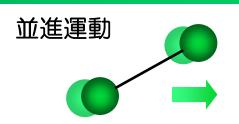
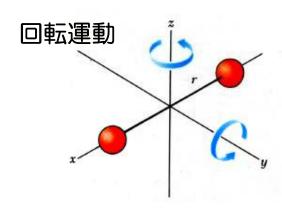
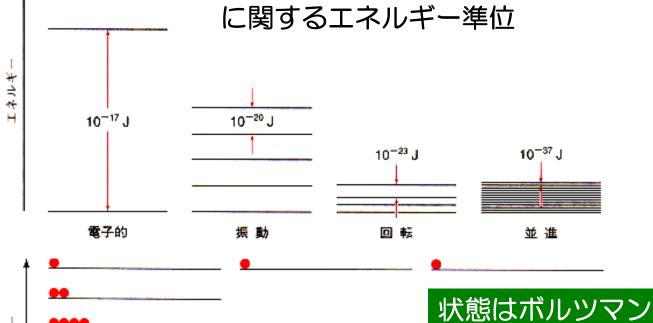


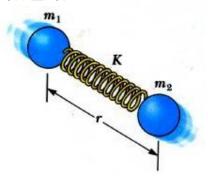
2008年10月6日

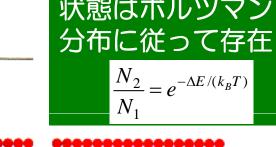

担当:常田貴夫准教授


1.1.1量子化学 I のおさらい


原子・分子の量子論

原子・分子は量子力学に支配されている!


並進、回転、振動、および電子運動 に関するエネルギー準位

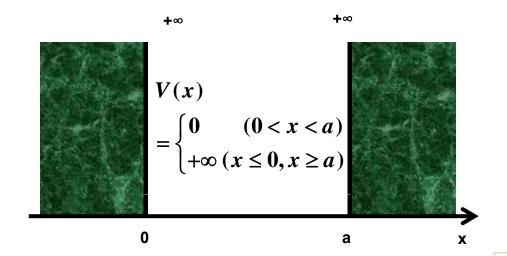


振動運動

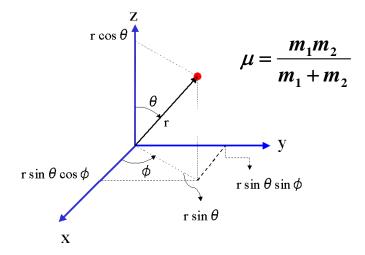
$$\frac{N_2}{N_1} = e^{-\Delta E/(k_B T)}$$

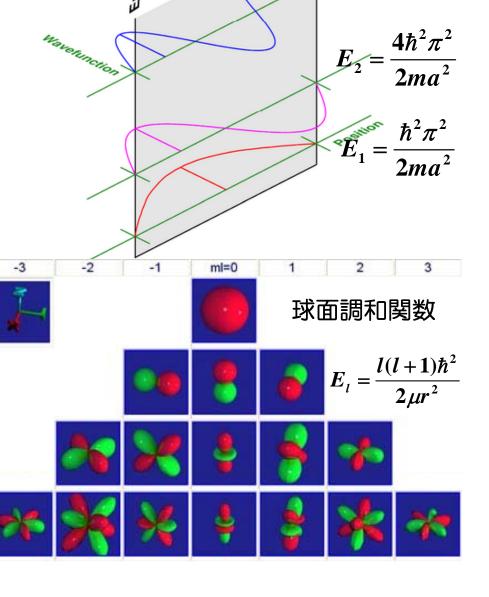
(a)

エネルギ


(b)

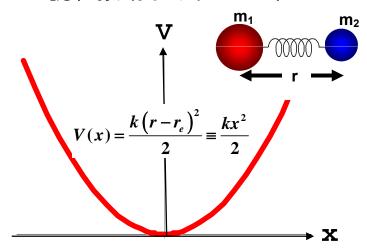
(¢)


