Stern-Gerlach Experiments of One-Dimensional Metal-Benzene Sandwich Clusters: $M_n(C_6H_6)_m$ (M = Al, Sc, Ti and V)

Atsushi Nakajima^{1,2}

 ¹Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan,
²CREST, Japan Science and Technology Agency (JST), c/o Department of Chemistry, Keio University, Yokohama 223-8522, Japan,

E-mail; nakajima@chem.keio.ac.jp

A molecular beam of multilayer metal-benzene organometallic clusters $M_n(C_6H_6)_m$ (M = Al, Sc, Ti, and V) was produced by a laser vaporization synthesis method, and their magnetic deflections were measured. Multidecker sandwich clusters of transition metal atoms and benzene $Sc_n(C_6H_6)_{n+1}$ (n = 1-2) and $V_n(C_6H_6)_{n+1}$ (n = 1-4) possess magnetic moments that increase monotonously with n.¹⁻⁴ The ferromagnetic spin ordering of the $V_n(C_6H_6)_{n+1}$ clusters can be reproduced by theoretical calculations.⁵ The magnetic moments of $Al(C_6H_6)$, $Sc_n(C_6H_6)_{n+1}$ and $V_n(C_6H_6)_{n+1}$ are smaller than that of their spin-only values as a result of intra-cluster spin relaxation, an effect that depends on the orbital angular momenta and bonding characters of the orbitals containing electron spin. While $Ti(C_6H_6)_2$ was found to be non-magnetic, $Ti_n(C_6H_6)_{n+1}$ (n = 2, 3) possess magnetic moments.⁶ The mechanism of ferromagnetic spin ordering in $M_2(C_6H_6)_3$ (M=Sc, Ti, V) is discussed qualitatively in terms of molecular orbital analysis. These sandwich species represent a new class of one-dimensional molecular magnets in which the transition metal atoms are formally zerovalent.

Figure 1. Broadening of TOF peaks of $V(C_6H_6)_2$ and $V_2(C_6H_6)_3$ by the magnetic field gradient at T = 154 K. (Filled circle: $\partial B/\partial z = 0$, open circle: $\partial B/\partial z = 205$ Tm⁻¹) Solid lines indicate modeled TOF profiles for zero-field profile and simulated broadened profile. Beamlets are shown by dashed lines. Inserts show the deflection magnitude of the outmost beamlet obtained by the 'beamlet' model.

- [1] K. Miyajima, A. Nakajima, S. Yabushita, M. B. Knickelbein, and K. Kaya *J. Am. Chem. Soc.* **126** (2004) 13202.
- [2] K. Miyajima, M. B. Knickelbein, and A. Nakajima, Eur. J. Phys. D. 34 (2005) 177.
- [3] K. Miyajima, M. B. Knickelbein, and A. Nakajima, Polyhedron 24 (2005) 2341.
- [4] K. Miyajima, S. Yabushita, M. B. Knickelbein, and A. Nakajima, submitted to *J. Am. Chem. Soc.* (2007).
- [5] J. Wang, P. H. Acioli, and J. Jellinek, J. Am. Chem. Soc. 127 (2005) 2812.
- [6] J. Kua and K. M. Tomlin, J. Phys. Chem. A 100 (2006) 11988.