Iron-Sulfur Clusters from the Viewpoint of Condensed Matter Physics

<u>Takami Tohyama</u>,¹ Hidetoshi Fukuyama²

¹Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan ²Department of Applied Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

E-mail; tohyama@yukawa.kyoto-u.ac.jp

It is well-known that ion-sulfur clusters are responsible for the electron transfer in proteins. Recently, it has been proposed that the electron transfer by a one $[4Fe-4S]^{1+/2+}$ cluster-containing activator is accompanied by conformal changes of an helix-cluster-helix angle from 105° to 180° .¹ This gives rise to the question how electronic states of the [4Fe-4S] clusters are related to the microscopic mechanism of the conformation in the longer spatial scale. Motivated by this proposal, we are now studying the electronic states of the iron-sulfur clusters from the viewpoint of condensed matter physics.

In this talk, we discuss the present status of the understanding of the electronic states of the [4Fe-4S] cluster (Fig. 1).² The [4Fe-4S]²⁺ system formally contains two Fe³⁺ (S=5/2) and two Fe²⁺ (S=2). Mössbauer spectroscopy indicates, however, that the four iron ions are generally equivalent, thus carrying a common charge of 2.5+. The observed equivalence can be correlated with crystallographic data that indicate D_{2d} type distortion of four iron sites, resulting in two pairs of iron sites, "Fe1- Fe2" and "Fe3-Fe4". Total spin of the cluster is known to be $S_t=0$. These facts were theoretically understood by taking into account the interplay of exchange interactions between iron spins and vibronic coupling.³ The exchange interactions consist of two parts: the superexchange terms between iron ions and the double exchange terms favoring delocalization and ferromagnetism within mixed-valence pairs. Therefore, one can describe the spin coupling of the cluster in two steps: first by the double exchange that makes the pairs, "Fe1- Fe2" and "Fe3-Fe4", ferromagnetic and secondly by the superexchange that couples the two pairs antiferromagnetically. The interplay of the resulting spin states and vibronic coupling gives rise to the Jahn-Teller distortion from T_d to D_{2d} .

The $[4\text{Fe}-4\text{S}]^{1+}$ system usually has a $S_t=1/2$ ground state. However, the state with $S_t=3/2$ also appears at low energy and sometimes becomes the ground state.⁴ This nearly degenerate feature may have an effect on the mechanism of the electron transfer.

Since the analyses of the [4Fe-4S] clusters have mainly been done based on quantum chemistry calculations,⁴ alternative approaches based on condensed matter physics may be useful

for fully understanding the electronic states of the iron-sulfur Figure 1: [4Fe-4S] cluster clusters.

J. Kim, M. Hetzel, C. D. Boiangiu, and W. Buckel, *FEMS Microbiol. Rev.* 28 (2004) 455; J. Kim, Y. Lu, and W. Buckel, *Comptes Rendus Chimie*, (2007) in press.
As a review, see H. Beinert, R. H. Hole, and E. Münck, *Science*, 277 (1997) 653.
V. Papaefthymiou, J.-J. Girerd, I. Moura, J. J. G. Moura, and E. Münck, *J. Am.*

Chem. Soc., **109** (1987) 4703; E. L. Bominaar, Z. Hu, E. Münck, J.-J. Girerd, S. A. J. Borshch, *J. Am. Chem. Soc.*, **117** (1995) 6976.

[4] L. Noodleman, C. Y. Peng, D. A. Case, and J.-M. Mouesca, *Coord. Chem. Rev.* 144 (1995) 199.