並進・回転の量子状態

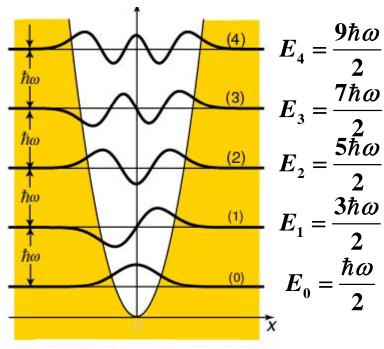

1=2

箱型ポテンシャル

中心カー遠心カポテンシャル

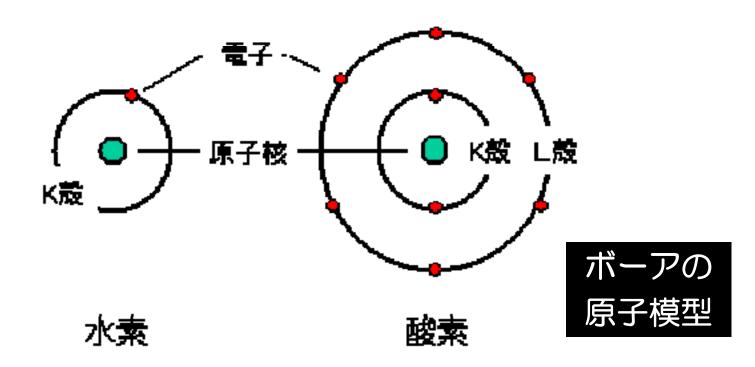


三角関数


 $E_3 = \frac{9\hbar^2\pi^2}{5}$

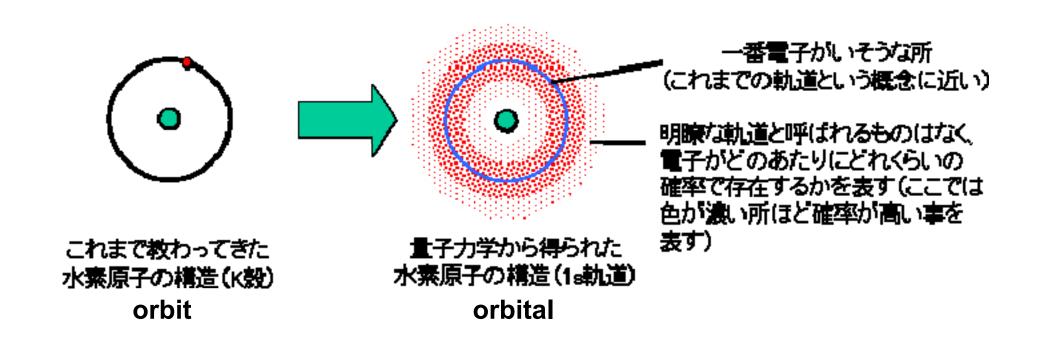
振動の量子状態

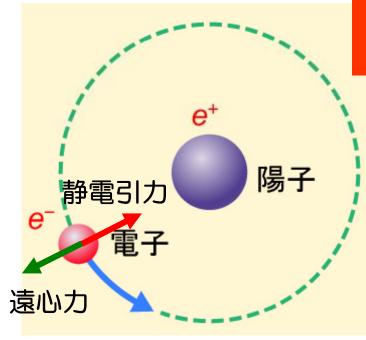
調和振動子ポテンシャル


エルミート多項式

古典的な原子の中の電子

高校の化学


- ▶原子の構造は陽子と中性子からなる原子核を中心として、同心円上に K殻、L殻、M殻、N殻、・・・があり、それぞれに2個、8個、18個、 32個、・・・の電子が収納できる
- ▶電子は太陽系のように軌道上をまわる


量子的な原子の中の電子

量子力学

- ▶電子が存在する位置は、存在確率でしか分からない
- ◆存在確率は波動関数Ψの自乗で表現される
- ➡波動関数Ψはシュレーディンガー波動方程式 HΨ=EΨ の解である

水素原子の電子運動の量子化

シュレーディンガー方程式 $\hat{H}\Psi = E\Psi$

E.Schrödinger

ハミルトニアン演算子 $\hat{H} = \hat{T} + \hat{V}$

運動エネルギー演算子

$$\hat{T} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$$

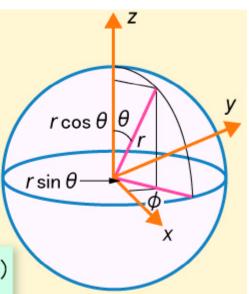
ポテンシャル演算子 $\hat{V} = -\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}$

$$-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \psi - \frac{1}{4\pi\varepsilon_0} \frac{e^2}{\gamma} \psi = E \psi$$
 運動エネルギー 位置エネルギー 全エネルギー

水素原子の波動方程式

波動方程式を実際に解くには直交座標(x, y, z)から極座標 (γ, θ, ϕ) に直す。

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\Lambda\right)\psi - \frac{1}{4\pi\varepsilon_0}\frac{e^2}{\gamma}\psi = E\psi \quad (1)$$


$$\Lambda = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \psi^2}$$
 (2)

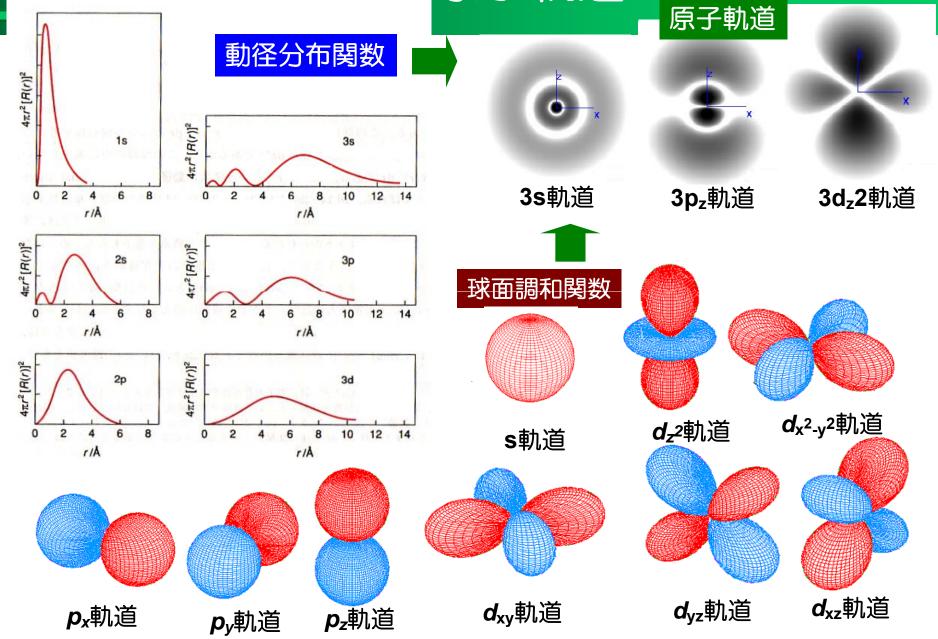
一般解

波動関数 $\psi(\gamma,\theta,\phi)=R_{nl}(\gamma).Y_{ml}(\theta,\phi)$ (3)

