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Abstract
We discuss the properties of the lifetime or the time-delay matrix Q(E) for
multichannel scattering, which is related to the scattering matrix S(E) by
Q = ih̄S(dS†/dE). For two overlapping resonances occurring at energies
Eν with widths �ν(ν = 1, 2), with an energy-independent background, only
two eigenvalues of Q(E) are proved to be different from zero and to show
typical avoided-crossing behaviour. These eigenvalues are expressible in terms
of the four resonance parameters (Eν, �ν) and a parameter representing the
strength of the interaction of the resonances. An example of the strong
and weak interaction in an overlapping double resonance is presented for
the positronium negative ion. When more than two resonances overlap
(ν = 1, . . . , N), no simple representation of each eigenvalue has been found.
However, the formula for the trace of the Q-matrix leads to the expression
δ(E) = −∑

arctan[(�ν/2)/(E − Eν)] + δb(E) for the eigenphase sum δ(E)

and the background eigenphase sum δb(E), in agreement with the known form
of the state density. The formulae presented in this paper are useful in a
parameter fitting of overlapping resonances.

1. Introduction

The presence of a resonance is associated with a rapid increase in the scattering phase shift
δ(E) with respect to small increase in the collision energy E. Recall that, for narrow isolated
resonance with a single open channel, δ(E) may be parametrized in terms of the resonance
position Eν and width �ν by the Breit–Wigner one-level formula

tan[δ(E) − δb(E)] = −(�ν/2)/(E − Eν), (1)
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where the background phase shift δb(E) has a slow variation in energy close to the resonance.
The subscript ν will take many integer values in the later discussion, but here we may assume
ν = 1. The phase shift may be calculated and fitted to (1) to obtain the parameters Eν and �ν

as well as the function δb(E). The equivalent form for the S-matrix is given by the relation
S(E) ≡ exp(2iδ) = S

1/2
b [1 − ifν]S1/2

b , where Sb(E) = exp(2iδb) denotes the background
contribution, and where the function

fν(E) = �ν/(E − Eν) = �ν/(E − Eν + i�ν/2) (2)

represents a simple pole at E = Eν ≡ Eν − i�ν/2.
When two or more open channels are coupled to an isolated resonance, a matrix

Sν(E) = I − ifν(E)Pν (3)

may be introduced, and the S-matrix may be partitioned in the manner [1–4]

S(E) = V SνV
T = Sb − ifν(E)V PνV

T (4)

with a slowly-varying background scattering matrix Sb(E) = V V T, and a rapidly-varying
resonance term. The matrix I in (3) is the unit matrix and the superscript T indicates the
transpose. The symmetric matrix Pν in the symmetric unitary matrix Sν has the meaning of a
projection matrix, and can be written as Pν = cνc†ν with the real, normalized vector cν having
elements cν,i = (�ν,i/�ν)

1/2. Here, �ν,i is the partial width, which is proportional to the
rate of decay into the channel i. The total width is their sum: �ν ≡ ∑

i �ν,i . In the usual
Breit–Wigner form of S(E) [5], the background Sb-matrix is often assumed to be energy-
independent and diagonal, which means that no inelastic scattering occurs in the background.
Then, the matrix V is diagonal with elements Vii = exp(iφi), where the background phase
shifts φi are constants. Although this assumption simplifies the theoretical formalism to a
great extent, it is often unrealistic.

A simple parametrization of the S-matrix in the form (4) might appear impractical when
many channels, and hence many fitting parameters {�ν,i} and Eν , are involved. However, Hazi
[6] showed that equation (1) still applies to a multichannel problem if �ν is understood as the
total width and if δ(E) and δb(E) are taken to be the eigenphase sum and the background
eigenphase sum, respectively. Thus, by diagonalizing the S-matrix, we define eigenphases (δ)j
by writing the diagonal elements as exp[2i(δ)j ], and similarly the background eigenphases
(δb)j by diagonalizing the background S-matrix, Sb. The (background) eigenphase sum is
defined as their sum: δ(E) ≡ ∑

j (δ)j , δb(E) ≡ ∑
j (δb)j .

