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The paper presents a new result on dynamical properties of the skeleton (medial
axis) of a 2D/3D shape and a Java program for visualization, description, and
study of dynamic 2D shapes via curvature. The program was developed by the
first author and was used by the second author as an education tool for a number of
courses (Applied Differential Geometry, Computational Geometry, Mathematical
Methods in Computer Graphics) taught at the University of Aizu.

The paper consists of two main sections. A rough description of the program and
demonstration of its basic visualization capabilities is provided in the first section.
The second section presents a new mathematical result describing dynamical prop-
erties of the skeleton (medial axis) of a 2D /3D bounded figure. The 2D version of
the result was discovered during authors’ experiments with the program.

Topics & Areas: Education and Applications of Multimedia,
Topological and Geometric Modeling.

Keywords: visualization, dynamic curves, curvature descriptors, skeleton.

Introduction

Curvature is one of the central concept in the mathematical theory of shape '!,
10 Being one of the most important intrinsic characteristics of shape, curva-
ture measures deviation from flatness. Visualization and study of curvature-
based shape characteristics are very important for shape understanding pur-
poses. The previous research in this field has been mostly concentrated on
visualization and analysis of curvature-based characteristics of static shapes.

*The Java applet described in the paper is available at
http://www.u-aizu.ac.jp/~m5031126/Research /CCurve/CCurve.html
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In this paper we study and visualize curvature-based characteristics of dy-
namic shapes.

In the next section we outline the basic capabilities of a Java program
for visualization, description, and study of dynamic 2D shapes via curvature.
The program was developed by the first author and was used by the second
author as an education tool for a number of courses (Applied Differential
Geometry, Computational Geometry, Mathematical Methods in Computer
Graphics) taught at the University of Aizu.

Next we present a new mathematical result describing dynamical proper-
ties of the skeleton (medial axis) of a family of 2D /3D figures. The 2D version
of the result was discovered during authors’ experiments with the program.

Description and Visualization Capabilities of Program

Basic Options

The program is initialized by displaying a closed quintic B-spline curve, see
Fig.1. A user can modify the shape of the curve by dragging control points,

System | | Basic Properties | | Curves Evolutjonsl Skelemns‘ Center | | Init Zoom | ©-Pick  Move  yZoom

El [ ] ]

Fig. 1. Java 2D Dynamic Curve Simulator

see Fig.2. The main window has five main control buttons. Clicking a but-
ton opens a subwindow (panel) allowing a user to visualize certain geometric
features associated with the curve. Fig. 3 shows the SysTem and Basic Prop-
ERTIES panels.

Clicking the CLEAR MEMORY button initializes the program, pushing the
SpLiT CoNTROL PoINTS button increases the number of control points to six-
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Fig. 2. Left: An initial closed B-spline curve and its control points. Right: A curve obtained
by dragging one control point.
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Fig. 3. The SYSTEM and BASIC PROPERTIES panels.

teen, and clicking the OPEN NEwW WiNDOW button opens a new basic window
shown at Fig. 1.

Many implemented algorithms are based on a polygonal interpolation
of the basic B-spline curve. The horizontal slider at the bottom of SysSTEmM
panel allows a user to change the sampling rate of the implemented polygonal
interpolation. Clicking the button INITIALIZE RATE sets the finest available
polygonal interpolation.

Using the Basic PROPERTIES panel a user can visualize tangent, normal,
and curvature vectors of the curve, see Fig. 4.

The checkboxes ConTrROL PoiNTs, B-SPLINE, and SAMPLING visual-
ize / hidden the control points, the curve, and the interpolating polygon, re-
spectively. The checkboxes RaTing allow a user display normals, curvature
normals, and tangents at the interpolation points only. Visualizing the cur-
vature vectors (curvature profile) is often used for shape quality evaluation
properties 8.



Fig. 4. Top-left: a curve and its unit tangent vectors. Top-right: a curve and its outer
normals. Bottom-left: the effect of the RATING checkbox associated with the TANGENTS
button is demonstrated, only the tangent vectors at the interpolating points are displayed.
Bottom-right: a curve and its curvature vectors; such curvature profile is often used for
shape quality evaluation properties.

Evolute, Offsets, and Caustics by Reflection.

The CurvEs panel, see Fig. 5, allows a user to visualize the osculating circles,
evolute, offset curves, and caustics by reflection associated with of the main
B-spline curve.

