
2. Long-range and other corrections for density functionals 
 

2.1. Conventional correction schemes in density functional theory 

 

In this century, the main concerns of theoretical chemistry obviously make the transition from 

accurate investigations of small molecules to the designs of complicated large molecular systems; 

e.g. proteins, nano-materials, environmental catalyses, and so forth. What is necessary for 

approaching these systems is an accurate theory of low computational order. Density Functional 

Theory (DFT)1,2,3 is expected to be a major candidate for such a theory at present, because this 

theory gives accurate chemical properties despite of its low computational order that may be reduced 

to order-N. In DFT, electronic states are usually determined by solving the nonlinear Kohn-Sham 

equation1 with an exchange-correlation density functional. The most remarkable characteristic of 

DFT is the exchange-correlation energy part that is approximated by a one-electron potential 

functional. Hence, calculated DFT results depend on the form of this exchange-correlation 

functional. 

In last two decades, various kinds of exchange functionals have been suggested especially for 

generalized gradient approximations (GGA)4,5,6,7 beyond the local density approximation (LDA) 

functional.8 Due to the requirement of order, these GGA exchange functionals  are usually 

expressed as a functional of 3/4/|| σσσ ρρ∇=x , where σρ  is the electron density of spin σ  

and σρ∇  is the gradient of the density.9 What should be noticed is that most GGA exchange 

functionals have unique behaviors only for large σx .9,10 This is because small- σx  behaviors of 

functionals are restricted by the physical condition for slowly-varying density,11 although there is no 

definite conditions for rapidly-varying density.7,9,10 Hence, GGA exchange functionals are usually 
characterized by the behaviors for large- σx  (i.e. low-density-high-gradient) density. Conventional 

exchange-correlation functionals will be discussed by Prof. Scuseria in this book. We will give a 

summary account of correction schemes for exchange functionals in this section. 

Since the latter half of 1990s, hybrid functionals have appeared in DFT calculations. In hybrid 

functionals, (pure) GGA functionals are combined with the Hartree-Fock (HF) exchange integral at a 

constant rate. This idea may have come from an observation that DFT calculations using pure GGA 

functionals often give opposite errors to those in HF calculations. In 1993, Becke suggested hybrid 

B3LYP functional.12 Based on a concept of adiabatic connection, B3LYP exchange-correlation 

energy are expressed by a combination of Becke 1988 (B88) exchange4 and Lee-Yang-Parr (LYP) 

correlation13 GGA functionals, Slater (S) exchange8 and Vosko-Wilk-Nusair (VWN) correlation14 

LDA functionals, and the HF exchange integral with 3 parameters: 
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where A
xE  and B

cE  are exchange and correlation energies of A and B, and 0a , xa , and ca  

are 0.2, 0.72, and 0.81, respectively. Atomic units have been used (h  = e2 = m = 1, energies are in 

hartree, and distances are in bohr). This adiabatic connection may have some incompatible parts; for 

example, parameters in B88 and LYP functionals were originally determined to reproduce exact 

exchange and correlation energies. Nevertheless, B3LYP becomes the most popular DFT functional 

in quantum chemisty, because it gives very accurate results for a wide variety of chemical properties. 

Becke 1997 (B97)15 and Perdew-Burke-Ernzerhof 1996 (PBE0)16 functionals are also hybrid 

functionals. Similarly to B3LYP, these functionals combine GGA functionals with the HF exchange 

integral at a constant rate, and give accurate results for various chemical properties of molecules. 

However, inconsistencies in the adiabatic connection remains unsettled in these functionals. 

Asymptotic corrections for exchange functionals have attracted attentions especially in 

time-dependent DFT (TDDFT) studies. In far regions from atomic nuclei, it is proved that exchange 

potential for σ-spin electrons, σ
σ δρδ /xcxc Ev =  has the asymptotic relation,17 
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where R = || R  and R  is the distance vector from the nearest nucleus. On the ground of this 

relation, Van Leeuwen and Baerends suggested an exchange functional (LB)18 by adapting the B88 

exchange functional to the asymptotic behavior. Tozer and Handy suggested the asymptotic 

correction (AC) scheme that imposes, instead of Eq. (2),19,20 
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where HOMO
σε  is the eigenvalue of the highest occupied σ-spin molecular orbital and σI  is the 

ionization potential of the σ-spin electron. It has been reported that underestimations of Rydberg 

excitation energies in TDDFT calculations are modified by using LB and AC schemes. 