Another important perspective of resonance scattering may be gained from the lifetime
matrix or the time-delay matrix Q(E), defined by Smith [7] as a generalization of the time
delay in single-channel scattering [8, 9]. Smith showed that, for multichannel scattering, one
can prove that

Q(E) = ih̄S
dS†

dE
= −ih̄

dS

dE
S† = Q†(E), (5)

where the dagger indicates the Hermitian conjugate. For single-channel scattering, the
substitution of the expression S = exp(2iδ) in terms of the phase shift δ into (5) leads
immediately to the formula Q = 2h̄(dδ/dE), which is the additional time spent by the
projectile in the collision compared with a passage in the absence of any interaction with
the target [8, 9]. For multichannel scattering, the diagonal elements Qii are real and have the
physical meaning of the average time delay, over all possible exit channels, starting from the
initial channel i. A matrix analysis proves that the trace of the time-delay matrix Q is related
to the eigenphase sum δ(E) by

2h̄
dδ

dE
= Tr Q(E), (6)



Eigenvalues of the time-delay matrix in overlapping resonances 1849

for the S(E)-matrix or the eigenphase sum δ(E) of any functional form, either in the presence
or in the absence of resonances [10]5.

The main purpose of the present work is to discuss the eigenvalues of the time-delay
matrix for overlapping resonances. These resonances are difficult to treat theoretically in
a practically useful manner. Even the representation of the S-matrix is very complex for
overlapping resonances as compared with the Breit–Wigner one-level formula, and various
alternative proposals are found in the literature, as was reviewed recently [11]. Other aspects of
overlapping resonances are found in the review articles [12, 13]. In the present paper, we pay
attention to the time-delay matrix and develop, in the following section, a theory of overlapping
resonances in multichannel scattering; a special case of two overlapping resonances is treated
in detail in section 2.3, which leads to an instructive result. Numerical examples of resonances
in positronium negative ions are analysed in terms of this theory in section 2.4. Section 3
summarizes this work.

2. Multichannel overlapping resonances

The construction of an explicitly unitary and symmetric S-matrix having a number of closely
lying poles, ν = 1, . . . , N , is a difficult problem and there is a long history of approaching
this from various avenues [11]. Simonius [14] proposed an explicitly unitary representation
of the S-matrix in the product form

S(E) = V

(
N∏

ν=1

Sν

)
V T (7)

in terms of the unitary and symmetric matrices Sν , defined in (3) and now generalized for
ν = 1, . . . , N . Each Sν has a simple pole at E = Eν = Eν − i�ν/2.

Note that the unit vector cν in the definition of Sν is now a complex vector and is no longer
expressible in terms of the partial widths �ν,i as was the case for isolated resonances. Instead,
cν should be interpreted as a vector characterizing the mixing of the channels. The projection
matrix Pν = cνc†ν satisfies the relations

P 2
ν = Pν = P †

ν , Tr
(
P 2

ν

) = Tr Pν = 1. (8)

In general, there is no commutation of Pν nor of the Sν matrices:

[Pν, Pν ′ ] �= 0, [Sν, Sν ′ ] �= 0 for ν �= ν ′. (9)

Therefore, equation (7) is in general asymmetric and fails to satisfy time-reversal invariance.
The symmetry of S may be enforced by an appropriate choice of vectors {cν}, although this
is difficult in practice. Nonetheless, the matrix (7) is quite a general unitary representation
having poles at the right places, and is often useful when cν need not be determined, as will
be seen below.

2.1. Preliminary

For later use, we now introduce a Lorentzian function Gν(E)

Gν(E) ≡ τν |fν(E)|2 = h̄�ν

(E − Eν)2 + (�ν/2)2
. (10)

5 Equation (6) might appear trivial at the first sight if S and S† in (5) are diagonalized by a unitary matrix U. However,
one should note that dU/dE is not zero in general and that its contribution to Tr Q must be examined.
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While fν(E) of (2) is dimensionless, the function Gν(E) has the dimension of time and takes
a maximum value of four times the lifetime τν = h̄/�ν at E = Eν . The functions fν(E) and
Gν(E) satisfy the relations

1 − ifν(E) = (E − E∗
ν )/(E − Eν) ≡ exp[2iδν(E)], (11)

Gν(E) = −h̄f ′
ν(E)[1 + if ∗

ν (E)]. (12)

The phase δν(E) defined by (11) is easily seen to satisfy a Breit–Wigner-type formula

tan δν(E) = − �ν/2

E − Eν

, 2h̄
dδν

dE
= Gν(E). (13)