Evolute and offset curves. Let us recall that the best approximation of a
curve at its point P by a circle is given by the circle of curvature called also
the osculating circle at P 15, If P is an inflection point (where the curvature
is zero), the circle of curvature degenerates into the tangent line at P.

The locus of the centers of curvature of a given curve is called the evolute
of the curve. The evolute of a smooth curve has singularities (so-called cusps).
As we will see in the second section of the paper, the singularities of the evolute
correspond to the points where the curvature takes extremal values.

An offset curve is the locus of points equidistant from a given curve.
Offset curves have numerous applications in manufacturing °. The offset
curves also may have singularities. The singularities of the offset curves are

4



=] Curves [=]=
Close Curves Window

__|Inital Curve Color
Methods @l mEAT

Osculating Circles

|
Moving Osculating Circle |
Offset Curves |
Moving Offset Cutve |
|

|

|

|

Family of Normals

Maoving Normal

Evolute

OoOoO0000dn

Orthotomic Curve

Family of Orthotomic Normals| O
Caustics | 1

ODoooooooodn

Fig. 5. The CURVES panel.

situated on the evolute.
The Java 2D Curve Simulator allows to visualize many interesting prop-
erties of the evolute, osculating circles, and offset curves. See Fig. 6.

’ %

N

Fig. 6. Left: A curve, its evolute, and an osculating circle; note that the segment connecting
the circle center and the tangency point is tangent to the evolute. Right: The same curve,
its evolute, and an offset curve; note that the cusps of the offset curve are situated on the
evolute.

A user can drag the tangency point and move the osculating circle along
the curve. Similar control capabilities are provided for the offset curves.

The evolute can be also described as the envelope of the curve normals.
Clicking the FamiLy or NorMALS button (see Fig.5) allows to visualize this
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optical property of the evolute.
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Fig. 7. Left: a curve, its evolute, and a normal. Right: the evolute is given as the envelope
of all the normals.

Caustic by reflection, orthotomic. The envelope of the family of straight
lines is called a caustic. For example, a so-called coffeecup caustic is formed
by sun rays reflected by the inner surface of a cup when the sun shines on it.

Consider a point O and a curve not passing through O. The locus of the
reflections of O with respect to all the tangent lines to the curve is called the
orthotomic of the curve relative to O, see Fig. 8.

source of light

Fig. 8. The orthotomic is formed by the reflections of a given source of light with respect
to all the tangent lines.

Imagine that a point source of light is located at O. and light from O
is reflected from the curve according to the usual rule that the reflected ray
and the incident ray make equal angles on opposite sides of the normal of
the curve. Then the caustic generated by the reflected rays, the caustic by
reflection, is the evolute of the orthotomic 7.

Clicking the OrrHOTOMIC CURVE, FAMILY OF ORTHOTOMIC NORMALS, and
Caustics buttons (see Fig.5) visualize the orthotomic, the family of the or-

thotomic normals, and the caustic by reflection, respectively. A user can also
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drag the source of light point by mouse and study dynamical properties of the
orthotomic and caustic by reflection.

The top-left image of Fig. 9 exposes the coffeecup caustic, the top-right
and bottom-left images explain how the coffeecup caustic is modeled, and and
the bottom-right image shows the associated orthotomic curve.

Fig. 9. Coffeecup caustic.

Playing with the caustic by reflection, one can observe, for example, the
following delicate result 7: the caustic is always tangent to the curve at the
points where the light rays emitted from the source are tangent to the curve.

Curve Evolutions

Let us consider a family of simple closed smooth curves C(p,t), where p pa-
rameterizes the curve and ¢ parameterizes the family. Assume that p is inde-
pendent of ¢.
Let us assume that this family evolves according to the evolution equation
aC(p,t)

ELU —Fin,  C,0) =), 1)
where n(p,t) is the unit normal vector for C(p,t), F is the evolution speed
given as a function of the curvature k. The family parameter ¢ can be consid-
ered as the time duration of the evolution.
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The study of families of plane curves evolving according to (1) has re-
cently been a subject of intensive research (see, for instance, ' and references
therein) in connection with multiscale shape analysis and geometrical image
processing.

The following four curve evolutions are implemented in the program:

— (1) with F = k (the so-called curve shortening flow);
- (1) with F = c+d -k, where ¢ and d are constants;

— (1) with F = —1 (the distance-function flow, the evolving curve generates
level sets of the distance function from the initial curve C(p,0));

— the Laplacian flow (a discrete approximation for the curve shortening
flow).