Besides, self-interaction correction (SIC) is one of the most popular correction schemes. Perdew 

and Zunger suggested a scheme for the application of SIC to occupied orbitals where the 

self-interaction components of the Coulomb and exchange energies are simply subtracted from the 

total exchange-correlation energy,21 
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and potential, 
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where σρ i  is the i-th orbital component of σρ . This SIC scheme has been frequently used in 

energy band calculations of solid states for improving underestimated band gap energies. However, 

this scheme essentially requires an orbital-localization process22 or transformation of functionals to 

an orbital-dependent form23 due to the degrees of freedom in unitary transformations of orbitals. 

Tsuneda, Kamiya, and Hirao suggested a regional self-interaction correction (RSIC) scheme as a 

simple SIC method requiring no additional processes.24 On the ground that total kinetic energy 

density, ∑ ∇=
occ

i
i

total ,|| 2
σσ ψτ  approaches the Weizsäcker kinetic energy density, 

)4/(|| 2
σσσ ρρτ ∇=W  for self-interacted electrons, an exchange functional is spatially replaced 

with a self-interaction energy density only for regions, where total
στ  approaches W

στ , in this 

scheme. As the self-interaction energy density, exact exchange self-interaction energy densities of 1s 

orbitals in hydrogen-like atoms, )exp(/31 Rs
i απαψ σ −= , is employed such as 
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where σε x  is defined by ∑ ∫≡
σ

σε R3dE xx  and )2/( σσ ρρα ∇= . By applying the RSIC 

scheme to chemical reaction calculations, it was found that underestimated barrier energies of pure 

functionals were clearly improved for some reactions. 

As mentioned above, various correction schemes have been developed up to the present. However, 

there is room for further improvement in conventional correction schemes; Conventional hybrid 

functionals give poor excitation energies in TDDFT calculations as mentioned later. Asymptotic and 

self-interaction corrections have little (or worse) effect on reproducibilities of molecular chemical 

properties. Recently, it has been proved that a long-range correction for exchange functionals 

obviously brings solutions to various DFT problems that have never been solved by other functionals 

or corrections. In later sections, we will briefly review the background of the long-range correction 

scheme and will reveal the applicabilities of this scheme. 

 

 

 

 



2.2. Long-range correction schemes for exchange functionals 

 

Pure DFT exchange-correlation functionals have been represented by using only local quantities at 

a reference point: e.g. electron density, gradient of density, and etc. (We are now describing ``local’’ 

quantity as a quantity determined at a reference point for clarity, although gradient of density is 

known as a ``nonlocal'' quantity in common use.) It is, therefore, presumed that pure functionals 

overestimate local contributions and underestimate nonlocal contributions. The most significant 

nonlocal contribution neglected in pure functionals may be the long-range electron-electron 

exchange interaction, because it may be impossible to represent this interaction as a functional of a 

one-electron quantity. 

In 1996, Savin suggested a long-range exchange correction scheme for LDA functional.25 In this 
scheme, the two-electron operator, 12/1 r , is separated into the short-range and long-range parts 

naturally by using the standard error function erf such that 
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where ||12 21 rr −=r   for coordinate vectors of electrons, 1r  and 2r , and µ  is a parameter 

that determines the ratio of these parts. Based on Eq. (7), the long-range exchange interaction is 

described by the HF exchange integral, 
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where σψ i  is the ith σ-spin orthonormal molecular orbital. The LDA exchange functional is 

applied to the short-range exchange interaction such that 
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where )2/( σσ µ ka = . The averaged relative momentum σk  is written for LDA as the Fermi 

momentum, i.e. 3/12 )6( σσ ρπ=Fk . Equation (9) is derived by using the density matrix form 

corresponding to the LDA exchange functional, 

)(
)(

3
2

,
2

1
1 RrRrR σ

σ

σ
σ ρ

rk
rkj

P
F

FLDA =





 −+ , (10) 

where j1 is the first-order spherical Bessel function. 