The time-delay matrix Qν corresponding to an S-matrix of the form V SνV
T may be

expressed as

Qν = −ih̄(V SνV
T )′(V SνV

T )†

= −ih̄
[
V S ′

νS
†
νV

† + V ′V † + V Sν(V
T )′(V T )†S†

νV
†]

= GνV PνV
† − ih̄

[
V ′V † + V Sν(V

†V ′)T S†
νV

†], (14)

where use has been made of the relation

−ih̄S ′
νS

†
ν = GνPν, (15)

which follows from equations (3) and (12). Then clearly,

Tr Qν = Gν(E) − ih̄ Tr[V ′V † + (V †V ′)T ]

= Gν(E) − 2ih̄ Tr(V ′V †)

= Gν(E) + 2h̄(dδb/dE). (16)

Here, the second term in the last expression has been derived by noting that the unitary matrix
V is expressible as V = UT

b O1/2 in terms of the orthogonal matrix Ub that diagonalizes Sb as
O = UbSbU

T
b .

2.2. The time-delay matrix

The Q-matrix for the S-matrix of (7) can be written as

Q = −ih̄
N∑

ν=1

V �ν−1S
′
νSν+1 · · · SNV T (V T )†S

†
N · · · S†

1V
† − ih̄[V ′V †S + S(V T )†(V T )′]S†

=
N∑

ν=1

[GνV �ν−1Pν(�ν−1)
†V †] − ih̄[V ′V † + S(V ′V †)T S†] (17)

with

�ν−1 ≡ S1 · · · Sν−1 for ν � 2, �ν−1 ≡ I for ν = 1, (18)

where equation (15) has been used. This leads to a simple expression for its trace

Tr Q = Tr
N∑

ν=1

GνPν − ih̄ Tr[V ′V † + (V ′V †)T ]

=
N∑

ν=1

Gν(E) − 2ih̄ Tr(V ′V †)

=
N∑

ν=1

Gν(E) + 2h̄
dδb

dE
(19)
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due to (8) and (16). This is a slight generalization of the result derived by Lyuboshitz [15],
and also agrees with the result for the state density [12].

Since Tr Q is proportional to the derivative dδ/dE of the eigenphase sum δ according to
the general theorem (6), the integration of (19) with respect to the energy E (with the proper
consideration of the constant of integration) leads to the formula

δ(E) =
N∑

ν=1

δν(E) + δb(E) = −
N∑

ν=1

arctan
�ν/2

E − Eν

+ δb(E), (20)

which is a generalization of the Hazi formula (1) [6] for overlapping resonances. Equation (20)
and its derivative (19) involve much less parameters and are much more useful in parameter
fitting, than that for the S-matrix elements.

2.3. Overlapping double resonance

The case of two overlapping resonances is tractable in an explicit way. In particular, if the
background scattering matrix Sb is independent of energy, then the Q-matrix of (17) reduces
to

Q = G1V P1V
† + G2V S1P2S

†
1V

†. (21)

Then consider the unitary transform

Q ≡ S
†
1V

†QV S1 = G1P1 + G2P2, (22)

where the commutativity of Pν and Sν has been used. Clearly this has the same eigenvalues
and trace as Q, that is Tr Q = Tr Q = G1 + G2 in agreement with (19).

Now consider the eigenvectors of Q in the form of a linear combination of the vectors
c1 and c2. This approach is a generalization of that of [16] for isolated resonances. The
eigenvalue equation for Q can be written as

0 = [Q − q]x = [
G1c1c†1 + G2c2c†2 − q

]
(a1c1 + a2c2). (23)

Multiplication of (23) by c†1 and by c†2 from the left results in the coupled equations(
G1 − q αG2

α∗G1 G2 − q

)(
a1 + αa2

α∗a1 + a2

)
= 0 (24)

for the coefficients a1 and a2. Here we have defined the inner product α ≡ c†1c2. The
non-trivial solutions require that

(G1 − q)(G2 − q) − βG1G2 = 0 (25)

with β ≡ |α|2 and 0 � β � 1. Thus, we have Q eigenvalues given by

q = q± ≡ G1 + G2

2
± [(G1 − G2)

2 + 4βG1G2]1/2

2
. (26)

The corresponding mixing ratios r± ≡ a2/a1 are given by

q± = (1 + αr±)G1 = (
1 + α∗r−1

±
)
G2. (27)

The sum of the two eigenvalues in (26) reduces to q+ + q− = G1 + G2, which is equal to
the trace. On the other hand, the matrix Q(E) is positive definite since

u†Qu = G1|u†c1|2 + G2|u†c2|2 � 0 (28)

for any vector u with the appropriate number of elements. Therefore, the eigenvalues of
Q other than q± are all zero. The eigenvectors corresponding to these zero eigenvalues are
orthogonal to both V S1c1 and V S1c2.