= Evolutions [=10]
Close Evolutions Window
Flows xxin [teration Display
Curvature Driven F = k ‘ ] [#o 00
Curvature Driven F = c +d*k| [| [#%% 0
C= [rzo]d= [os]
Laplacian Flow ‘ N 50
Distance Function Flow ‘ ] #

Fig. 10. The EVOLUTIONS panel.

Numerical implementation of the flows combines the forward Euler scheme
for (1) and polygonal approximation for the evolving curve C(p, t) (for a detail
explanation of the implemented numerical method, see 2).

The Evorutions panel, see Fig.10, allows a user to visualize the above
four evolutions. Fig.11 demonstrates the above evolutions.

Besides, by clicking the k-min checkboxes, a user can trace curvature ex-
trema (the curvature negative minima for a curve oriented by its outer normal)
and singularities of a curve evolving by one of the four above flows. For ex-
ample, Fig.12 demonstrates evolution of curvature extrema and singularities
of a curve driven by the curve shortening flow (left) and the distance-function
flow (right).
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Fig. 11. Top-left: the curve shortening flow. Top-right: the modified curve shortening flow.
Bottom-left: the Laplacian flow. Bottom-right: the distance-function flow.

Fig. 12. Left: curvature extrema of a curve evolving according to the curve shortening flow
are traced. Right: curvature extrema and singularities of a curve evolving according to the
distance-function flow are traced.

Skeleton

The skeleton or medial azxis of a figure F' is the closure of the set of points
inside F' that have more than one closest point among the points of F'.

The skeleton is an important shape descriptor invented by Blum 8. It is
extensively used in connection with human shape perception theories 5, 1.
See Fig. 13 for a closed curve and its skeleton. The SkeLeETON panel is exposed
in Fig. 14.

For a 2D simple closed curve, the skeleton can also be defined as the
locus of centers of inner circles that are bitangent to the curve. Clicking
the SKELETON VIA BITANGENT CIRCLE, MOVING BITANGENT CIRCLE, BITANGENT

CIRCLE buttons generates the skeleton of a curve, an inner bitangent circle
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Fig. 13. A closed curve and its skeleton.

Fig. 14. The SKELETON panel.

which can be dragged along the curve, and a family of inner bitangent circles,
respectively.

The notion of the skeleton is closely related to the notion of the Voronoi
diagram of a set of points. A numerical method to construct the skeleton from
the Voronoi diagram of interpolating polygon is implemented. The method
is activated via the buttons SKELETON viA VORONOI DIAGRAM and VORONOI
DIAGRAM.

Fig. 15 shows both the methods to reconstruct the skeleton of a 2D figure.

A user can change the sampling rate of the polygonal interpolation via the
horizontal slider of the System panel. Fig.16 demonstrates how the approxi-
mation of the skeleton via a subset of the Voronoi diagram of the interpolating
polygon depends on the sampling rate of the polygonal interpolation.

Skeleton Branching Theorem

In this section we prove the following result describing dynamic properties
of the skeleton (medial axis) of a 2D figure. Consider an evolving simple
closed curve oriented by its inner normal, a figure bounded by the curve
and the medial axis (skeleton) of the figure. A new segment of the medial
axis appears / disappears when an evolute cusp corresponding to a positive
maximum of the curvature intersects the medial axis. A similar result is
obtained for 3D figures.
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Fig. 15. Left: a figure, its skeleton, and an inner bitangent circle. Middle: the skeleton
as the locus of centers of all inner bitangent circles. Right: the skeleton approximated by
a subset of the Voronoi diagram of a dense set of points located on the boundary of the
figure.

Fig. 16. Top-left: the approximation of the skeleton via a subset of the Voronoi diagram of
a sparse set of boundary points. Top-right: the approximation of the skeleton with a denser
set of boundary points. Bottom-left: a sufficiently dense set of boundary points leads to a
good approximation of the skeleton. Bottom-right: the skeleton as the locus of centers of
inner bitangent circles.
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2D Skeleton Branching Theorem

Consider a family of simple closed curves. The following theorem describes
the evolution of the skeletons of the figures bounded by the curves.

