\sigma'} + h_{c\sigma\sigma}$ 交換相関孔に2つめの静的相関項を足す: h_{coor} を電子間距離sに関して2次までで展開: $h_{coor} = A_{oor}s^2h_{xor}$ 交換相関エネルギー表現 $E_{c}^{par} = \frac{1}{2} \int d^{3}\mathbf{r} \rho_{\alpha} U_{c\alpha\alpha} + \frac{1}{2} \int d^{3}\mathbf{r} \rho_{\beta} U_{c\beta\beta}$ $U_{c\sigma\sigma} = -A_{\sigma\sigma} M_{\sigma}^{(1)} \int d^{3}\mathbf{r}_{2} h_{xc\sigma} (\mathbf{r}_{1}, \mathbf{r}_{2}) = -1$ $A_{\sigma\sigma} = \min\left(\frac{1 - N_{x\sigma}^{eff} - fN_{x\sigma}^{eff}}{M_{\sigma}^{(2)}}, \frac{D_{\sigma}}{3\rho_{\sigma}}\right)$ $M_{\sigma}^{(n)} = 4\pi \int_{0}^{\infty} s^{n+2} |h_{x\sigma}| ds$ $\frac{\Psi_{f}}{\sigma} Z^{L} \mathcal{V}$ $\frac{\nabla_{f}}{\sigma} Z^{L$ $a_c^{opp} = 0.514, a_c^{par} = 0.651,$ $D_{\sigma} = \sum_{i} \left| \nabla \phi_{i\sigma} \right|^{2} - \frac{1}{4} \frac{\left(\nabla \rho_{\sigma} \right)^{2}}{\rho_{\sigma}}$ $a_{dc}^{opp} = 1.075, a_{dc}^{par} = 1.113$ 長所:化学反応障壁エネルギー計算で高精度に障壁エネルギーを再現

短所:簡便でない、経験的パラメータが多い、計算時間がかかる

最新密度汎関数理論の比較

密度汎関数法の問題と特性に関する最新理論の比較

問題と特性	通常の DFT	OEP	Post HF	LC
軌道エネルギー・バンドギャップ	×	0	Δ	Δ
結合解離のポテンシャル曲面	×	×	×	×
化学反応における反応障壁	×	×?	0	0
TDDFTにおけるRydberg励起	×	0	?	0
TDDFTにおける電荷移動励起	×	0	?	0
ファンデルワールス結合	×	0	O*	0*
補正の自然さ(パラメータの数)		O (0)	×(4+α)	O(1)
SCFの 収束性	0	××	Δ	Δ
必要な計算時間&手間	0	××	Δ	0
系統的補正	×	0	×	×

*ファンデルワールス汎関数と組み合わせた場合。

3.4. Van der Waals結合計算法 過去のvdW化学計算

最近のファンデルワールス計算例

DFT-D法:GGA+経験的分散力補正 **M. Elstner, A. D. Becke, ...** $E_{tot} = E(DFT) - \sum_{i,j} f_d(R_{ij})C_{6,ij}R_{ij}^{-6}$ 交換にHartree-Fock交換を使い、 **C**₆をTDHFやTDDFTで決めるものも 長所:高速性、**C**₆次第では適度に正確 短所:一般性の欠如、汎関数依存性

vdW-DF法

B. I. Lundqvist, J. F. Dobson, ... 非局所相関エネルギーを考える [Lundqvist et al., PRL, 92, 246401, 2004.]

 $E_{c}^{nl} = \frac{1}{2} \int d^{3}\mathbf{r} d^{3}\mathbf{r}' \rho(\mathbf{r}) \phi(\mathbf{r},\mathbf{r}')\rho(\mathbf{r}')$ →均一電子ガス極限がALL汎関数
長所:相関の明確さ、短所:減衰関数

Ab initio DFT

DFT-SAPT法

G. Jansen, ...

SAPT, etc.

R. J. Bartlett, ...

OEPにより作った

MP2ポテンシャル

KS軌道にもとづく

断熱結合+揺動散逸(ACFD)定理 A. Rubio, Y. Pouillon, … 厳密相関を揺動散逸定理+断熱結合で決定 $E_{C}[n] = -\frac{1}{2} \int_{0}^{1} d\lambda \iint d^{3}\mathbf{r}_{1} d^{3}\mathbf{r}_{2} \frac{1}{r_{12}} \left[\frac{1}{\pi} \int_{0}^{\infty} d\omega [\chi_{\lambda}(\mathbf{r}_{1}, \mathbf{r}_{2}; i\omega) - \chi_{0}(\mathbf{r}_{1}, \mathbf{r}_{2}; i\omega)] \right]$ $\chi_{\lambda} = \chi_{0} + \chi_{0}(\lambda v + f_{xc})\chi_{\lambda} \quad \leftarrow \text{TDDFT } \mathcal{C}$ 長所:厳密さ、正確さ、短所:計算時間の長さ

LC-DFT + ALL沉関数

[M. Kamiya, T. Tsuneda and K. Hirao, JCP, 117, 6010, 2002; T. Sato, T. Tsuneda, and K. Hirao, Mol. Phys., 103, 1151, 2005]

アルゴン二量体のLC+ALL計算

Long-range-corrected functionals were applied to calculations of the dissociation potential of Ar dimer. 0.75 0.75 SOP LC-BOP+ALL BOP 0.60 0.60 **PBEOP** mPWPW91 LC-SOP 0.45 mPW1PW91 0.45 Euergy (kcal/mol) (kcal/mol) 0.15 0.00 -0.15 .C-BOP Energy (kcal/mol) LC-PBEOP B3LYP+vdW 0.30 LC-BLYP MP2 Exact 0.15 — Exact. 0.00 -0.15 pu-0.30 puog-0.30 -0.45 -0.45 -0.60 -0.60 -0.75 -0.75 5.0 6.0 3.0 4.0 5.0 3.0 4.0 6.0 Bond distance (Å) Bond distance (Å)

ファンデルワールス結合計算に必要な条件

ファンデルワールス結合計算に必要な条件と各方法の成否

条件	DFT-D	ACFD	vdW- DF	Ab initio DFT	DFT- SAPT	LC+ ALL
水素結合の再現性	×	Δ	×	0	0	×
電子相関のdouble counting	?	0	0	0	0	0
厳密な漸近的ふるまい~R-6	0	0	0	0		0
解離に対するseamlessさ	Δ	0	0	0	0	0
ファンデルワールスカ減衰 の自然さ	×	0	×	0	×	×
必要な計算時間	0	×	×	×	×	0

by T. Sato@Hirao Lab.