エネルギー
$$E_n = -\frac{e^2}{2a_0} \frac{1}{n^2}$$
 (4)

 $R_{nl}(\gamma)$: 動径 γ を変数とする多項式 $Y_{ml}(\theta,\phi)$: 角度 θ , ϕ を変数とする球関数 $a_0=\hbar^2/m_ee^2(\vec{n}-r+2)$ m_e : 電子の質量 n, l, m: 量子数(整数値)

 $x = r \sin \theta \cos \phi$ $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

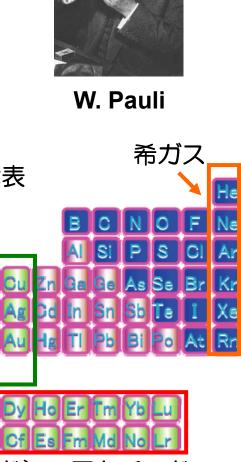

量子数

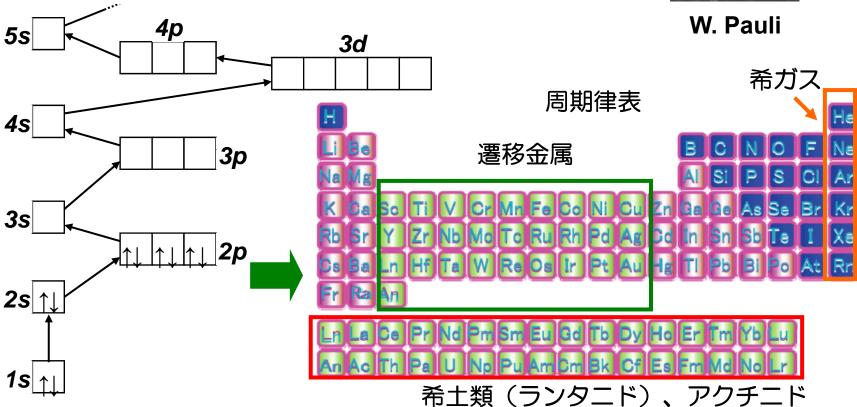
シュレディンガー方程式を解くと波動関数の中に整数が入ってくる。これらの整数は量子数と呼ばれる。

量子数を決めると波動関数 ψ とエネルギーEが決まる。

	名前	取れる値	何を示す尺度か
n	主量子数	1, 2, 3, •••	エネルギー
l	方位量子数	0, 1, ···, <i>n</i> −1	角運動量の大きさ
m	磁気量子数	⇒s, p, d, -l, -l +1, •••, l -1, l	角運動量の 方向
$\Rightarrow p_x, p_y, p_z$			

