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1 Motivation for SUSY Gauge Theory
Supersymmetry is
e One of the Principles beyond Standard Model.
e Important Basis for Superstring Theory (or Quantum Gravity ?).
e Powerful and Useful Tool for Non-Perturbative Analysis.

Today, We Focus on N =2 Supersymmetric Gauge Theory, i.e.,

Seiberg-Witten Theory ~~ “2-Dim. Ising Model” for Gauge Theory ?

e Possible to Obtain Exact Analytic Solutions = GOOD “Model”
e Open Up New Field (Duality, CFT, Integrability, Mathematics...)

[1 We Try to Extract the Non-Perturbative Information of Gauge Theory

(Confinement, Chiral Sym. Breaking) from the Seiberg-Witten Theory.



2 Exact Solutions for A/ = 2 SUSY Gauge Theories

* N = 2 SU(N,.) Gauge Theory with N ¢ Fundamental Hypermultiplets™

1 1
L = —1Im [Tcl/d40 @T€V@+/d20 5v‘/*av‘/*ot] _l_L(quark),
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and N = 1 Soft-Breaking Term :
AL = /d2¢9,LL'I‘11‘<I>2 + h.c.,
where 0

Tel = — + — m; : Quark Bare Mass.
™ g

*® : Adjoint Rep. and Q); , Q" : Fundamental Rep. (z = 1, - -+ Np)



® Seiberg-Witten Exact Solution for SU (2) Pure Yang-Mills Theory (without ) and Q)
At Generic Points on Moduli Space  (®) = a %> # 0,

Gauge Sym: SU(2) — U(1).

Low-Energy Effective Action for U (1) Theory :

1 4 . 2
Lo = 4—Im /d PApA —I—Teff/d OW W\,
T
OF(A) 0?F(A)
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(1 Holomorphic Prepotential F(A) Completely Determines LEEA

This LEEA is upto 2-Derivative and “Assumes” Manifest N/ = 2 SUSY in Wilsonian Sense.
{ BPS States in Low-Energy Effective Theory,

Mgps = \/§|nea + nmap|,

where N and n,,, are Electric and Magnetic Charges.



® Seiberg-Witten’s Idea

1. LEEA s Invariant under the E-M Duallity Transf. (W, A; 1) — (Wp, Ap; —%)T.

2. Classical Moduli Space should be Deformed :

Dynamical Abelianization SU (2) = U(1) Occurs Everywhere !

3. Quantum Singularity in LEEA is Realized by “Massless” Monopole (or Dyon).

{ Exact Solution ~v Seiberg-Witten Elliptic Curve :
1
y? = x*(x — u) — ZA4$ (u = (Tr ®2)).

(a, ap) is Given by the SW 1-Form on this Curve :

ap(u) = éksw, a(u) = ]{X)\SW.

and To(u) = Oap/Oa is Moduli Parameter of the Torus.

[0 Prepotential F(A) is Obtained from the Soln. (a, ap).

T This can be Shown by a SUSY Legendre Transformation.



® Quantum Moduli Space of SU (2) Pure Yang-Mills Theory
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® Confinement from Monopole Condensation
Breakingto N/ = 1 by AW = pTr &2 —= Moduli Space is Almost Lifted.

Effective Superpotential Becomes
Wy = V2ApMM + pnU(Ap) (M, M : Monopole Multiplet).

ou
SUSY Vacuum : ap = 0 (Singularity), (M) o< {/pp——
8CLD

[1 Monopole Condensation is Realized —=> Color Confinement and Mass Gap.

£ 0.

CLD=0

® |Inclusion of “Quarks”

Important Difference is Existence of Monopoles with Flavor Charge (Jackiw-Rebbi)
[Mon.), p%|Mon.), ¢3¢8|Mon.>, .+« (%Y : Fermionic Zero-Modes)
[1 Monopole Condensation —=> Confinement and Chiral Symmetry Breaking !

E.g., in Massless Ny = 2 Case,
SO(4) ~SU((2) x SU(2) = SU((2) xU(1)



e Generalizations to SU (IN.) Gauge Theory
In SU (N.) Pure Yang-Mills Theory,

Complete Dynamical Abelianization : SU (N.) — U (1)Ne=1

AW —> IN_. SUSY Vacua with Abelian Monopole Condensation.
e SU(N.) QCD with Ny Fundamental Quarks

SW-Curve for Exact Solution of Coulomb Branch :
N, Ng
2 _
y? = H (x — ag)” — 4A? NN H (x 4+ m;)
k=1 =1

