

2008年12月1日 担当:常田貴夫准教授

結合	種類	安定化要因	大きさの程 度(kJ/mol)	例
化学結合	共有結合	軌道混合によるTの減少	200 ~ 800	H-H
	イオン結合	電荷間静電相互作用	40 ~ 400	Na⁺CI⁻
	金属結合	配置混合によるTの減少	5 ~ 60	-Fe-Fe-
	水素結合	電子移動励起配置の混合	4 ~ 40	$(H_2O)_2$
分子間力	イオン - 双極子	電荷 - 分極の静電相互作用	5 ~ 60	Na⁺H₂O
	イオン - 誘起双極子	電荷 - 励起分極の11	0.4 ~ 4	Na⁺C ₆ H ₆
	分散力	励起分極 - 励起分極の11	4 ~ 40	Ar-Ar
	双極子 - 双極子	分極 - 分極のハ	0.5 ~ 15	SO ₂ -SO ₂
	双極子 - 誘起双極子	分極 - 励起分極の11	0.4 ~ 4	HCIC ₆ H ₆
疎水効果	疎水結合	エントロピーによる安定化	< 10	タンパク 質問

黒字はHF法で再現可能な結合、赤字は電子相関、 青字は配置間相互作用だがHF法で再現可能(ブリユアン定理)

分子間力の表現

分子間相互作用は長距離相互作用なので外場ポテンシャルVとして表現できる 分子間力とポテンシャルの関係性 $F = -\frac{dV}{dV}$

ファンデルワールス相互作用

実験による分子構造解析

X線吸収微細構造 (XAFS)

広域XAFS(EXAFS): 分子の結合距離、角度を測定 まわりの原子により変動する内殻電子 →連続状態の遷移確率(吸収強度) をもとに結合距離などの情報を取得 長所:非晶質でも測定可能 短所:強力な放射源が必要

SPring-8 (兵庫県西播磨)

 X線回折(XRD):

 結晶の構造解析

 タンパク質など非晶質

 物質は単結晶化して測定

反射高速・低速電子線回折(RHEED・LEED): X線より侵入が浅いので表面構造解析に利用 中性子線回折(ND):放射源は原子炉で、 用途はX線と同じだが、水素位置の特定が容易

走査トンネル顕微鏡(STM): 探針を導電性物質の表面や表面 上の吸着分子に近づけ、トンネ ル電流で電子状態、構造を測定 原子間力顕微鏡(AFM): STMと同様だが、原子間力を利

用するため、絶縁性物質もOK

分子構造最適化の手法

ニュートン - ラフソン法

平衡構造の核座標ベクトルxoのまわりでポテンシャルVを2次展開近似

$$V(\mathbf{x}) \approx V(\mathbf{x}_{0}) + \left(\frac{dV}{d\mathbf{x}}\right)^{t}_{\mathbf{x}=\mathbf{x}_{0}} \left(\mathbf{x}-\mathbf{x}_{0}\right) + \frac{1}{2} \left(\mathbf{x}-\mathbf{x}_{0}\right)^{t} \left(\frac{d^{2}V}{d\mathbf{x}^{2}}\right)_{\mathbf{x}=\mathbf{x}_{0}} \left(\mathbf{x}-\mathbf{x}_{0}\right)^{t}$$
このVが最小なのは

$$\Delta \mathbf{x} = (\mathbf{x} - \mathbf{x}_0) = -\left(\frac{d^2 V}{d\mathbf{x}^2}\right)^{-1} \left(\frac{d V}{d\mathbf{x}}\right)^t = -\mathbf{H}^{-1}(\mathbf{x}_0)\mathbf{g}(\mathbf{x}_0)$$

$$\Delta \mathbf{x}_1 = -\mathbf{H}^{-1}(\mathbf{x}_1)\mathbf{g}(\mathbf{x}_1) \leftarrow \mathbf{x}_1 = \mathbf{x}_1 + \Delta \mathbf{x}_1 \quad \text{for out } \mathbf{x}_1 = \mathbf{x}_1 + \Delta \mathbf{x}_2$$

 $\Delta \mathbf{x}_{k} = -\mathbf{H}^{-1}(\mathbf{x}_{k})\mathbf{g}(\mathbf{x}_{k}) \ge \mathbf{U}^{-1}\mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta \mathbf{x}_{k}$ (近つけれはよい ⇒ 逐次更新すればよい(ステップ幅を利用)

(1) 初期値 x_0 を決め(実験分子構造など)、k=0とする (2) $g(x_t) = 0^t$ なら終了

(3) 線形方程式 $H(x_k)\Delta x_k = -g(x_k)$ を解き、 Δx_k を求める (4) ステップ幅 α_k を使い、 $x_{k+1} = x_k + \alpha_k \Delta x_k$ により解を更新

(5) $k=k+1 \ge 0$, (2) \land

大規模分子計算でポテンシャル関数が複雑 になることを考慮し、最後の座標だけでは なく前の座標からの内挿座標を利用

大規模分子計算で高負荷になる ヘシアン行列計算を避けるために、 勾配だけを利用。

振動スペクトル解析

FG行列法

ユニタリ行列U によってF・G行列を対角化し、基準振動qiと対応する固有値 ε_i を得る→ $\begin{bmatrix}
-\sum_{i=1}^{3N_{atom}} \left(\frac{\hbar^2}{2} \frac{\partial^2}{\partial q_i^2}\right) + \frac{1}{2} \mathbf{q}^i \left(\mathbf{U}(\mathbf{F} \cdot \mathbf{G}) \mathbf{U}^i\right) \mathbf{q} \end{bmatrix} \Psi_{\text{nuc}} = E_{\text{nuc}} \Psi_{\text{nuc}}$ $\therefore \begin{bmatrix}
-\sum_{i=1}^{3N_{atom}} \left(\frac{\hbar^2}{2} \frac{\partial^2}{\partial q_i^2} + \frac{1}{2} \varepsilon_i q_i^2\right) \end{bmatrix} \Psi_{\text{nuc}} \equiv \sum_{i=1}^{3N_{atom}} \begin{bmatrix} \hat{h}_i(q_i) \end{bmatrix} \Psi_{\text{nuc}} = E_{\text{nuc}} \Psi_{\text{nuc}}$ 1

3Natom 通りの1次元固有方程式に