原子軌道

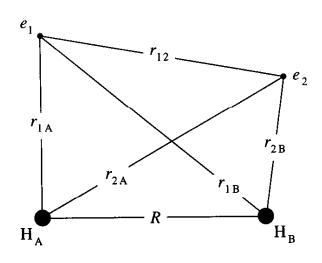

多電子原子と周期律表


パウリの排他原理

多電子原子は、3つの量子数+スピン量子数が 同じ値をとらないように電子を配置する。

② フントの規則

2つ以上の電子が縮退した準位に入るとき、最も 安定な配置は平行なスピンが最も多い配置である。

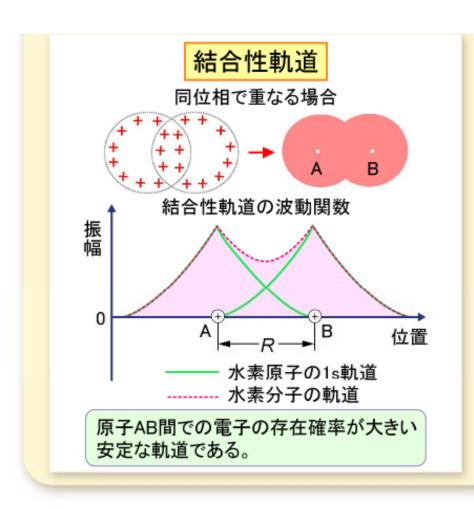


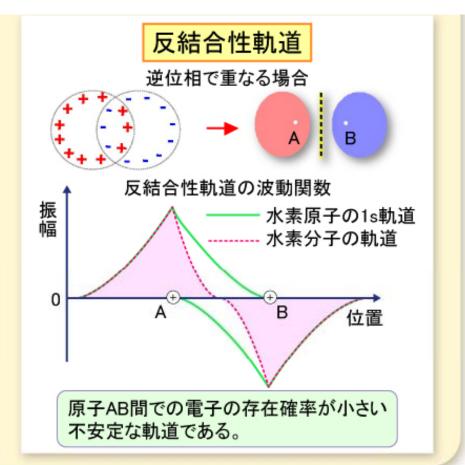
1.1.2 量子化学 II のおさらい

水素分子

水素分子H₂の中の電子に対するシュレーディンガー方程式

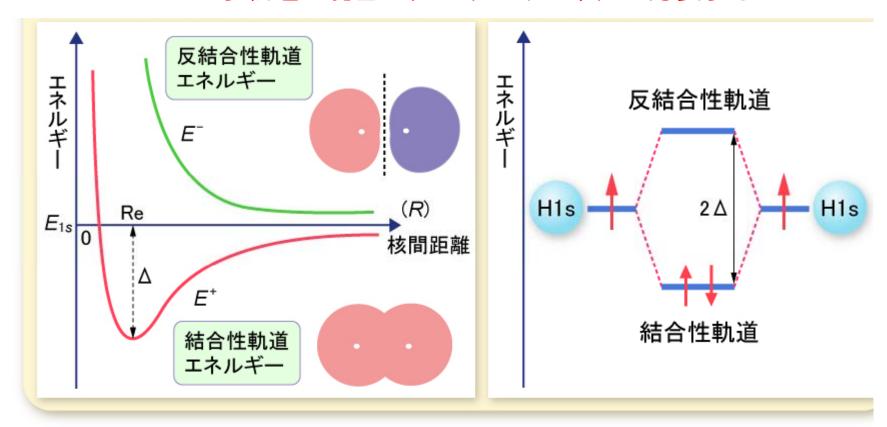
ハミルトニアン演算子


$$\hat{H} = -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{\hbar^2}{2m} \nabla_2^2 - \frac{e^2}{4\pi\varepsilon_0 r_{1A}} - \frac{e^2}{4\pi\varepsilon_0 r_{1B}} - \frac{e^2}{4\pi\varepsilon_0 r_{2A}} - \frac{e^2}{4\pi\varepsilon_0 r_{2A}} + \frac{e^2}{4\pi\varepsilon_0 r_{1B}} + \frac{e^2}{4\pi\varepsilon_0 r_{1B$$

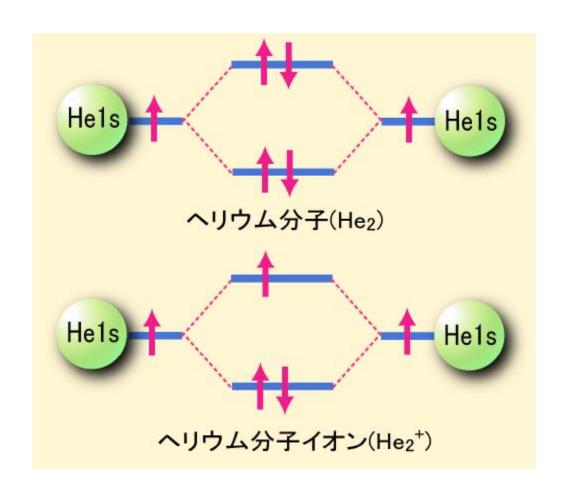

$$\nabla_i^2 = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2}$$

このハミルトニアン演算子を使った シュレーディンガー方程式は厳密に 解くことはできない!

分子軌道


分子軌道を原子軌道の重ね合わせと考える(LCAO-MO)

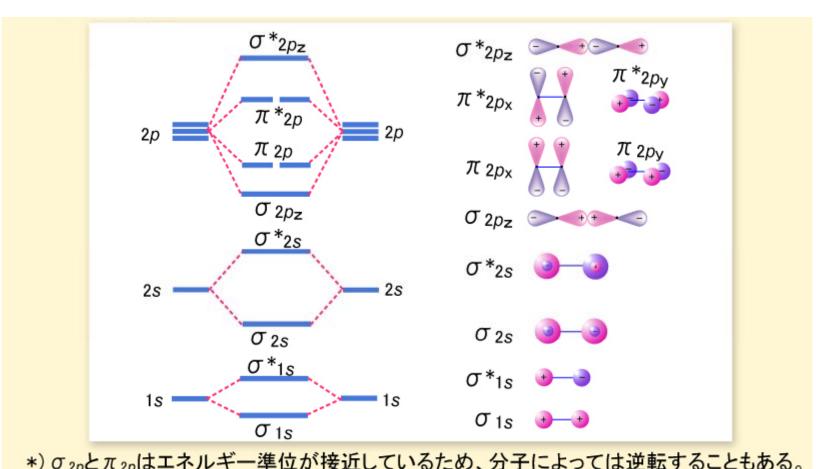
なぜ結合ができるのか?