N = 1 Vacua (with AW) by Minimizing Effective Superpotential,
Ne—1
Wa= Y. (V2ALM'M; + S*m M*M;) + pU(AL),
=1
—> (IN. — 1) Pairs of Zero-Points Should Appear in SW-Curve.
In the Equal Mass Case, Higgs Branch, (Q;) 7# 0, Also Exists.
Note : Higgs Branch is NOT Modified Quantum Mechanically due to Hyper-Kahler Str.



e Quantum Moduli Space of N =2 SU (N.) QCD with N ¢ Fund. Quarks Ym;

(Non—Baryonic)
Higgs Branch <Q>+# 0

(Baryonic)
Higgs Branch

Coulomb Branch
O N = 1 Vacuawith AW = Tr u ®? (m = 0)
1. . Abelian Vacua with Abelian Monopole Condensation.
2. e : r-Vacuawith SU(r) X U(1)™Ne=" Gauge Sym.
~ Confinementand DSB: U(INy) — U(INy — r) X U(r).
3. ® : Baryonic Vacua with SU (Ny — N,.) x U(1)?Ne=Ns Gauge Sym.
~~ NO Confinement and NO DSB.



e r-Vacua and Baryonic Vacua Has Magnetic DOFs with Charge of SU (7) x U (1) Ne—T"
[0 Non-Abelian Magnetic Monopoles ?

Situation is Simlar to “Dual Quarks” in Seiberg Dualityi.
® Brief Summary of Seiberg Duality
In the Range of N, + 2 < N¢ < 3N,

N =1 SU(N.) SQCD with N Quarks
{ IR Equivalent
N =1 SU(Ns—N,) SQCD with N Quarks and a Singlet Meson

e Seiberg’s Conjecture on Existence of the SAME IR Fixed Points.
e Non-Trivial Matching of 't Hooft Anomaly

e Correspondence between Vacuum Str. and Gauge Inv. Chiral Operators.

What is Dual (or Magnetic) Quarks in the Dual Theory ? (in Original Sense)

1Actually, Baryonic Vacua Has been Studied from the Viewpoint of Seiberg Duality.



3 What Can We Learn about Confinement from SW-Theory

[1 Vortex Soln. in Abelian Higgs Model as Squeezed Magnetic Flux in Superconductor

N
Iz % e Flux Energy is Proportional to Length

il </> —— “Probe Monopoles” are Confined.
\1/ev
5 T e Stability from Non Simply-Connected Vacuum Manifold
\\ <— m(SY) =m(UQ1)) =7
® Electric-Magnetic Duality E < B

e <= g=1/e

Abelian Monopole Condensation ——=> DUAL Meissner Effect.
() Confining String <—> Vortex Soln. in Dual Theory



® However, Abelian Dual Theory Has Different Dynamical Properties from QCD.
——> Spectrum of Vortex Tension Reflects Dynamical Properties.

1. Abelian Theory Has an Infinite Number of STABLE Vortices <= w1 (U (1)) = Z.

2. Richer Hadron Spectrum from Vortex Spectrum :
Meson QQ Splits to N Mesons due to SU(N,) — U (1)Ne—1,

In Pure SU (IN') Yang-Mills Theory (or Heavy Quark Limit3), ONLY k-Strings are Stable.

k-Stringd N -ality k Flux Tube in the Center Z of SU (IN).

{ Also, QCD would NOT Have an Effective Weak-Coupling Gauge Theory Description.

Note : Solitonic Vortex in Weakly-Coupled Theory does not Give Linear Regge Trajectory.

[1 (Strongly-Coupled) Non-Abelian Effective Description and

Non-Abelian Version of E-M Duality

§Actually, Confining Strings in QCD is Unstable due to Production of Quark Pair.



4 Strongly-Coupled SCFT at Argyres-Douglas Fixed Point
Non-Trivial N/ = 2 IR SCFT is Realized at Special Pt. on Moduli Sp. (Argyres-Douglas)

y? = (x + 'm"‘)3 ——> SQED with MASSLESS Mutually Non-Local Dyons
Def.: n() - n® —n® .M £ (Q@) = (n{), n,@))

Evidences for Non-Trivial SCFT
. Teit(~ O(1)) at the Point is Indep. of Scale in LEET.

—h

2. Scaling Dim. of Chiral Operators Become Fractional.

3. Dynamical Electric and Magnetic Currents Must Coexist (<= Conformal Algebra)

Non-Local Cancellation of 3-Fn. is Proposed :
A Ap, A, TAL,

NVO/W+NVONV+/\N©/VV=O

zi] ( ne(i) —+ nm(l) 'c*z ) e O



® “Wilsonian” Renormalization Group Approach to AD-Point (Kubota-Yokoi)

M : UV Cut-Off and M : RG Scale (or IR Cut-Off),
Do I@(u m,,,) Mc‘? (u mz>
efine, = — T,
A2’ A oM "\ A2’ A

NG R
Yu 9 Ym; om. Teft A2’ A )

Yu @nd Yo, is Scaling Dimensions : v, /A%? = M&/OM (u/A?), etc.