However, Savin's scheme is inapplicable to conventional GGA exchange functionals, because 



GGA functionals usually have no corresponding density matrices unlike LDA. In 2001, Iikura, 

Tsuneda, Yanai, and Hirao solved this problem by pushing gradient terms of GGA functionals into 

the momentum σk .26 That is, the corresponding density matrix is determined for any GGA 

exchange functional by substituting σFk  in Eq. (10) with 
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where GGAKσ  is defined in an exchange functional used: ∫= R33/4 dKE GGAGGA
x σσρ . Equation 

(11) correctly reproduces the Fermi momentum σFk  for LDAKσ . By using GGAkσ , the short-range 

exchange energy in Eq. (9) is substituted by 
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It is easily confirmed that Eq. (12) reproduces the original GGA exchange functional for µ =0. 

Parameter µ  is determined to optimize bond distances of homonuclear diatomic molecules up to 

the third period as µ =0.33. This scheme is called ``long-range correction (LC) scheme''. The 

applicabilities of the LC scheme will be discussed in the later section. 

Besides the LC scheme, we should mention the screened Coulomb potential hybrid functional as 

an attempt to take account of the long-range exchange effect. Heyd, Scuseria, and Ernzerhof 

developed this functional by dividing the exchange terms of the hybrid PBE0 functional into short- 

and long-range parts and by omitting a part of long-range exchange term as27 
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where a=1/4 is a mixing coefficient and ω is an adjustable parameter. The main characteristics of 

this functional are the inclusion of the short-range HF exchange integral and the exclusion of the 

long-range HF exchange integral. This functional gives more accurate chemical properties than those 

of B3LYP for G2 and G3 set of molecules.27,28 It is, however, presumed that this functional may not 
solve DFT problems arising from the lack of long-range exchange effects due to the exclusion of the 

long-range HF exchange integral. Moreover, Leininger, Stoll, Werner, and Savin extended the above 

Savin's scheme by using the long-range exchange integral for the multireference configuration 

interaction (MRCI) wavefunction.29 Electron correlations in long-range interactions may hardly 

affect calculated properties of standard molecules. However, electron correlations may be important 



for the comparison of molecules that have much different spin-multiplicity or neardegeneracy. 

 

 

2.3. Applicabilities of long-range correction scheme 

 

In this section, the LC scheme are examined by illustrating its applicabilities to three DFT 

problems that have never been solved: 1. poor reproducibilities of van der Waals bondings, 2. 

underestimations of Rydberg excitation energies, oscillator strengths, and charge transfer excitation 

energies in time-dependent density functional calculations, and 3. systematic overestimations of 

atomization energies of transition metal dimers. 

 

2.3.1. Van der Waals calculations 

 

One of the most critical DFT problems is the poor reproducibility of van der Waals (vdW) 

bondings. Actually, conventional correlation functionals have incorporated no vdW interactions. 

Since vdW bondings, however, often determine structures of large-scale molecules, accurate 

calculations of vdW bondings are a pressing problem in DFT. Several DFT studies have been made 

on vdW calculations by using, e.g., a perturbation theory based on DFT.30 The most effective and 

general way may be the use of a vdW functional. Up to the present, various types of vdW functionals 

have been suggested.31,32,33 Some of these functionals reproduce accurate vdW C6 coefficient 

comparable to the results of high-level ab initio methods.31 However, these functionals give poor 
vdW bondings of, e.g., rare gas dimmers by simply combining with a conventional 

exchange-correlation functional in DFT calculations. It is presumed that this problem may be due to 

the lack of long-range interactions in exchange functionals, because vdW bondings are supposed to 

be in the balance between vdW attraction and long-range exchange repulsion interactions. On this 

ground, Kamiya, Tsuneda, and Hirao applied the LC scheme with a vdW functional to calculations 

of dissociation potentials of rare-gas dimers.34 Andersson-Langreth-Lundqvist (ALL) functional 

was used as the vdW functional.31 This functional was developed to be correct for both separated 
electron gas regions and far-apart atoms. In this functional, a damping factor was used to diminish 

the vdW energy for regions at a short distance. 