軌道間にエネルギー的な相互作用があれば、 必ず軌道が混合し、エネルギー準位が分裂する

反結合性軌道が完全に占有されなければ、結合が生成する

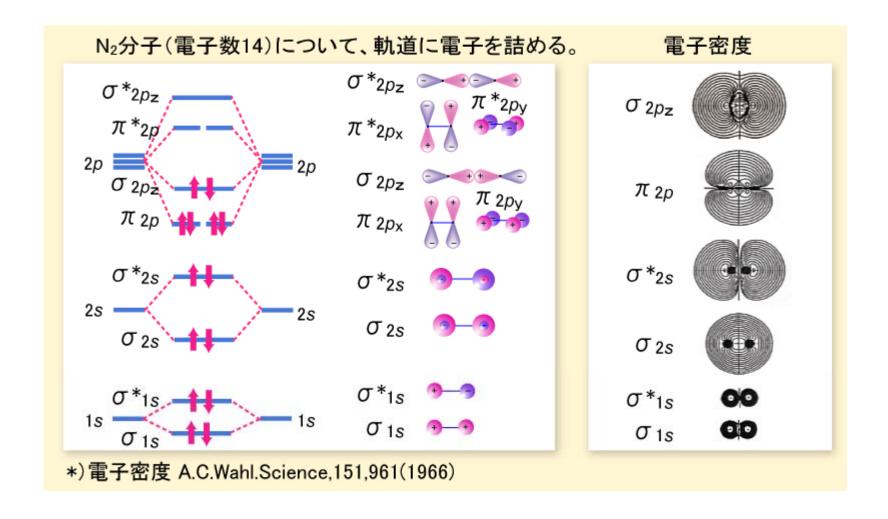
ヘリウム分子

反結合性軌道が完全に占有されると、結合がなくなる

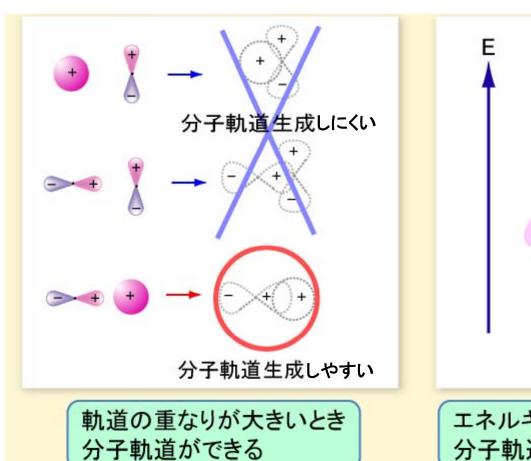


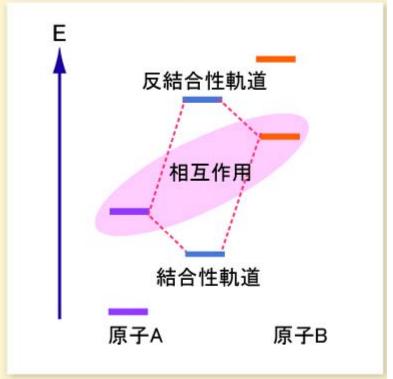
安定に存在しない

安定に存在する

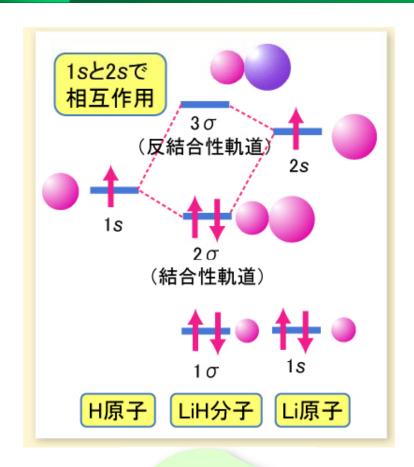

等核2原子分子のエネルギー準位

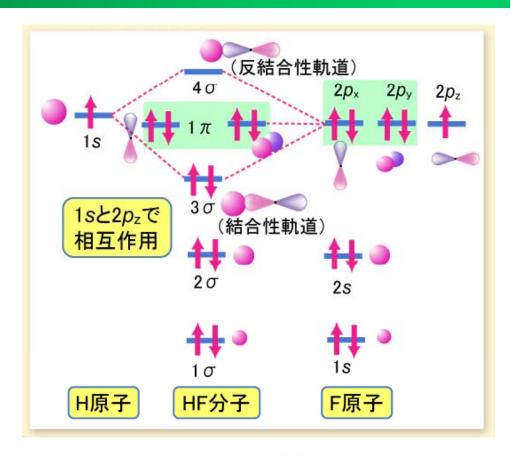
軌道は、エネルギーの近い(同じ)軌道とのみ相互作用し、 結合を作る

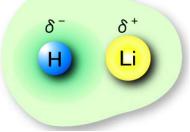

*) σ_{2p}とπ_{2p}はエネルギー準位が接近しているため、分子によっては逆転することもある。

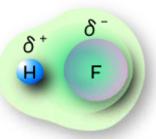

窒素分子

異核2原子分子の軌道生成

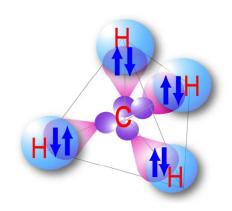

軌道は、エネルギー的な相互作用が大きくなる場合に のみ、他の軌道と結合を作る

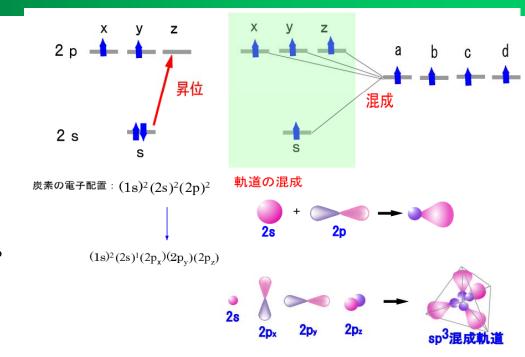


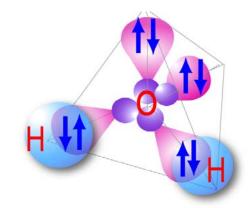



エネルギーの近い軌道が重なって 分子軌道ができる!