However, We Do NOT Know the M -Dependence (What is IR Cut-Off ?)

Paramtetrize the Flow along t = M /M NEAR AD Point (SU(2), Ny = 1):

m — m* u— u*

A2 :Dlta, A2 :tha—|—D3t’8—|—°'° .

Teff—>T*NO(].) — azg, /6:

oo

(Dl Dz)

Scaling Dimensions are [m] = 4/5, [u] = 6/5, [t] = 2/5.



Non-Abelian Argyres-Douglas Point (Auzzi-Grena-Konishi, Marmorini-Konishi-Yokoi)
Simplest Example in SU (3) QCD with INy = 4 Flavor

sW-Curve: y? = (z° —ux — fv)z — 4A% (z + m)*.
At (u, v) = (3m?,2m?3), Curve Becomes
y? oc (x + m)?* = Unbroken SU(2) Symmetry (r =2 Vacuum)
Form > A, LEET Becomes SU (2) QCD with 4-Flavor (SCFT !)

For Small m (< A), Non-Abelian Generalization of AD-Point Appears !

e Mutually Non-Local DOUBLETS Appear !

o T*is O(1) Fixed Value. Particle | Charge: (nl ,n2 ;nl,n?)
M (£1,1;0,0) x 4
DSBwith AW : U(4)y — U(2)xU(2)| p (£2, —2; +1, 0)
e*P (ML M) # 0 E (0,2;+1,0)

Strongly-Coupled Monopole Condensation !



® Another Interesting Example in U Sp(4) QCD with Massless Ny = 4 Flavor
2
SW-Curve: y? == (wz — uxr — v) — 4A*23.
At the Chebyshev Vacua (u = +2A?, v = 0), Curve Becomes y? o< x*.

LEET is Also SU (2) X U (1) Non-Local Theory !

e Extra Doublet C Appears. Particle | Charge: (n,,,n2 ;n_,n2)
e DSBwith AW : SO(8) — U (4) M (+1,1;0,0) x 4
« 2 J
o7 (Mg Mpz) # 0. E (0,25 %1, 0)
Another Type of Condensation. C (£2,0; 41,0

InUSp(2N.) Case, DSB Patternis SO(2Ny¢) — U(Ny).
Non-SUSY Massless U Sp(2N.) QCD: SU(2Ny) — USp(2Ny).

Actually, USp(2Nf) M SO(ZNf) = U(Nf)
Hints for Chiral Sym. Breaking in Non-SUSY QCD ?



e Singular Loci in Moduli Space of U Sp(4) QCD




Quantum Moduli Space of U Sp(2N.) QCD with Massless IN ¢ Flavors

Higgs Branch

=
V- W

Coulomb Branch

N = 1 SUSY Vacua with AW

1. ® Chebyshev Vacuuum ——=> Strongly-Coupled Non-Local Eff. Theory
Dynamical Symmetry Breaking: SO(2N¢) = U(Ny).

2. Baryonic Vacuum = USp(2N,.) X U(l)NC_NC Gauge Theory
NO Confinement and NO DSB.

qT.ZQ-C:.ZV-‘f_NC_z



5 Introduction to Non-Abelian Duality

Goddard-Nuyts-Olive-Weinberg (GNOW) Duality

For System with the Breaking Pattern, G — H (H : Non-Abelian) ,
GNOW Duality:

H «— H~*
(81

o < a*:—
(O ARINGS

% H* : DUAL Group Generated by DUAL Root o*

Example :

SU(N) <« SU(N)/Zn
SO(2N) <«  SO(2N)
SO(2N +1) < USp(2N)

Note : U (IN) is Self-Dual.




® Evidence for GNOW Duality : Non-Abelian Monopoles

- Topological Argument :
7o (G /H) is Non-Trivial ==~ Regular Solitonic Monopoles.

Asymptotic Behavior of Solutionatr ~ oo (U € GG, T; € C.S.A.of H)

k
¢~ U{p)U™ T, mewk (B-T).

{ Generalized Dirac Quantization Condition :
200 - 3 € Z for Roots a of H.

(3 Gives a Weight Vector of H* ——> Monopoles Form a Multiplet of H *

We Discuss the Dual Transformation among these Non-Abelian Monopoles.