2D Skeleton Branching Theorem: For an evolving simple closed
curve, consider the motion of an evolute cusp which lies inside the curve
and points towards the curve (i.e., corresponds to a positive maximum
of the curvature, if the curve is oriented by its inner normal). When the
cusp intersects the skeleton, a new branch of the skeleton is born with its
end-point at the cusp.

e
N

Keleton Kdeon® xd etori‘-..I

Fig. 17 below provides with a visualization of the 2D Skeleton Branching
Theorem.

= EE =

Fig. 17. From top to bottom: a cusp of the evolute intersects the skeleton and a new branch
of skeleton is born.

Before proving the theorem, we have to study properties of the evolute
and skeleton in more detail.

Evolute. Let us consider a curve r = r(s) parameterized by arc length s. To
study the shape of the evolute at a small vicinity of a point r(s) we expand
r(s + «) into Taylor series with respect to a, a < 1. Let

=t and n=t"

compose the Frenet frame at r = r(s). The evolute is given by

os) = x(s) + %
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where k(s) is the curvature of the curve at r(s). According to the Frenet
formulas

t'=kn, n' =-kt
we have
r =t, r" =t' =kn, r'" = (kn)' = k'n — k°t.

It yields

( _ ! a_zll a_3/// 0 4\ __
r(s+a) =r+ar + g+ T+ () =

042

=1(s) +t [a— %3k2 +O(a4)] +n [7k+ %3k’+0 (a4)] .

Similarly,

n =—kt, n”=(-kt) =—-k't—kn, n" =(-k"+k%t-3kkn,

o? a?
n(s+a)=n(s) +t [—ak - Ek' + 5 (B — k") + O(a4)] +
a? a?
+n |:—7k2 - ?k‘kl + O(a4)] 5

2
k(s +a) = k(s) + a k' + %k +0(a?),

k(s + a) _%_aﬁ

For the evolute point e(s + o) we have

1 1 kl k12 k”
= +a? (ﬁ — ﬁ) + 0(043).

e(s+a):r(s+a)+%:e(s)+ )
! " 12
b [a2§—k to? (’;—k - ;“?) + 0((14)] 3)

k‘l 9 k12 k‘” 3
+n[—aﬁ+a (ﬁ—ﬁ>+0(0)
Thus, if k¥'(s) # 0, in a small vicinity of the center of curvature r(s)+n(s)/k(s)

the evolute is approximated by a parabola tangent to the normal n(s) (see the
left image of Fig. 18). If £'(s) = 0, in a small vicinity of the center of curvature
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Fig. 18.

the evolute is approximated by a semicubic parabola y® = Az? tangent to the
normal n(s) (see the middle and right images of Fig. 18).
Thus the evolute is tangent to the curve normals at the centers of curvature.

If ¥’ > 0, the vectors to = n and n. = —t form the Frenet basis of the
evolute and reparameterization of (2) gives

> g K 3
els+@) = e(6) + ta [8-+ 0] + 1o |37 + 05|

where 3 = ak'/k?. Thus the curvature of the evolute is k% /k’ and the evolute
has no inflections.

A wvertex of a smooth curve is a point of the curve where the curvature
takes an extremal value. A little bit more detail analysis of (2) leads us to
the following result (see also 2)

Proposition 1 The evolute of a curve r(t) has a cusp at to if and only if
r(to) is a vertex of the curve. The cusp on the evolute is pointing towards or
away from the verter according as the absolute value of the curvature has a
local minimum or mazimum at tg.

For a generic curve, the osculating circles centered at ordinary evolute points
intersect the curve. The osculating circles centered at the cusps of the evolute
have either inner or outer contacts with the curve.

Skeleton. The circle of curvature centered at a skeleton end-point can be
considered as a limit of the inner bitanget circles whose centers form the
skeleton. Thus the circle is osculating and it has an inner contact with the
boundary of the figure. If the boundary of the figure is oriented by its inner
normal, the end-points of the skeleton correspond to positive maxima of the
curvature of the boundary. Taking into account (2) we obtain the following
result.
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Proposition 2 The end-points of the skeleton of a figure are located at cusps
of the evolute of the boundary of the figure. Those cusps are pointing towards
the boundary of the figure.

For a simple closed curve, the evolute cusps do not necessary coincide
with the end-points of the skeleton of the figure bounded by the curve. If
the osculating circle centered at a cusp of the evolute does not lie inside the
figure, then the cusp is not a skeleton end-point.

Now the proof of the 2D skeleton branching theorem can be easily derived
from the following simple observation: when the cusp intersects the skeleton,
the osculating circle centered at the cusp becomes also an inner bitanget circle.