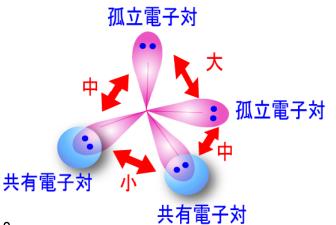
水素化リチウムとフッ化水素



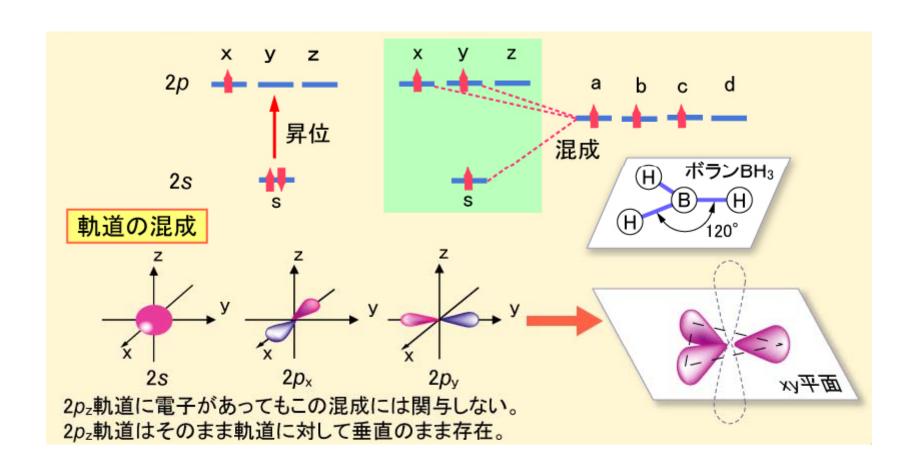


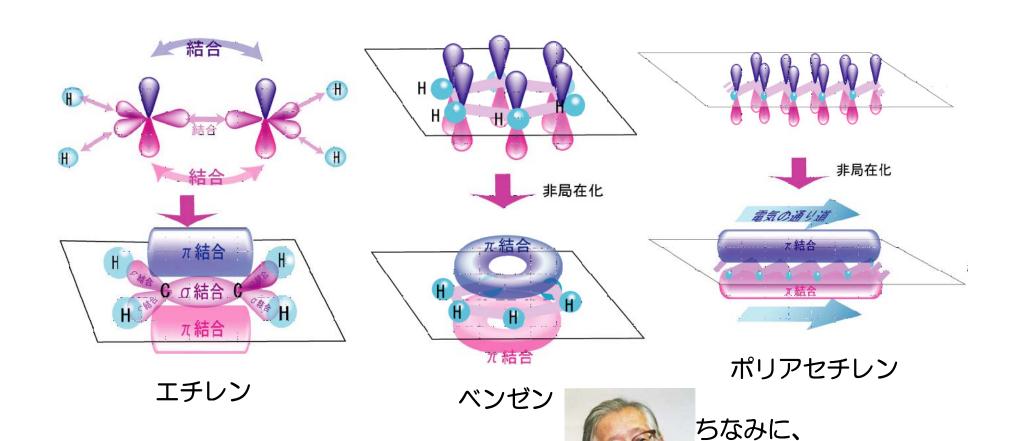


多原子分子と混成軌道



メタン分子: 結合角109.28° 昇位のエネルギー96kcal/mol <電子間反発の減少


水分子: 結合角**104.31**°


電子対どうしの反発の大きさ

sp²混成軌道

二重結合とπ結合

導電性ポリマー

2000年、白川教授

がノーベル化学賞

携帯電話の電池や有機EL

	年	理論化学関連の主な出来事	量子論を中心とした科学技術の主な出来事
		基礎理論の構築	<u>量子力学の誕生とその応用</u>
	1926	Rayleigh-Schrödinger摄動法	Schrödinger方程式
			Jordan−Dirac変換理論
	1927		Heisenbergの不確定性原理
		Hartree方程式	Bohrの相補性原理
		Hund−Mullikenの分子軌道(MO)法	Thomsonの干渉実験
		Born-Oppenheimerの断熱近似	Davisson−Germerの電子線回折実験
		Thomas-Fermiの運動エネルギー表現	Keesomが液体へリウムの相転移を発見
	1928	SlaterがHartree法の変分原理証明	Diracの相対論的方程式
			Heisenbergの強磁性解釈
	1929	Slater行列式	Heisenberg-Pauliの量子電磁力学
		Diracが密度行列導入	Einsteinによる電磁場と重力場の統一場理論
		Morseポテンシャル	Romanが筋肉内にATP発見
		HyllerrasによるHe原子計算	Van Nielがバクテリアの光合成を発見
	1930	Hartree-Fock(HF)方程式	Diracが空孔理論を提唱し、陽電子の存在を予言
1.1. 量子化学とは		Condonの配置間相互作用(CI)法	Peierls-Brillouinの金属エネルギーバンド理論
1.2. ヒュッケル法		Slater型原子軌道関数	Tombaughが冥王星発見
1.3. HF法		Diracの交換局所密度近似(LDA)	Heisenberg「量子論の物理的基礎」
1.4. 電子相関	1931	Hückel法	Onsagerによる不可逆過程の相反定理
1.5. 密度汎関数法		Diracの時間依存HF法	Harold-Wilsonによる半導体のウィルソン模型
			Ureyが重水素を発見、原子エネルギー開発へ
	1932	Paulingの原子軌道 (AO)混成モデル	Chadwickによる中性子発見
		Slater-Paulingの原子価結合(VB)法	Birkoff-von Neumannによるエルゴード定理証明
		HF法のBrillouin定理	Ruska-Knollが初の電子顕微鏡を開発
		HF法のKoopmans定理	Meisner効果発見
	1934		Fermiによる中性子による原子核崩壊
		Frenkelの乱雑位相近似(RPA)	湯川の中間子仮説
	1935	Eyringの遷移状態理論	Schrödingerがいわゆる「Schrödingerの猫」提案
		Weizsäckerの一般化勾配近似(GGA)	Stanleyがタバコモザイクウィルスを結晶化
		Bell-Evans-Polanyiの化学反応原理	Bohrが原子核の液滴モデルを提唱
	1937		サイクロトロンで人工的に元素(Tc)を合成
	1939	· · · · · · · · · · · · · · · · · · ·	U連鎖反応実験成功、マンハッタン計画開始
	1941	Pengのcoupled HF法	LandauがHe4の超流動を理論的に解明