In Fact, This is NOT an Easy Task as You See...



6 Brief Summary on Non-Abelian Monopole and Vortex
® (Semi-)Classical Solution for Non-Abelian Monopole

Simple Example : SU (3) Yang-Mills Theory with Ajoint Higgs ®.

v O 0
sus) & STAXUD ey o v o
2 0 0 —2v

In This Case, 2 (G /H ) ~ 1 (SU(Z)ZzU(l)) = Z.

Regular BPS Solitonic Solution :

—3v 0 0
d(x) = 0 v 0 |+3vS-7¢(r)
1
0 0 —E’U
A(x) = S x7A(r),

where ¢ (1), A(r) are BPS-'t Hooft's Profile Function.



e Sis a Minimal Embedded SU (2) Algebra (67 /2) in (1, 3) (and (2, 3) ) Subspace.
() Two Degenerate Solutions => Doublet of Dual SU (2) ?

In Fact, These Two are Continuously Connected by Unbroken SU (2) Transformation.

Multiplicity of the Monopolesare 1 or 2 or co ?

In Order to Answer the Question, Need to Understand the Tranformation Properties.

However, Some Difficulties are Well-Known in Semi-Classical Analysis for the Solutions
e Non-Normalizable Zero-Modes Appear due to Unbroken SU (2).

e There exists Topological Obstacle to Definition of Charge of the SU (2).

Standard Quantization Procedure Breaks Down due to the Difficulties.

How can We Overcome These Situations ?



¢ Our Idea : Consider the System with Hierarchical Symmetry Breaking

G%H%@, ’Ul>>’02.

In this System with 7to (G'/ H) # 0, Everything Goes Better.

1. At High Energy (~ v1), G — H Breaking Produces Non-Abelian Monopoles.

2. At Low Energy (~ w2), Breaking of HH Produces Non-Abelian Vortices.

Non-Abelian Monopoles are Confined by Non-Abelian Vortex !

==

M M
e Low Energy H -Theory is in Higgs Phase => DUAL Theory is in Confining Phase.
(Cf. H™ isin Higgs Phase => NO Multiplet Structure)

e Light Higgs in the Fundamental Rep. is Needed for Breaking of H .

——> Massless “Flavor” is Crucial for Non-Abelian Duality (See Later)



® Set Bare Mass Parameter for Quarks Y1m; = m (t=1,2,--- ,Ny¢).

® The r-Vacuum with r = IN :

o L
Rz

(d 0 0
Q=q0"=0 -0
0 0 d

\ 0 ... 0

(mO

0
0

| o

O For p<m (ie. d <K m),

P

m 0
0 —Nm)

’ d:\/(N_l_]-)“’m

e ®Breaks SU(N + 1) = SU(NZ);U(I) at vy ~ m

e () Breaks SU(Z\Q::U(D

Completely at v ~ d.

% However, Diagonal SU (N )c4+r C SU(IN) X SU(Ny) Sym. is Preserved.



[1 High-Energy Theory (v — 0) Has (Almost) BPS Monopole Solutions:

1

A

B = — (Dp®)*, Bf= Eeiiji?
e Mass of Monopoles : Mo ~ 27;%.

e Topological Charge from 7o (SSZ\(TJ)V;[}()D) = 7.

[0 Low Energy Effective Theory at (v2 ) F <K v,

N =2 SU(N) x U(1) Gauge Theory with N4 Fund. Quarks and “FI-Term”.

e The Effective Theory Has (Almost) BPS Vortex Solutions with Tension ~ 27 vs.

e Topological Charge from 71 (SU (N) x U(1)) = Z.

{ These Solutions are BPS Non-Abelian Vortex Solutions.



® Short Review of Non-Abelian Vortex (Hanany-Tong, Auzzi-Bolognesi-Evslin-Konishi-Yung)
Consider the U (IN' ) Gauge Theory

1 2
L = Tr|-——F,F*" - —_-D,®'D"® — D, HD'H'
292 g°

“Aeln _HHT)Z} +Tr[(H'® —mH)Y(®H —-mH)],

where ® : Adjoint Higgs, H : N (= Ny ) Fundamental Higgs in Matrix Form.

The Vacuum of this Theory:
(<I>>:m1N, <H>:\/E]_N.
[0 The Vacuum Preserves Color-Flavor Diagonal Sym. SU (N ) o4 F-.

® Eq. of Motion for BPS Case (A = g?/4):

2
(D1 +iDy) H=0, Fi+ g? (ciy — H HY) = 0.

{ “Non-Abelian” Zero Modes from the Breaking of SU (IN ) ¢+ r by Vortex.



