Synthesis and Electronic Properties of Iron-Sulfur Clusters Relevant to Metalloenzymes

Kazuyuki Tatsumi and Yasuhiro Ohki

Research Center for Materials Scince, and Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan E-mail; i45100a@nucc.cc.nagoya-u.ac.jp

The iron-sulfur proteins in nature are represented by those consisting of [4Fe-4S], [3Fe-4S], and [2Fe-2S] clusters. In most of the cases, these clusters are thermodynamically stable, and the core geometries are constructed by spontaneous selfassembly reactions in polar aprotic solvents. We have recently found a new method to synthesize Fe/S clusters, which utilizes the bis-amide complex of iron, $Fe\{N(SiMe_3)_2\}_2$, as the precursor. This new route has allowed us to build Fe/S clusters in non-polar solvents, and resulted in a series of unprecedented cluster structures, some of which resemble closely the active sites of nitrogenase and hydrogenase.

For instance, the unusual [8Fe-7S] inorganic core structure of the reduced form of Pcluster (P^N) of nitrogenase was self-assembled by the reaction of Fe{N(SiMe₃)₂}₂, tetramethylthiourea (*tmtu*), 2, 4, 6-triiso-propylbenzenethiol(HS-tip), and S₈ in the ratio of 8(Fe):3(*tmtu*):12(HS-tip):7(S), which gave rise to [{N(TMS)₂}{SC(NMe₂)₂}Fe₄S₃]₂ (μ_6 -S){ μ -N(TMS)₂}₂ (TMS = SiMe₃)(1). Interestingly, the cluster 1 consists of irons with a 6Fe(II)+2Fe(III) oxidation state as manifested by the Mössbauer study, while P^N has been thought to carry 8 Fe(II) ions. Although cluster 1 degrades to a Fe₄S₄ cubane cluster under the presence of thiols, as the P-cluster does so, it was possible to isolate (NEt₄)₂[{N(TMS)₂}(SAr)Fe₄S₃]₂(μ_6 -S){ μ -N(TMS) ₂}₂ (2) (Ar = 4-^tBu-C₆H₄, 2-SiMe₃-C₆H₄ etc.) and [(SAr){SC(NMe₂)₂}Fe₄S₃]₂(μ_6 -S){ μ -N(TMS)}₂ (Ar={2,6-(SiMe₃)₂-C₆H₄}) (3) from the reactions of 1 with corresponding thiolates and thiol. We have isolated yet another type of [8Fe-7S] cluster, [(SDmp)Fe₄S₃]₂(μ_6 -S)(μ -SDmp)₂(μ -STip)} (4), from the reaction of the preformed di-iron complex [Fe(Stip)]₂(μ -SDmp)₂ with S₈, which is topologically analogous to FeMo-co of nitrogenase and has an intriguing 5Fe(II)+3Fe(III) oxidation state with a doublet ground state.

We have also synthesized an unusual [4Fe-4S] cluster, $Fe_4S_4(SDmp)_3(THF)_3$ (5) from $Fe_4S_4\{N(TMS)_2\}_4$ in toluene. Cluster 5 was further converted to $Fe_4S_4(SDmp)_3$ -(Imd) (6) (Imd = tetramethyl imidazole), which serves as the first model of the histidine-bound unique [4Fe-4S] cluster found in hydrogenase.

- [1] Y. Ohki, Y. Sunada, M. Honda, M. Katada, and K. Tatsumi, J. Am. Chem. Soc., 125, 4052 (2003).
- [2] Y. Ohki, Y. Sunada, and K. Tatsumi, Chem. Lett., 34, 172 (2005).
- [3] M. Shoji, K. Koizumi, Y. Kitagawa, S. Yamasaka, M. Okumura, K. Yamaguchi, Y. Ohki, Y. Sunada, M. Honda, and K. Tatsumi, *Int. J. Quantum Chem.*, *106*, 3288 (2006).