3D Skeleton Branching Theorem

Focal surface. Consider a smooth generic surface. Denote by kmax and
kmin the largest and the smallest principal curvatures, respectively, kmax >
kmin- The principal centers of curvature are the points situated on the surface
normals at the distances 1/kmax and 1/kmin from the surface. The loci of
the principal centers from the focal surface. The focal surface consists of two
sheets corresponding to the maximal and minimal principal curvatures.

The focal surface is the 3D analog of the
evolute and has singularities. The singulari-
ties of the focal surface consists of space curves
called the focal ribs. Near a point of a fo-
cal rib the focal surface can be locally rep-
resented in the parametric form (c;t3, cat?, s),
where ¢; # 0 # co, in proper coordinates (s, t).
See Fig. 19 for a typical focal rib. The focal ribs
themselves have singularities. Fig. 19. A typical focal rib.

The surface curves corresponding to the focal ribs are natural generaliza-
tion of the curve vertices for surfaces.

For a surface given parametrically r : R? — R?, its focal surface is
described by:

n(u,v)
f = = Fmax; fmin, 4
(u,v) =r(u,v) + T(a,0)’ k = kmax, k (4)

where n(u,v) is the oriented normal (without loss of generality we do not
consider parabolic points in (4)).

Let at a point P on the surface the coordinates u, v be chosen so that the
tangent vectors Or/Ou and Or/dv coincide with the principal directions tpyax

15



and tp,. If P corresponds to a singular point on the focal surface, then the
cross product

of xﬁ— or Ok k_kmin+ﬁ 6_k k — kmax

ou o Ou  Ou k3 v v k3

vanishes for where k = knax and k = kmin- This proves the following state-
ment.

Proposition 3 For a smooth generic surface the singularities of the focal
surface (focal Tibs) correspond to the lines on the surface where the principal
curvatures have extrema along their associated principal directions and the
points where the principal curvatures are equal (umbilics).

Following 2 let us call the surface curves corresponding to the focal ribs by
the principal curvature extremum curves.

Skeleton. The skeleton (medial axis) of a 3D figure F is the closure of the
set of points inside F' that have more than one closest point among the points
of OF.
One can define the skeleton of F as the locus of centers of maximal balls:
balls inside F' that are not themselves enclosed in any other ball inside F.
Various elements of the skeleton of a figure are schematically shown in
Fig. 20 (we use the terminology accepted in 1* and !°).

skeletal edges skeletal sheets

< ! skeleton

seam dart Ipoint \__junction point
Fig. 20.

The skeletal edge of the skeleton of a figure is a connected space curve
consisting of the skeletal points whose small neighborhoods on the skeleton
are topologically equivalent to a half-disk. One can also describe the skeletal
edge points as the points whose maximal spheres have a single contact with the
surface bounding the figure. A skeletal sheet is a connected component of the
skeletal points whose small neighborhoods on the skeleton are topologically
equivalent to a disk. A dart point is a skeletal point whose small neighborhood
on the skeleton is topologically equivalent to a disc sewn with a quarter-disk.
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A junction point is a skeletal point whose small neighborhood on the skeleton
is topologically equivalent to a disc sewn with three quarter-disks. See Fig. 20.
For a smooth oriented surface, let us define the ridges as the loci of the
positive maxima, of the maximal principal curvature along its curvature line.
Relations between the skeletal edges, the ridges, and certain focal ribs are
described by the following proposition (see 3,1, and * ).

Proposition 4 Consider a bounded 3D figure F whose boundary, OF, is
smooth and oriented by its inner normal. The skeletal edges are a subset
of the focal ribs associated with the mazimal principal curvature and pointing
towards OF . Those ribs correspond to the ridges on OF.

These relations between the ridges, the focal ribs associated with kmax
and pointing towards the surface, and the skeletal edges are demonstrated
schematically in Fig.21 and for an elliptic paraboloid in Fig. 22.

skeleton

Fig. 21.

A proof of Proposition4 is sketched in the next three subsections.

Ridges. Consider a smooth surface. For a given non-umbilic point P on the
surface let us choose coordinates in the space so that P is at the origin, the
(z,y)-plane is the tangent plane to the surface at P, the principal directions
tmax and tnin coincide with 2 and y axes, respectively, and the normal n
coincides with z-axis. Then the surface is expressible in the Monge form as
the graph of a generic smooth function z = F(z,y), where

F(z,y) = (az® + 3ba’y +

(=l

(Az® + py?) +

N | =
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Fig. 22. A surface, a ridge on the surface, the focal surface sheet associated with kmax, and
the skeleton of the figure bounded by the surface.