{ Moduli Matrix Formalism for Non-Abelian Vortex (Eto-Isozumi-Nitta-Ohashi-Sakai)

Solutions for the Eq. of Motion (z = a1 + ta2):
H=S81%2,2)Hy(z), A1 +iAy;=—-2i5"19,5(z,2).
e S(z, Z) Satisfies a Nonlinear “Master Equation”:
8. (0718, Q) = gz (cln — QL Ho H}). (2 = SSH)
e H(z) is Moduli Matrix Encoding All Moduli Parameters up to the V -Transformation :

Hy(z) — V(2)Ho(z), S(z,2) — V(2)S(z,2) (V isanyHol. Matrix).

e Another Construction of Moduli Space of k-vortex by Kahler Quotient

{Hy(2)|det Hy ~ z*} {Z,¥| (kxk)and (IN. X k) Const. Matrix }
(V(®)|V € GL(N;C)} — {U|U € GL(k; C)} ’
where Z ~UZU™! and ¥ ~ 9U L,

e 1-Vortex for U (IN) Theory : M = CP™N 1.

e Composite 2-Vortex in U (2) Theory : Mo = WCP?2’1’1).



7 Non-Abelian Duality from Monopole-Vortex Complex

{ Monopole-Vortex Complex from Topological Argument, “Exact Homotopy Sequence”:

‘t Hooft-Polyakov

In Our Full Theory, m2(G) = 0 (== NO Stable Monopole) and
71 (G) = 0 (== NO Stable Vortex).

SU(N + 1)
( U(N)

) = m(CPY) ~ m(U(N)) =7Z

High-Energy Monopole N — Low-Energy Vortex
% Monopoles should be Confined by Vortices !



¢ Dual Transformations among Monopoles from Vortex  (Eto et. al.)

A Vortex Solution Breaks Color-Flavor Diagonal Sym.
e Moduli Space for 1-Vortex: M = SU(N)/U(N — 1) = CPN 1,

=

Monopole Moduli Vortex Moduli
—~ CPN-1

TTAG/H) ~_ TT(H)

% We can Show the Moduli Parameters Transform as IN-Rep. under SU (N ) o+ F-
—> High-Energy Non-Abelian Monopoles Form an IN-Rep Multiplet.



e Simplest Example for SU (2) X U (1) Theory

Moduli Matrix up to V-Transformation

HO ~ z—2z2 0 CHOD ~ 1 —ao .
—bog 1 0 z—2

® ag and bg are Orientational Moduli and Correspond to Two Patches of cP!.

e Under SU (2) ¢+ F Transformation :

«
Ho — V(z) HoU', U = ( g ¢ ) (Jla? +18]* = 1),
Moduli Parameter ag Transforms as
aag + O

% This is Nothing But the Transformation of Doublet.

()= (5 2)(8) =t
— ) ap = —.
ao —03* o ao a-

{ This Derivation Does NOT Rely on Semi-Classical Analysis of Monopole



e General SU(N) x U (1) Case

A Standard Form of Moduli Matrix for Minimal 1-Vortex:

(1 0 0 —a \
Ho(z)~| 0 - 0

0 0 1 —an_1

\0 .. 0 z—2

Under the SU (IN ) ¢+ F Transformation and V-Transformation,
H(z,Z) - UHU'" =— Hy(z) — V(2)HUT.

OFor U =1+ X, a; Transform as Inhomogenious Coordinates of CPN ~1.
Note: Homogenious Coord. of CPN ~1 Transform as IN Rep. under SU (IN) Isometry.

® Our Result is Consistent with Quantum Result from Seiberg-Witten Solution

With Appropriate Number of Flavors, on the Quantum » = IN Vacuum,
Effective Theory Has SU (IN') X U (1) Gauge Sym. with Monopoles of IN Rep.



% Another Non-Trivial Example : SO(2N +1) - U(IN) — 0
e Simplest Case for SO(5) — U(2) — 0.
Essential Differences : 71 (SO (5)) = Z5

® Minimal Monopole is Dirac-Type and Minimal Vortex is Truly Stable.
(1). Vortex Side : We have Investigated Moduli Space of Composite 2-Vortex (See Next)
2 2
MI{::Z — WCP(2,1,1) ~ (CP /Zz.

e Bulk of WCP? : Triplet under SU(2) ¢4 F.
e Conical Singularity : Singlet.

(2). Monopole Side : Regular Solutions with 1-Parameter Not Related to Sym. (E. Weinberg)
Fortunately, Moduli Space and Metric is KNOWN in This Case,

Mon = C2/Z2 ~ Hél’l) : A Patch of WC.P?
® A “Compactification” of M o, Gives W CP?.
% Monopoles Transform: 3 P 1(= 2 ® 2).