In Fig. 1, calculated dissociation potential energy curves of Ar2 are shown for pure GGA 

functionals (BOP and PBEOP)35 and LC functionals (LC-BOP and LC-PBEOP) with no vdW 

functionals. The 6-311++G(3df,3pd) basis functions was used.36,37,38 The basis set superposition 

error was corrected by a counterpoise method.39 As the figure shows, LC functionals give very 

close potential curves to each other, although pure GGA functionals provide obviously different 

curves. This may indicate that a long-range correction is necessary for exchange functionals to 



reproduce vdW bondings. 

Next, Figure 2 displays calculated dissociation potentials of Ar2 by LC-BOP + ALL and 

conventional sophisticated functionals (mPWPW91,40 mPW1PW91,40 and B3LYP+vdW41). The 

2nd-order Møller-Plesset perturbation (MP2) and experimentally-predicted (Expt.) 42  potential 

curves are also shown for comparison. The figure clearly shows that LC-BOP + ALL functional 

gives accurate vdW potential curve in comparison with the results of MP2 and other conventional 

DFTs. It is, therefore, necessary for accurate DFT calculations of vdW bondings to use both 

long-range-corrected exchange and vdw-incorporated correlation functionals. 

 

2.3.2. Time-dependent density functional calculations 

 

Time-dependent density functional theory (TDDFT) becomes widely-used as a simple method for 

rapid and accurate calculations of molecular excitation energies. It has, however, been reported that 

conventional TDDFT calculations underestimate Rydberg excitation energies, oscillator strengths, 

and charge-transfer excitation energies. Tawada, Tsuneda, Yanagisawa, Yanai, and Hirao supposed 

that this problem may also come from the lack of long-range exchange interaction, and applied the 

LC scheme to TDDFT calculations.43 

Table 1 summarizes mean absolute errors in calculated excitation energies of five typical 

molecules by TDDFT. The table also displays calculated results of asymptotically-corrected AC19 

and LB18 (AC-BOP and LBOP) and hybrid B3LYP12 functionals, which are mentioned in the 

former section. The ab initio SAC-CI44 results are also shown to confirm the accuracies. The 

6-311G++(2d,2p) basis set was used in TDDFT calculations.45,46 As the table indicates, the LC 

scheme clearly improves Rydberg excitation energies that are underestimated for pure BOP 

functional, at the same (or better) level as the AC scheme does. It should be noted that LC and AC 

schemes also provide improvements on valence excitation energies for all molecules. LC and AC 

results are comparable to SAC-CI results. The LB scheme clearly modifies Rydberg excitation 

energies, and however brings underestimations of valence excitation energies. B3LYP results are 

obviously worse than LC and AC results for both valence and Rydberg excitation energies. 

Next, calculated oscillator strengths of excited states by TDDFT are shown in Table 2. As is 

clearly shown in the table, LC scheme drastically improves oscillator strengths, which are 

underestimated for BOP as second to hundredth part of experimental values, to the same digit. 

Although AC-BOP, LBOP, and B3LYP also provide closer oscillator strengths to the experimental 

values than BOP do, the accuracies are unsatisfactory in comparison with LC-BOP ones. It is, 

therefore, concluded that the lack of long-range interactions in exchange functional may also cause 

the underestimations of oscillator strengths in TDDFT calculations. 

Finally, calculated lowest charge transfer excitation energies of ethylene-tetrafluoroethylene dimer 



are shown in Fig. 3. Dreuw et al. recently suggested that poor charge transfer excitation energies of 

far-aparted molecules may be one of the main problems of TDDFT.47 They pointed out that 

intermolecular charge transfer excitation energies of far-aparted molecules should have the correct 

asymptotic behavior for long intermolecular distance. That is, for long molecular-molecular 

distances R and R0 (R > R0), charge transfer energy ωCT should satisfy 

0
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The figure shows that LC-BOP gives the correct asymptotic behavior as is different from AC-BOP 

and LBOP do. Although B3LYP recovers a part of this behavior, the degree is in proportion to the 

mixing rate of the HF exchange integral. Hence, this result may also indicate that problems in 

conventional TDDFT calculations come from the lack of long-range exchange interactions in 

exchange functionals rather than the poor far-nucleus asymptotic behavior of exchange functionals. 

 

2.3.3. Transition metal dimer calculations 

 

Yanagisawa, Tsuneda, and Hirao calculated the equilibrium geometries and the atomization 

energies for the first- to third-row transition metal dimers and concluded that48,49 

1. Pure functionals tend to overstabilize electron configurations that contain orbitals in a high 

angular momentum shell that is not fully occupied. This tendency is reduced from the first- to 

third-row transition metal dimers. 

