Variation in Electronic Properties in Novel Single-Component Organic Solids

S. Ishibashi¹⁾ and K. Terakura²⁾ ¹⁾ RICS, AIST ²⁾ JAIST

Molecular structures for single-component molecular solids

Neighboring molecules in the a+c direction overlap along b.

M=Ni (2001) Au (2003)

Space group P-1

Ni(tmdt)₂: H. Tanaka *et al.*, Science **291**, 285 (2001). a = 6.376 Å, b = 7.359 Å, c = 12.012 Å $\alpha = 90.384$ °, $\beta = 96.688$ °, $\gamma = 103.587$ ° V = 543.7 Å³

Au(tmdt)₂: W. Suzuki *et al.*, JACS **125**, 1486 (2003). a = 6.413 Å, b = 7.551 Å, c = 12.154 Å $\alpha = 90.473$ °, $\beta = 96.698$ °, $\gamma = 103.008$ ° V = 569.2 Å³

Crystal structure of Ni(tmdt)₂ and Au(tmdt)₂

Physical Properties of [Au(tmdt)₂]

Magnetic susceptibility of Au(tmdt)2 New data

magnetic moment: 0.3 μ_{B}

questions to be answered

- reason for metallicity for Ni- & Au- (tmdt)₂
- AF configuration of Au(tmdt)₂
- reason for high T_N for Au(tmdt)₂
- reason for weak anomaly in resistivity at T_N
- effects of substitution in ligand
- different molecular conformation
 Au(tmdt)₂ is planar while Cu(dmdt)₂ is twisted.
- why no magnetic long-range order for Cu(dmdt)₂ despite the presence of localized moment on Cu?

Two important molecular orbitals near Fermi level

$$\phi_{-} \propto \varphi_{1} - \varphi_{2} \qquad \phi_{+} \propto \varphi_{1} + \varphi_{2}$$

LUMO for Ni(tmdt)₂ SOMO for Au(tmdt)₂

HOMO for Ni(tmdt)₂ HOMO-1 for Au(tmdt)₂

 $\mathcal{E}_{-} - \mathcal{E}_{+} = 0.36 \text{eV}$: for isolated molecule of Ni(tmdt)₂ C. Rovira et al., Phys. Rev. B 65, 81104 (2002)

=0.16 eV: for isolated molecule of Au(tmdt)₂

Comparison of density of states for $Ni(tmdt)_2$ and $Au(tmdt)_2$

Band dispersion for $Ni(tmdt)_2$ and $Au(tmdt)_2$

$$\chi_0(\mathbf{q}) = \int_{BZ} \frac{f(E_n(\mathbf{k}))[1 - f(E_n(\mathbf{k} + \mathbf{q}))]}{E_n(\mathbf{k} + \mathbf{q}) - E_n(\mathbf{k})} d\mathbf{k} \text{ for Au(tmdt)}_2$$

charge density

spin density: intra-molecular AF no spin density on Au

spin-polarized GGA Unit cell: $2a \times b \times c$ $\mathcal{P}_{down}(\mathbf{r}) = \mathcal{P}_{up}(\mathbf{r}+\mathbf{a})$

Magnetic moment: $0.08 \,\mu_{\rm B}$

The energy difference between NM and AFM phases is almost zero.

Spin density in $Au(tmdt)_2$

non-mag

antiferro

for about 0.3 $\mu_{\rm B}$

artificially enhanced xc potential by factor 1.05

Why intra-molecular AF spin distribution in AF state in Au(tmdt)₂

due to the character of π orbitals of ligand t' > t : and the stacking of molecules band width HOMO – LUMO gap Ni(tmdt)₂ **Overlap of HOMO and LUMO bands** semimetallic nature Au(tmdt)₂ Intramolecular AF spin density distribution

physical properties of Au(tmdt)2

• Pauli paramagnetic susceptibility

 $\chi = 2\mu_B^2 D(\varepsilon_F)$ DOS in states/eV/spin/formula unit

 $= 6.5 \times 10^{-5} \times D$ in emu/mol

D is about 5 in paramagnetic state. Then χ is about 3.3 x 10⁻⁴ emu/mol. The experimental value is about 4.2 x 10⁻⁴ emu/mol

• Why is T_N so high?

probably due to strong short range order

プロトンNMRとは矛盾?

$Cu(dmdt)_2$:

Figure 1. (a) Molecular structure of dianion copper complex in **2**. (b) Molecular arrangement of **1**. The lower part of figure presents the arrangement of ligand moieties projected along the molecular long axis. The S···S contacts are shown as dotted lines. A: 3.45 Å, B: 3.69 Å, C: 3.73 Å, D: 3.70 Å, E: 3.66 Å.

H. Tanaka *et al.*, JACS **124**, 10002 (2002). a = 24.24 Å, b = 8.250 Å, c = 11.500 Å $\beta = 91.38^{\circ}, V = 2299. \text{ Å}^3, Z = 4$ **semiconductor (?)** $E_a = 0.04 \text{ eV}$ 84% of S=1/2 spin

$Zn(tmdt)_2$:

K. Yamamoto *et al.*, Chem. Lett. **34**, 1090 (2005). a = 25.33 Å, b = 8.067 Å, c = 11.36 Å $\beta = 92.71^{\circ}, V = 2319. \text{ Å}^3, Z = 4$ **semiconductor (?)** $E_a = 0.15 \text{ eV}$ temperature independent paramagnetism

temperature-independent paramagnetism

Space group C2/c

Crystal structure of $Cu(dmdt)_2$ and $Zn(tmdt)_2$

twisting of ligand molecules

qmas_gammaで計算しなおした、角度-エネルギー変化の関係 (原子位置は面内で最適化。各分子のエネルギーの基準は、スピン 偏極無しの0度のもの。)

AFM

NM

 $Cu(dmdt)_2$

questions to be answered

- reason for metallicity for Ni- & Au- (tmdt)₂
- AF configuration of Au(tmdt)₂
- reason for high T_N for Au(tmdt)₂
- reason for weak anomaly in resistivity at T_N
- effects of substitution in ligand

赤字は未解決

- different molecular conformation Au(tmdt)₂ is planar while Cu(dmdt)₂ is twisted.
- why no magnetic long-range order for Cu(dmdt)₂ despite the presence of localized moment on Cu?