年	理論化学関連の主な出来事	量子論を中心とした科学技術の主な出来事
	コンピュータに適合した理論開発	コンピュータの開発と量子力学の応用
1950	BoysによるGauss型基底関数	Turing「計算する機械と知性」
	Dirac方程式のFoldy-Wouthuysen近似	世界初の商用コンピュータUNIVAC
1951	Roothaan-Hall方程式(RHF法)	Bohrらが原子核の集団運動を発見
	SlaterのXα方程式	米国原子力委員会が原子力発電に成功
1952	福井のFrontier軌道理論	初の科学計算用大型計算機IBM701
	Wolfsburg-Helmholtzの拡張Hückel法	初のコンパイラ開発
1953	MetropolisらのMonte-Carlo法	Watson−CrickのDNA2重螺旋構造解明
	Löwdinによる電子相関の定義	Millerが人工的な原始大気でアミノ酸合成に成功
	Pariser-Parr-Pople(PPP)法	Hodgkin-Huxleyが神経興奮伝達のNa説確立
1954	Pople-Nesbet方程式(UHF法)	メーザー、太陽電池の発明
1955	Mullikenのポピュレーション解析法	TMV、RNAの人工合成に成功
	Hammondの遷移状態に関する仮定	Sangerがインシュリンの全化学構造解明
1956		IBMがプログラミング言語FORTRAN公表
1957	加藤の電子相関カスプ	超伝導のBardeen-Cooper-Schrieffer(BCS)理論
	Goldstoneの連結クラスタ定理	ベル研究所が固体レーザー開発
1959	Alder-Wainwrightの分子動力学(MD)法	NesbetがCo磁気異方性を発見
1960	Boysの分子軌道局所化法	Maimanがルビーレーザー発明

1.1. 量子化学とは

1.2. ヒュッケル法 1.3. HF法 1.4. 電子相関 1.5. 密度汎関数法

年	理論化学関連の主な出来事	量子論を中心とした科学技術の主な出来事
	具体的な研究対象のための理論開発	測定装置の機能向上にともなう技術・理論の再構成
1961		Anfinsenがリボヌクレアーゼ変性後再折り畳み発見
1963	Hoffmannの拡張Hückel法	Lorentzが散逸系のカオス発見
1964	Hohenberg-Kohn定理	Gell−Mann−Zweigのクオーク理論
	福井によるDiels-Alder反応の対称性解釈	Wilsonら宇宙の3K黒体輻射発見で一般相対論修正
	Sinanogluの動的・静的電子相関解釈	IBMが初のワードプロセッサー開発
1965	Kohn-Shamの密度汎関数法(DFT)方程式	Hollyがt-RNAの全一次構造決定
	Woodward-Hoffmann則	Nirenbergがm−RNAの遺伝暗号を解明
	藤永の多原子系用Gauss型基底関数	走査型電子顕微鏡発明
1966	Cizekのクラスター展開(CC)法	GilbertによるDNA塩基配列決定法開発
1967	Das-Wahlの多配置SCF(MCSCF)法	Hawkingがブラックホール特異点を証明
	GoddardIIIの一般化原子価結合(GVB)法	Kornbergらが自己増殖能をもつDNA人工合成成功
1968	Gerratt-Millsのcoupled perturbed HF法	Kayが初のパーソナルコンピュータ開発
	電子移動反応に関するMarcus理論	テキサスインスツルメントが大規模集積回路開発
	Roweの運動方程式(EOM)法	気相エピタキシャル技術発表
	Warshelによる分子力場の導入	Heilmeierが液晶の動的散乱効果発表
1969	Whitten-Hackmeyerの多参照CI(MRCI)法	インテルが初のマイクロプロセッサ開発
		米国防省がパケット交換のARPA-NETを稼働