2. The overestimations of atomization energies of dimers are associated with the errors in 

outermost s-d interconfiguration transition energies of atoms. The latter errors may be due to the lack 

of long-range exchange interactions of outermost s and d orbitals that are fairly different in 

distributions. Hence, this lack may also cause the overestimations of the atomization energies. 

3. B3LYP generally gives more accurate atomization energies than those of pure functionals, even 

if high angular momentum orbitals are present in the configuration. However, B3LYP gives an 

erroneous energy gap between the configurations of fairly different spin-multiplicity probably due to 

the unbalance of the exchange and correlation functionals. 

Based on this discussion, Tsuneda, Tokura, and Hirao applied the LC scheme to calculations of 

transition metal dimers.50 

Errors in calculated atomization energies of transition metal dimers are displayed in Fig. 4. The 

Wachters + f  basis set was used.51,52,53 The figure shows that the LC scheme obviously improves 

the systematic overestimations calculated by pure BOP functional. It was, therefore, proved that 

these overestimations may be due to the lack of long-range exchange interactions in exchange 

functionals. It was also found that LC-BOP fairly underestimates the atomization energies of V2 and 

Cr2. As supposed from the similarity to B3LYP results, this underestimation may come from the 



errors in the HF exchange integral. That is, the HF exchange integral overstabilizes high-spin 

electronic states, because it only incorporates parallel-spin electron-electron interactions. It is, 

therefore, expected that this problem may be solved by taking well-balanced electron correlation into 

account for the long-range exchange part. The figure also shows that the LC scheme makes 

calculated atomization energies of different functionals much closer to each other. That is, the 

uniquenesses of functionals dissappeared after the long-range correction in this calculation. This 

may also support the conclusion that the lack of long-range exchange interactions is 

deeply-committed to the overestimated atomization energies of dimers. 

 

2.3.4. Other calculations 

 

Besides the above-mentioned calculations, Tsuneda et al. are now applying the LC scheme to 

calculations of chemical reactions54 and (hyper)polarizabilities.55 We will exhibit some present 

works to show the wide applicabilities of this scheme.  

First, calculated results of H2 + H →H + H2 reaction are summarized in Table 3.54 The pV6Z 

basis set was used.56 The table shows that the LC scheme remarkably improves underestimated 

reaction barrier energies of BOP. As far as we know, this result is certainly superior to results of 

other corrections that have ever reported. This may indicate that underestimations of reaction 

barriers in DFT calculations are also due to the lack of long-range interactions. 

The LC scheme was also applied to overestimations of polarizabilities in DFT as shown in Table 

4.55 The Sadlej valence triple zeta basis set was used.57,58 The table shows that calculated 
polarizabilities of LC-BOP are obviously more accurate than those of BOP. Compared to B3LYP 

results, LC-BOP shows more improvements in many cases. Similar results were found in 

calculations of anisotropies and S-4 Causchy moments of polarizabilities. Hence, we may say that 

these overestimations also come from the lack of long-range interactions in exchange functionals. 

As mentioned above, the LC scheme was found to give better results for various chemical 

properties than the results of conventional corrections including hybrid functionals. For some 

properties, the LC scheme provided equivalent improvements in comparison with B3LYP. This may 

indicate that accurate B3LYP results may be due to the equivalency in the mixed HF exchange 

energy to the LC scheme, rather than the validity of the constant weight hybridization of the HF 

exchange. This argument may require further examination of the LC scheme. 



Figure captions 

 

Fig. 1.  Calculated bond energy potentials of argon dimer for long-range exchange corrected 

functionals (LC-SOP, LC-BOP, and LC-PBEOP). Pure functionals are also presented for comparison. 

Highly accurate potentials are also shown for comparison. 

 

Fig. 2.  Calculated bond energy potentials of argon dimer for LC-BOP+ALL functional. For 

comparison, calculated potentials of conventional sophisticated density functional schemes 

(mPWPW91, mPW1PW91, and B3LYP+vdW) and those of MP2 are also presented. Highly accurate 

potentials are also shown for comparison. 

