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1.Requirements on simulations (designing 

photovoltaic material)→Photo-absorption vs. 
carrier splitting

2.Theoretical approach(real-time propagation 
TDDFT)

3.Photo-induced increase of dipole moment in 
Polar crystal and TTF/TCNQ dimer (DA pair)

4.One technical note on effect of UV light

5.Summary
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Equilibrium cases:
Electrons running around 
immediately follow ion 
motion and remain their 
ground states!
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≈100fs
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Electrons running around are 
excited and does not follow 
ion motion and remain their 
excited states for a while!
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Non-equilibrium conditionNon-equilibrium condition



Equilibrium vs non-equilibrium
Phenomena in different time-scale

Equilibrium vs non-equilibrium
Phenomena in different time-scale

Wet: using electrolyte

Solid (NW, Q-dot): using p-n junction

→ Redox dynamics and recombination rate 
govern the efficiency
(Electron transport from dye to TiO2 → fast)
Requirements
Theoretical approach must be the thermo-
dynamical approach

Carrier dynamics govern the photovoltaic process: 
Photo-absorption rate vs. e-h splitting rate
→ What is required for theoretical approach?

I-

electrolyte

I3
-

Dye molecules TiO2 cluster

Pt
ITO



Necessity of solving electron 
dynamics in fast-process

Necessity of solving electron 
dynamics in fast-process

• Electrons and holes are no-longer steady 
states

p n

Need of direct simulation for 
electron dynamics by solving 
time-dependent Schrödinger 
equation



Thought from simple 1D model
Collaboration with Mr. Arora (IIT)

Thought from simple 1D model
Collaboration with Mr. Arora (IIT)

m*=0.07 m0
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Applying the time‐dependent 
density functional theory and 
Ehrenfest dynamics
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For real materials
Many ions and electrons

For real materials
Many ions and electrons
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Pioneering works by time‐dependent density 
functional theory (TDDFT): Prof. Yabana’s group

Castro et al., Eur. Phys. J. D 28, 211 (2004).

Bertsch, et al., PRB62 7998, (2000).

Computational methods(1)Computational methods(1)



MD simulation must conserve
TDDFT term

Energy conservation rule in TDDFT-MD

Computational methods(2)Computational methods(2)



With time-varying external field

Energy conservation rule in TDDFT-MD (continued)

Computational methods(3)Computational methods(3)



Goes to zero!

Time integral=W,  so U-W=Conserved quantity

Miyamoto, Zhang, Phys. Rev. B77, 165123 (2008)

Computational methods(4)Computational methods(4)



• Time-dependent density functional theory for real-
time propagation of electron wave functions 
[Sugino, Miyamoto, PRB59, 2579 (1999).]

• Adding scalar potential Vext(r,t) to HKS(r,t) for 
optical E-field satisfying the energy conservation 
rule [Miyamoto, Zhang, PRB77, 165123 (2008).]

• Plane wave basis (60 Ry), norm-conserving 
pseudopotential, LDA

Computational methods(5)Computational methods(5)



Computational methods(6)Computational methods(6)
Periodic boundary conditions

Vext(r,t)



e-h splitting as dipole momente-h splitting as dipole moment

p n

With circuit
→Induction of current

p n

Without circuit
→Increase of dipole 
moment



Case study 1: polar crystalCase study 1: polar crystal
SiC(001) polar surface



SiC(001) polar surface
90 degree

e

h

Case study 1: polar crystalCase study 1: polar crystal



Procedure of calculationsProcedure of calculations

• Compute time-propagation of electrons 
under the light (direct solution of time-
dependent Schrödinger equation.) 



SiC(001) polar surface

e

h

In this case, the optical E-field and dipole 
moment are parallel. YM, APEX 3, 047202 (2010).



How could we find the optical frequency?: 
In case of off-resonance

How could we find the optical frequency?: 
In case of off-resonance
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FT of P(t) gives peak frequency at 6 eV



At the resonanceAt the resonance
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Attenuation of light at 30 fs, hν=6eV
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Snap shot of charge densitySnap shot of charge density

Si

C

hole

electron

Compared 
with no light

SiC(001) polar surface

e

h



Organic dimer (TTF/TCNQ)
as analogy of pn-junction

Organic dimer (TTF/TCNQ)
as analogy of pn-junction

TCNQ

TTF
Optical E-field

2 eV
3.5 eV

C S

N

H



Accumulation of energy with resonant 
frequencies of lights

Accumulation of energy with resonant 
frequencies of lights

eV00.2 eV50.3

Following the energy-conservation rule by Miyamoto, Zhang, 
Phys. Rev. B77, 165123 (2008).

Period 2.07 fs Period 1.18 fs



Increase of dipole momentIncrease of dipole moment

TTF

TCNQ
xy

z
},,{},,{ )0()( zyxzyx tPtP 

eV00.2 Period 2.07 fs eV50.3
Period 1.18 fs

M. Yoon, Y. Miyamoto, M. Scheffler, New J. Phys. 13, 073039 (2011).



Analysis of molecular orbitals
(intra- and inter-molecular CT)
Analysis of molecular orbitals
(intra- and inter-molecular CT)

Snapshot at t = 12.7 fs with hν= 2 eV

TCNQ

TTF

Side view
Top views

TCNQ

TTF

electron

hole



Possible photovoltaic devicesPossible photovoltaic devices

TCNQ

TTF

These 
molecules are 
unsolvable

Photo-carrier 
generation

Hole transport

Electron
transport

TTF

TCNQ



One technical note (effect of UV)One technical note (effect of UV)
Absorption peak on organic molecules: visible + UV

2 eV 3.5 eV UV absorption is useless for photovoltaic 
unless you create multi-excitons

Can we 
eliminate UV 

peak?

One of possibilities: make 
mixture with wide HOMO-
LUMO gap molecules



General note for optical propertyGeneral note for optical property

Kim et al., (Grätzel group) 
JACS 128, 16701 (2006)

UV UV

Need of additional 
molecules which 
interfere HOMO-1 and 
LUMO-1



One hypothetical modelOne hypothetical model
Donor

Acceptor
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Mixture with borazine (B3N3H6)Mixture with borazine (B3N3H6)
Front view Side view

Without borazine

With borazine



One hypothetical modelOne hypothetical model
Donor

Acceptor
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Other required simulationsOther required simulations

1.Time-constant data extracted from fast 
dynamics plugged in in master-equation

2.Combined with carrier transport 
simulation

3.Structural change of photovoltaic 
material during photo-electro conversion 
→Longer time TDDFT-MD simulation for 
aging



SummarySummary
1. Theoretical method to explore photovoltaic 

material (monitoring time-dependence of 
dipole moment that mimics photo-excited 
e-h separation)

2. A TTF/TCNQ dimer shows increase of 
dipole moment upon illumination of light at 
2.00 eV and 3.50 eV.

3. Practical simulation for photovoltaic 
devices (multi-scale theory for fast and 
slow dynamics is needed)