® Moduli Matrix for Composite 2-Vortex in U (2) Theory (zg = 0)

1 —az — — _
HO? (2) = az —b C HOV () = (7 ~</5 n
0 0 22 0 - z—0

with the Constraint 2 + n7] = 0.
The Constraint in Hél’l) can be Solved as
XY =—-¢, X?=mn, Y?=—-1.
{ Correct Coord. of Moduli Space : (X,Y) ~ (—X,-Y) =— CP?/Z,.
® Another Representation of H((,l’l)
H" () =21+ X .7 (X3 = 0o, W= X, F X)
Under SU (2) ¢4+ F Transt. H(()l’l)(z) — UHyUT (with V (z) = U)
— X Transforms as a Triplet of SU(2)c+F-

Note : A Point X = 0 is Invariant = Nothing But the Singularity X =Y = 0.



® Picture of Moduli Space of Composite 2-Vortex in U (2) Theory

2
|¢)1| (X17X27X3)

(1,1) patch

|ol?

singularity
cp?

(2,0) patch

(0,2) patch



® Non-Abelian Dual Symmetry as Color-Flavor Diagonal Symmetry

e Color-Flavor Diagonal Sym. SU (IN) ¢4 F is EXACT Symmetry of the Theory.

—— Energy of Whole Monopole-Vortex Complex is Invariant.

e InHigh Energy Theory (v — 0), This Sym. Acts as ONLY Color Part of SU (N ) o+ F-
—> In Full Theory, This Sym. Becomes Non-Local Sym. Involving Flavor !

% Dual Transformation as Non-Local Transformation by SU (IN ) c+F

[l Quantum Aspects of Non-Abelian Duality
In Full-Quantum Theory, This Dual Sym. SU (IN') ¢+ F Has Trouble.

e According to Famous Seiberg-Witten Results,
Strong Coupling Dynamics Breaks SU (IN') to ABELIAN U (1) —1,

To Resolve this, Ny > 2N Massless Flavors are Crucial

——> Low-Energy Theory Becomes Infra-Red Free Due to Flavors.

Note : EXACT Flavor Sym. (Equal Mass) is Needed for Non-Abelian Dual Theory.



8 Semilocal Non-Abelian Vortex

® Abrikosov-Nielsen-Olesen (ANO) Vortex in Abelian Higgs Model
Finite Tension Soln. of Eqg. of Motion : For BPS Case,

1
(D, +iD,)® =0, B+ 5 (|®]* — v*) = 0.

e Stability from Non Simply-Connected Vacuum Manifold <— m; (Sl) = 7.
e Characterized by Position Moduli on the Plane.
e What Happens for Multi-Flavor Case, e.g. for Ny = 2 Case ?

1. Vacuum Manifold Changes to S : 7t (S®) = 1 (Trivial) — Stable Solution ?
{ For A/e? < 1, Stable Solutions Do Exist and Classified by 71 (U (1)).
2. For )\/62 = 1, Vortex Solutions Have Transverse “Size Moduli” other than Positions !

3. Large r Behavior is Quite Different from ANO = “Lump” in Sigma Models.

These Vortex Solutions are Called Semilocal Vortex (or String) (Vachaspati-Achucarro).



® Moduli Space for Semilocal Non-Abelian Vortex with N ¢ > N,  (Eto et. al.)

e Non-Trivial Degenerate Higgs Vacua Appear:

SU(Ny)
SU(N.) x SU(N; — Ne¢) x U(1)

vHiggs =~

—> SU(N¢)c+r X SU(N¢— N.) Global Symmetry is Preserved.

e Moduli Matrix Becomes Rectangular : Hg(z) = (D(2), Q(2)),
where D(z): N.X N, Matrix and Q(z): N X (N§—N.) Matrix.

—> Additional “Size” Moduli Appear from Q(z).

e Vortex Number k <= det HoH]} ~ |z|?* (|z| ~ o0).

However, Kahler Quotient Construction Can be Also Applied to Semilocal Case !



® Construction of Moduli Space by Kahler Quotient

(H (2)} — {Z,%,%| (kxk), (N.xk), (kX (N.—Ny)) Matrix}
{V(=)} {U|U € GL(k;C)} ’
where GL(k; C) Action: {Z,¥, ¥} ~ {UZU~ ', U, UT},

and U isFreeon {Z,¥}: {UZU Y, 9U '} ={Z,¥} = U =1.