1.1. 量子化学とは

1.2. ヒュッケル法 1.3. HF法 1.4. 電子相関 1.5. 密度汎関数法

	年	理論化学関連の主な出来事	量子論を中心とした科学技術の主な出来事
-		DFT、MD法の確立と汎用プログラム開発	コンピュータの汎用化と生体機能の解明
	1970	量子化学計算プログラムGaussian公開	Khoranaが人工的な遺伝子合成に成功
			Temin-Baltimoreが逆転写酵素発見
	1971	藤永-Dunning短縮型基底関数	パロアルト研究所が最初のマイコン「アルト1号」
	1972	Kahnらの有効内殻ポテンシャル	Boyerらが制限酵素を発見、構造解明
		Chandler-Andersenの溶媒効果モデルRISM	本多-藤嶋がTiO2の光触媒効果を発見
	1973	このころ、DFT計算プログラムADF公開	Cohenが遺伝子組換え技術確立
	1974	Douglas-Krollの2成分相対論的方程式	IBMがシステムネットワークアーキテクチャー開発
	1975	Colle-Salvettiの相関カスプ型相関汎関数	ソ連でトカマク型核融合実験装置稼働
		Davidsonの大規模行列高速対角化法	遺伝子工学ガイドライン討議(アロシマ会議)
		Warshelによるタンパク質折り畳みMD計算	抗生物質用エキスパートシステム「MYCIN」
	1976	Warshelによる酵素反応のQM/MM計算	パーソナルコンピュータAppleII発売
	1977	PopleらによるSize-consistencyの提唱	SangerがウィルスのDNA構造を決定
	1978	Janakの定理	Mitchellが生体エネルギー伝達を証明
		中辻一平尾のSAC展開法	Gilbertらが遺伝子組換えでヒトインシュリン合成
	1979	Levyの制限付き探索法	Klitzingが量子ホール効果発見
		Ruedenbergが自然軌道提案	Maoが170万気圧で水素結晶化に成功
	1980	Roosらの完全active空間(CAS)SCF法	Jeromeが初の有機超伝導体実現
		Vosko-Wilk-NusairのLDA相関汎関数	Kleinが遺伝子工学で遺伝子の人体移植治療
		AndersenによるMDの圧力制御法	Gilbertらが大腸菌でインターフェロン量産に成功
	1981	Perdew-Zungerの自己相互作用誤差指摘	Sangerらがヒトミトコンドリアの全塩基配列解読
	1982	量子化学計算プログラムGAMESS公開	初のポータブルコンピュータ「ケイ・コンプ2」
	1983	Karprusらが分子力場関数CHARMm公開	MS-DOSソフト「Windows」広まる
	1984	Runge-Gross定理(TDDFT)	Appleがマッキントッシュ発売
		能勢によるMDの温度制御法	利根川らがT細胞受容体遺伝子分離に成功
_		Parr-Yangによる福井関数提案	本庶らがTcell増殖を制御する受容体遺伝子解明

- 1.1. 量子化学とは 1.2. ヒュッケル法
- 1.3. HF法
- 1.4. 電子相関
- 1.5. 密度汎関数法

年	理論化学関連の主な出来事	量子論を中心とした科学技術の主な出来事
	大規模系の高精度計算のための理論開発	コンピュータ利用者数の激増と遺伝子工学の隆盛
1985	Car-Parrilnello分子動力学法	Kroto-Smalley-CurlがC60フラーレンを発見
1986	Perdewらの基本条件型交換相関汎関数	野依が不斉合成錯体BINAP−Ruを開発
		Muller-Bednorzが酸化物高温超伝導体を発表
1987	Greengard-Rokhlinの高速多極子展開法	Anderssonが遺伝子治療の可能性を発表
1988	BeckeのGGA交換汎関数	Hawking「ホーキング宇宙を語る」
	Lee-Yang-ParrのGGA相関汎関数	
1990	Roosらの多参照摂動CASPT2法	ヒトゲノム解析計画開始
1991	Kollmanらが分子力場関数AMBER公開	飯島がカーボンナノチューブを発見
1992	平尾の多参照摂動MRMP法	CERNがワールドワイドウェブ(WWW)を正式発表
1993	BeckeのB3LYP混成汎関数法	インターネットのユーザー数2000万人突破
	Car-Parinello法計算プログラムCPMD公開	1億2000万年前の琥珀から昆虫のDNA復元
	中野の多配置擬縮退摂動MCQDPT法	Gore「情報スーパーハイウェイ」構想発表
	中野の多配置擬縮退摂動MCQDPT法	Gore「情報スーパーハイウェイ」構想発表

1.1. 量子化学とは 1.2. ヒュッケル法 1.3. HF法 1.4. 電子相関 1.5. 密度汎関数法