1852 I Shimamura et al

Each eigenvector defines a linear combination of the original physical channels, a new
channel that may be called an eigenchannel associated with the Q-matrix, rather than the
S-matrix, or simply a Q-matrix eigenchannel. If the scattering process starts from the Q-
matrix eigenchannel associated with the eigenvalue q+ (or q−), the average time delay is q+

(or q−) and shows a resonance behaviour to be elaborated on in the following. No average
time delay occurs for scattering starting from any other Q-matrix eigenchannel.

The pair q± of (26) shows typical avoided-crossing behaviour. The strength of the
resonance interaction (avoidance) is determined by two kinds of overlap: (i) that between the
two Lorentzian profiles G1(E) and G2(E) and (ii) the parameter β = ∣∣c†1c2

∣∣2
. The product

G1(E)G2(E) is almost zero for any E if the two resonances are well separated. Then one of
the two eigenvalues q± will be nearly equal to G1(E) and the other to G2(E). When G1(E)

and G2(E) overlap each other significantly, the two limiting cases of (26) are

β → 0 : q± → Gi(E), i = 1, 2

β → 1 : q+ → G1(E) + G2(E), q− → 0.
(29)

In the limit of weak overlap β, the two eigenvalues cross each other. For strong interaction
of the resonances, i.e. for β = 1 (or c1 = c2), q+ will be the only nonzero eigenvalue of the
time-delay matrix. In this limit, the two projection matrices are the same (P1 = P2), and it
follows that Q(E) = [G1(E) + G2(E)]P1. Thus the rank of Q is 1. This leads to the case
of single-channel resonance with a double-Lorentzian profile. Both of the two resonances are
associated with the same Q-matrix eigenchannel defined by the eigenvector V S1c1. Scattering
starting from any other Q-matrix eigenchannel has no average time delay.

Note that equation (26) contains only five parameters, namely, the resonance parameters
E1, �1, E2 and �2 and the overlap parameter β. Details of the vectors ci are irrelevant
to the Q-matrix eigenvalues for the case of two overlapping resonances with a constant
background scattering matrix. Thus, equation (26) affords a convenient and physically
transparent parametrization procedure, as will be illustrated in the following subsection.

2.4. Numerical examples of strongly and weakly avoided crossing

Overlapping quantum resonances are common not only in nuclear physics, but also in atomic
and molecular systems; see [17–19] for some recent examples. Here we take up the positronium
negative ion Ps− consisting of an electron and a positronium Ps, the latter being a bound state
between an electron e− and a positron e+. The system Ps− is equivalent to its charge conjugate
system, positronium positive ion Ps+ = e+e−e+. Multichannel continuum states have been
calculated by solving close-coupling equations in terms of the hyperspherical coordinates; see
[18, 19] for computational details and results. In this example, the two extremes of overlapping
resonances are apparent: (a) resonances for the symmetry 1Po in the energy region just below
the threshold E = −0.027 78 au for the break-up into e− + Ps(n = 3), where n is the principal
quantum number, and (b) resonances of symmetry 1De just above this threshold. All channels
breaking up asymptotically into e− + Ps(n � 4) have been included in the close-coupling
calculations.

The solid curves in figures 1(a) and (b) represent the two largest calculated eigenvalues of
the Q-matrix. Those in figure 1(a) for Ps−(1Po) illustrate the case typical of strong interaction,
β � 1. The upper eigenvalue q1 looks like a mere superposition of two Lorentzian profiles, one
quite narrow and strong and the other much broader and weak. The lower eigenvalue q2 is much
smaller than q1. Indeed, a choice of β = 0.95, (E1, �1) = (−2.8125×10−2 au, 6.24×10−7 au)