® Simplest Example : 1-Vortex in U (2) Theory with Ny =3 (GL(1;C)=C")

(z,xp,fli) ~ (Z,A—l\;[:,»i}), A € C*,

~

where Z, W : Constant and W : 2-Vector.
® Except for Position Moduli Z, Moduli Space Appears to be

WCP?[1,1, —1] : (y1,Y2,y3)~(Ay1, Ay2, A" y3) (# (0,0,0)).
[1 This Space is NON-Hausdorff Space !

Because Two Distinct Points (a, b, 0) and (0, 0, 1) Have NO Disjoint Neighborhoods. !

l(ea,eb,1) ~ (a,b,€), where e is Arbitrarily Small.



® Two “Regularized” Spaces as Moduli Spaces of “Dual” Theories
In Order to Make the Space Hausdorff, We Should Eliminate Either Point:

[] Two “Regularizations” =—=> Two Different Manifolds
This Corresponds to the Choice Between U (2) Theory and “Dual” U (1) Theory.

1. WCP?[1,1,—-1] = WCP?[1,1,—-1] — (0,0, 1)
Moduli Space of U (2) Theory = M 3 = C?: Blow Up of C?

2. WCP?[1,1,—1] = WCP?[1,1,—1] — CP?
Moduli Space of “Dual” U (1) Theory =—> M, 3 = C?

[0 GL(k,C) Free Condition <—> Removing “Irregular’ Subspace.
e Generalization to U (IN.) with N s : Parent Space is WCPNs=1[1Ne —1Nsr=Ne]
1. Mp,.n, = WCPNs—1[1Ne, —1Ne] : O(—1)®Ne — CPNe—1,
2. My, = WCPN1=1[1Ne, _1Ne] + O(—1)8Ne — CPNe—L,

where Nc = N, — Ny.



® Lump Solution in Strong Coupling Limit
LEET of Strong Coupling Limit ==~ Non-Linear Sigma Model on Vyiggs.

This Sigma Model Has Codim. 2 Lump Solitons from 72 (Viiggs) = Z.
——> In the Strong Coupling Limit, Our Vortex Becomes this Lump Soliton.
Moduli Space of Smooth k-Lump Soliton is Also Determined by Moduli Matrix :

MEP N, = {(z, @, ¥)|GL(k, C) free on (Z, ¥) and (Z, CI“;)} /GL(k,C)
= MNC7Nf ﬂ MNC,NJU
Finally, We Have the Following Diamond Diagram:

MNC,Nf (WCP(21,1,_1))

/ \

Mn.,N, (€2) <o Seiberg-like Duality - > Mg n, (C?)

P

g2—>OO g — 0O

chp,Nf ((c*”)



9 Worldsheet Effective Action of Moduli on Vortex

e Worldsheet Effective Theory on Vortex
Possible to Obtain Eff. Theory by Promoting the Moduli to Slowly-Moving Fields

4

2-Dim. Non-Linear Sigma Model on Our Moduli Space

In SUSY Context, Moduli Matrix Can Also Provide the Kahler Potential :
K =Tr [d?z (5 log Q@ + QL HoHJ + 0(1/92)) .

Note : This Gives Standard C PN Metric for Local NA-Vortex.
Crucial Difference from Local Vortex is Existence of Non-Normalizable Moduli.

e An Example for U (2) Theory with Ny = 3 (L : IR Cut-Off)

2

L
KN.=2,N;=3 = mlc|®(1 + [b]*) log lc|2(1 + |b]2) +O(L%).

Replacement (¢ = c, b= cb) Gives Ky —1,N;=3 of U (1) Dual Theory.




10 Zp Vortexin N/ = 1*SU (IN) Gauge Theory

Our N = 1* Gauge Theory is
A Mass-Deformed N/ = 4 Super Yang-Mills Theory.
[1 (Deformed Version of) Montonen-Olive (MO) Duality[]

Electric Flux[] Centerof SU(IN) ~ Zn
{ Dual
Magnetic Flux( 7wy (SU(N)/ZN) ~ Z N

[] Notell This Duality Exchanges Also Confining Phase for Higgs Phase.

<> Magnetic Strings can be Constructed as Solitonic Vortex.

—> (In Some Regime,) Semiclassical Analysis can be Applied !

We Discuss the Solitonic Vortex with Charge k of IV -ality
in N = 1*SU (IN) Gauge Theory.




e N = 1* SU(N) Gauge Theory with ¢ (I = 1,2, 3)

Superpotential

W = i %2 farc®$ B @5 + 525 Y7, @72

{ Theory has SO(3) Symmetry as a Flavor Symmetry.

e FE > m, Theory is (Approximately) Scale Invariant.

e E < m, Theory Becomes N/ = 1 Pure Yang-Mills Theory
SUSY Vacuum Condition** = & = i%XI : X is Some Rep. of SU (2).
1. Higgs VacuumU X is IN-Dim. Irrep. and Gauge Sym. is Completely Broken.
2. Confining VacuumU Xy is Trivial Rep. and Gauge Sym. is Unbroken.