1
+ 3exy® + dya) + 21 (e$4 +4afzly + .. ) + O(z,y)?

with A = knax(0,0), gt = kmin(0,0), A > p.
The Taylor series expansion of ky.x at P has the form

kmax(Z,9) = A+ az + by + O(z,y)>.

Since the vectors (1,0) and (0, 1) represent tmax and tmin at P, respectively,
then

akmax
atmax

akmax
at1T1in

(0,0)=a

(0,0) =b ()

Let emax = Okmax/Otmax. The extrema of the maximal principal curva-
ture along its curvature line are given in the implicit form by the zero-crossings
of emax.

Let the surface orientation be chosen so that the maximal principal cur-
vature is strictly positive at P

kmax(0,0) > 0.

18



The curvature line associated with knax is locally described by the prob-
lem
dy _ bz +cy

2 —

Therefore, y'(0) = 0, y"(0) = b/(A — u) and in a neighborhood of the origin
the curvature line is approximated by the parabola

Y= bx?
20— p)’
It allows to compute the Taylor series expansion of knax at the origin along
the associated curvature line

5 3\ 22 3

Atazx+ (-3 +e+ — +0(2?) (6)
A—p) 2

Analyzing asymptotic expansion (6) we obtain that P is a generic ridge point

(the maximal principal curvature has a positive maximum along its curvature

line) iff

3b2
A>0, a=0, A=-3\+e+ <0. (7
A—p
Note that
6emax d2kmax
A = =
T (0,0) = Z52(0,0),

where s;,.x 1S the arclength of the curvature line associated with kyax.
If P is a ridge point, the tangent direction to the ridge at P is given by
{Az + By =0, z = 0}, where

Oemax 3bc

aemax _

A—at—m(0,0) and B =

Contact with osculating spheres. Let us consider the loci of points where

the curvature of the intersection curve between the surface and the plane

{y = az}, where « is a parameter. The intersection curve between the surface

and the plane is locally described by the equation y = alz?/2 + .... The

Taylor expansion of the curvature of the curve is the product of v/1 + o2 and
2

At az + (=323 (14 a)?) + 3X%ua® + 6bAa” + €) % + O(a?) (8)
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Thus, if the origin is a ridge point (a = 0), the type of the extremum of the
curvature at the origin is defined by the sign of

=3X3(1 + @)?) + 32%pua® + 6bAa’ +e.
This expression is a quadratic polynomial in a. The discriminant is given by
D =3)X*(\ = p)A,

where A is defined in (7). Now from (6) it follows that the osculating spheres
(spheres of curvature) associated with kmax have inner contacts with the sur-
face at the ridge points.

Ridges and Focal Ribs. The intersection between the caustic sheet associ-
ated with kmax and the plane {y = 0} gives a curve described locally by

_ A 4 _1 A 3
w——3/\t +0(%), =z= N~ 2/\zt + O(t°).
At a neighborhood of the point (0,0,1/)) the intersection curve is locally a
semicubical parabola. Thus the cuspidal edges (ribs) of the caustic sheet as-

sociated with kmax and pointing towards the surface correspond to the ridges.

Skeleton Branching Theorem in 3D. Consider a closed surface and a figure
bounded by the surface. The skeletal edges of the skeleton of the figure are not
necessary located at focal ribs. If the sphere of curvature (osculating sphere)
centered at a focal rib point does not lie inside the figure, then the point is
not a skeletal edge point. This observation and the above results on contacts
with osculating spheres lead us to the following theorem describing dynamic
relations between the skeleton of an evolving figure (i.e., a family of figures)
and certain focal ribs of the boundary of the figure.

3D Skeleton Branching Theorem: For an evolving smooth closed
surface oriented by its inner normal, consider the motion of a focal rib as-
sociated with the maximal principal curvature, situated inside the surface,
and pointing towards the surface (i.e., corresponding to a ridge). When
the rib intersects the skeleton, a new sheet of the skeleton is born with its
skeletal edge located at the rib.

Conclusion

The paper presents a new result on dynamical properties of the skeleton (me-
dial axis) of a 2D /3D shape and a Java program for visualization, description,
and study of dynamic 2D shapes via curvature.
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