 

Fig. 3.  The lowest charge transfer excitation energy of ethylene-tetrafluoroethylene dimer for the 

long intermolecular distance calculated by TDDFT employing various types of functionals. For all 

methods, the excitation energy at 5.0 Å is set to zero. 

 

Fig. 4.  Errors in calculated atomization energies of the first-row transition metal dimers for LC 

functionals (LC-BOP and LC-PBEOP), pure functionals (BOP and PBEOP), and B3LYP in eV. The 

line of no-error is also illustrated.



Tables 
 

Table 1. Mean absolute errors in calculated excitation energies of five typical molecules by TDDFT 

in eV. 

 

Molecule  LC-BOP BOP AC-BOP LBOP B3LYP SAC-CI 

N2     Valence 0.36 0.40 0.27 1.48 0.54 0.33 

          Rydberg 0.90 2.37 0.84 0.43 1.30 0.25 

          Total 0.54 1.06 0.46 1.13 0.79 0.30 

CO       Valence 0.19 0.28 0.17 1.02 0.36 0.26 

          Rydberg 0.75 2.06 0.79 0.42 1.16 0.27 

          Total 0.47 1.17 0.48 0.72 0.76 0.27 

H2CO   Valence 0.25 0.59 0.24 0.52 0.26 0.45 

          Rydberg 0.47 1.66 0.59 0.07 0.84 0.13 

          Total 0.40 1.30 0.47 0.22 0.64 0.24 

C2H4 Valence 0.30 0.47 0.24 1.52 0.47 0.11 

          Rydberg 0.18 1.41 0.58 0.69 0.92 0.17 

          Total 0.20 1.28 0.53 0.80 0.85 0.16 

C6H6 Valence 0.21 0.28 0.24 0.84 0.26 0.35 

          Rydberg 0.24 1.01 0.88 0.35 0.56 0.15 

          Total 0.23 0.74 0.64 0.53 0.44 0.22 



Table 2. Calculated oscillator strengths of excited states of typical molecules by TDDFT (x10-2). 

 

System State LC-BOP BOP AC-BOP LBOP B3LYP SAC-CI Exp. 

N2 1Πu 11.05 0.28 2.02 4.18 1.33 8.14 24.3 

 1Σu
+ 24.06 0.69 6.07 3.60 3.84 15.67 27.9 

CO     1Π 19.76 8.66 6.68 5.97 11.24 9.63 17.6 

H2CO  1B2 2.19 1.68 1.02 3.02 2.71 1.88 4.13,2.8,3.8,3.2 

 1A1 6.94 2.11 2.62 1.80 3.64 4.26 6.05,3.2,3.8,3.6  

 1B2 6.50 1.75 2.42 2.23 2.32 2.95 2.81,1.7,1.9  

C2H4 1B3u 12.85 3.49 4.77 5.08 6.75 8.20 4.00 

 1B1u 73.85 12.85 24.41 32.38 34.67 40.65 29.00 

C6H6 11E1u 134.02 49.71 48.59 53.48 58.31 103.05 120,90.0,95.3 

 



Table 3. Calculated barrier energies and bond distances of H2 + H →H + H2 reaction. Barrier 

energies are in kcal/mol and optimized geometries are in Å. Reference values (Refs.) are the 

quantum Monte Carlo results. 

 

Molecule Barrier height Optimized geometry 

Functional Classical ZPVC R(H2) R(H3) 

LC-BOP 10.1 9.3 0.752 0.940 

BOP 3.5 2.8 0.743 0.934 

BLYP 2.9 2.2 0.745 0.930 

B3LYP 4.3 3.5 0.742 0.934 

Refs. --- 9.6 0.741 --- 

 



Table 4. Calculated static isotropic polarizabilities by time-dependent Kohn-Sham theory in atomic 

unit. 

 

Molecule LC-BOP BOP B3LYP Exp. 

Cl2 30.87 31.69 31.16 30.35 

CO2 17.58 17.82 17.36 17.51 

F2 8.83 8.87 8.69 8.38 

H2O 10.03 10.49 9.95 9.64 

H2S 24.72 25.64 25.11 24.71 

HCl 17.74 18.33 17.90 17.39 

HF 5.99 6.17 5.83 5.60 

N2 11.99 12.07 11.88 11.74 

SO2 25.63 26.30 25.75 25.61 
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