

DNAは様々な学問分野から研究されている

しかし相互のつながりは少なく一面的

例えば、DNAデバイスにおいて電荷移動のしやすさなどは考慮されていない。

タンパクーDNA相互作用で軌道の重なりなどは考慮されていない。

DNAは分子材料として研究すべき生物物質である

Rothemund 2006

Ĩ

Ŕ

Н

G

分子系の構造と電子状態ー「生物物質科学」を目指して

Ó

С

R

DNAの構造と損傷は密接に関連している

酸化的損傷はGG配列の5'側のGで起こる

HOMO of DNA is localized at 5'G of GG sequence Cation radical (Hole) is stabilized at GG sequence

J. Am. Chem. Soc. 1996, 118, 7063; 1995, 117, 6406 被引用回数670回

GGサイトの主生成物は8-OxoGである

8-oxoGによるG->T 突然変異

しかし8-oxoGでは高頻度で起こるG->Cへの変異は説明できない

Gの相手側にIzが選択的に取り込まれる Kino et al. Chem & Biol 2001, 8, 369

分子系の構造と電子状態ー「生物物質科学」を目指して

5-ブロモウラシルでDNAの電子状態を観る

Photochemistry of 5-Halouracil in DNA

5-halouracil は細胞中においてTの代わりに取り込まれる

光照射によって、5-halouracil からウラシルラジカルが生成し水素を引き抜く

Photoreaction of 5-Halouracil-Containing DNA Fragment

Specific Cleavage at (G/C)AA^xU^xU and (G/C)A^xU^xU

Product of Photoirradiated d(CGAA^XU^XUCG)₂

Efficiency Linearly Correlates with IP of Base

蛋白からDNAへの光電子移動

Structures of Sso7d-DNA Complex

Wang, A. H.-J.et al., Nature Structural Biology 1998.

Sso7d:

Chromosomal protein from hyperthermophilic archaeabacteria Sulfolobus solfataricus

Phusion High-Fidelity DNA Polymerase

Trp残基からの電子移動で反応が進んでいる

(Carell and Essen. Science 2004)

Can Sso7d repair T�T dimer?

電子移動はDNAの構造に依存する

The Three Helical Forms of DNA

Z型(左巻き) 塩添加

A型(右巻き) エタノール添加

B型(右巻き)

B-Z transition dramatically increased the photoreactivity

G₁₀ in complementary strand was simultaneously oxidized.

 G_{10} at the end of four-base π -stacks act as an electron donor !

Tashiro Sugiyama J. Am. Chem. Soc. 2003, 125, 15282

電子状態はZ型とB型で大きく異なる

Apの蛍光はZ型の中では増大する

蛍光を温度でコントロールする

Change of fluorescene is fully reversible !

Molecular thermometer based on different π -stack of B and Z-DNA

Tashiro Sugiyama Angew. Chem. Int. Ed. 2003, 42, 6018

DNAは分子材料として研究すべき生物物質である

分子系の構造と電子状態ー「生物物質科学」を目指して

Acknowledgments

Kyoto University Department of Chemistry Dr. Toshikazu Bando Dr. Yan Xu Dr. Kennichi Shinohara Dr. Ryu Tashiro

Academia Sinica Institute of Biol. Chem. Dr. Andrew Wang Tokyo Medical & Dental University Institute of Biomaterials and Bioengineering

> Dr. Kiyohiko Kawai Dr. Shuji Ikeda Dr. Katsuhito Kino Dr. Takanori Oyoshi Mr. Takayoshi Watanabe Ms. Reiko Ikeda

The work was supported by a grant-in-aid for scientific research from the Ministry of Education, Science, Sports and Culture, Japan and SORST of Japan Science and Technology Corporation (JST).