3. Coulomb Vacuall X is some Smaller Rep. and Gauge Sym. is Partially Broken.

**\/5[‘1’1, Py 4+ mergx P = 0and [‘EI,CI)I] = 0.



® On the Higgs Vaccum,
Al (®7) x m =— SU(IV) Gauge Sym. is Brokenat £ ~ m.
4

Weak-Coupling Effective Theory below m —— Semiclassical Analysis

e Solitonic Z Vortex Solution (Marmorini-Konishi-Vinci-Yokoi)

The Center Z v is Trivial on Adjoint Fields[] SU (IV) g ZN
> Non-Trivial Winding Characterized by w1 (SU(N)/ZN) ~ Zn
Ansatz for the Fieldsl f(oo) =¢r(oco0)=1 and f(0)=¢1(0)=¢-2(0)=0,
e Gauge FieldsO A,(r) = (f(r)/r) BTy, Others= 0.

o Matter Fieldsd ®;(r) = ¢r(r) V() 8 V-1(p),
" = i(m/V2)X1.



® (Generator of Center

(1 0 O 0 \
TO:i 0o . 0 .
Nlo o 1 0

\0 0 —(N—1)/

V(p) =exp(iBToy), V(2m)eZn (B€Z)
e Explicit Solution for SU (2) and SU (3) Vortex (¢p1(7r) = ¢2(r) = ¢(r))
Take X1 = 0'1‘/2 (SU(2)) and (XI)ab = —1€rab (SU(S))
d (1d_f) + o 2(1 — f)
dr T
1d d
PIE R
1 — 2
( 2f) 5

Tr

m2¢2 — O,

;dr

- C; 8° -m® (¢°+n"d—3nd+¢) =0




® Non-Abelian Orientational Moduli

The Higgs Vacuum is a Kind of “Color-Flavor Locking” Phase
e Global Flavor Sym.00 X7 — X7 = R; 5 Xy, Rrj € SO(3)

e GaugeSym.0 X; — X, =U X;U'", U € SU(N)

For Particular Gauge Transformation U = exp (z aIXI),
X —> X, =UX;U"'=R;;X; (Ue€SU(2)C SU(N))
— SO(3) Color-Flavor Diagonal Symmetry T7
® Worldsheet Effective Theory on the Vortex
e Our Vortex Solution Breaks This SO(3)c+r Sym. to U (1) (¢p1 = @2 # ¢3)

e Z/ N Vortex should NOT be BPS.

— 2-Dim. Non-SUSY C P! (~ SO(3)/U(1)) o-Model

TTFor SU(2) Case, Discussed by Markov-Marshakov-Yung.



11 Worldsheet Dynamics on Vortex and MO-Duality

Interesting Observation by Markov-Marshakov-Yungll On Higgs Vacuum,

Confinement of Monopole <—=> Confinement of Kinks on Vortex

e MO-Duality in N = 4 SYM Implies Dual-Description by Monopole in ADJOINT Rep.

e 2-Dim. Non-SUSY C P! o Model Has Mass-Gap and Triplet-Meson under SO(3).
[1 Non-Abelian Duality from Vortex Moduli Dynamics

This is Consistent for SU (2) ~ SO(3) Case =—=> How about SU (3) Case ?
Also for SU (3) Case, Orientational Moduli Appears to be Same as CP' ~ SO(3) /U (1).

[0  Can Dual SU (3) Sym. be Understood from this Eff. Theory ?
Or Does Some Additional Moduli Exist ?

Moduli for Composite Vortex might be Useful for This Problem.
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Summary and Overview

We Have Discussed

Confinement from Strongly-Coupled Monopole Condensation at NA-AD Point.
Non-Abelian (GNO) Duality from Moduli of NA-Vortex.
Seiberg-like Duality from Moduli of Semilocal NA-Vortex.

Montonen-Olive Duality from Z ny Vortex in N = 1* Theory.
Outlook
More Detailed Study and Deeper Understanding of All the Idea is Needed.

Extract More Information about Quark Confinement from Seiberg-Witten Theory.

Understanding of Dynamics of NA-Vortex and NA-Monopole.
——> Relation to String and D-Brane Dynamics.

Many Interesting Problems are Remaining in SUSY Gauge Theory !