and (E2, �2) = (−2.8097 × 10−2 au, 3.33 × 10−5 au) in equation (26) results in the broken
curves, which show a very good fit to the solid curves. The upper broken curve is hardly
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Figure 1. Examples of the eigenvalues qi of the time-delay matrix Q(E) in the region of
an overlapping double resonance in the positronium negative ion Ps− = e+e−e−. The small
eigenvalues irrelevant to the avoided crossing are excluded. (a) The strong avoidance case with
β = 0.95 in the symmetry 1Po. Solid curves: hyperspherical close-coupling calculations. Broken
curves: fitting of equation (26). The upper broken curve is indistinguishable from the solid curve.
(b) The weak avoidance case with β = 0.10 in the symmetry 1De. Solid curves: hyperspherical
close-coupling calculations. Broken curves: fitting of equation (26) with a weak background
augmented; see the text.

distinguishable from the solid curve and from the calculated values of Tr Q. The difference
between the solid and broken curves for the lower eigenvalue looks appreciable because of the
logarithmic scale, but the absolute difference is quite small. These results also confirm that
the background variation is almost negligible in this case.

The solid curves in figure 1(b) for Ps−(1De) exhibit a typical avoided crossing between
narrow and broad resonances, illustrating β � 1. However, a trial fit of (26) immediately
suggests the presence of an appreciable background. Thus we add a correction term linear
in E to (26). The first step is to fit f+(E) ≡ q+ + q− + C0 + C1E to the calculated values
of q1 + q2 to determine the parameters E1, �1, E2, �2, C0 and C1 since f+ is independent
of β. The second step is to fit f−(E) ≡ q+ − q− + C ′

1 + C ′
2E to q1 − q2 keeping the

already determined values of (Ei, �i, i = 1, 2) as they are, to determine the three parameters
β, C ′

1 and C ′
2. The values β = 0.10, (E1, �1) = (−2.7480 × 10−2au, 3.15 × 10−4au)

and (E2, �2) = (−2.627 × 10−2au, 1.7 × 10−3au) yield the broken curves in fairly good
agreement with the solid curves. In fact, Tr Q for this case (which is close to q+ + q− in
the resonance region) was analysed in [19] in terms of the Gaussian-sum formula with a
significant background taken into account. The background in this case shows a typical
divergence behaviour towards the threshold of Ps(n = 3) due to the dipole field, which
was included explicitly in the fitting formula [19]. The resonance parameters obtained were
(E1, �1) = (−2.7480 × 10−2 au, 3.1 × 10−4 au) and (E2, �2) = (−2.617 × 10−2 au, 2.1 ×
10−3 au), which are quite close to the values extracted from q+ and q−.

3. Conclusion

No convenient representation of the multichannel S-matrix for overlapping resonances that is
explicitly unitary and symmetric appears to be known in the literature [11]. The explicitly
unitary form proposed by Simonius [14] is often useful in the formal theory of overlapping
resonances, although the many parameters involved in it make parameter fitting for S-matrix
elements almost impossible in practice. However, considerable simplification is attained by



1854 I Shimamura et al

dealing with the lifetime or time-delay matrix Q(E) derived by Smith [7]. Its trace Tr Q(E),
which is proportional to the energy derivative of the eigenphase sum δ(E) (see (6)), is
expressible as the sum of the Lorentzian resonance profiles with different heights and widths,
plus a term proportional to the energy derivative of the background eigenphase sum δb(E);
see (19). This result reduces to δ(E) expressed as the sum of the Breit–Wigner one-level
formulae and δb(E); see (20).

The parametrization of each eigenvalue of the Q-matrix for overlapping resonances is
difficult and impractical in general. However, the case of a double resonance with a constant
background scattering matrix is easily tractable. We find that only two eigenvalues q1(E) and
q2(E) are different from zero. They take a form (26) of avoided crossing of two Lorentzian
profiles, the strength of the avoidance being represented by a mixing parameter β in this
expression, which ranges from 0 to 1. The limit as β → 0 is the case of no avoidance,
and two Lorentzian profiles cross each other. For β → 1, the maximum avoidance occurs
with a result that the smaller of the two eigenvalues q1(E) and q2(E) tends to zero and the
larger becomes the sum of two Lorentzian profiles. Examples close to these two extreme
cases, found in the positronium negative ion, have been presented. In conclusion, both
the eigenphase sum formulae for the general overlapping resonances and the Q-matrix
eigenvalue formula for a double resonance are quite useful in parametrization of overlapping
resonances.
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