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1. Introduction
» Current status of supergravity

It is an interesting challenge to formulate gravitational
interaction in a way consistent with quantum mechanics.

Pure gravity is UV finite at 1-loop, since the counter term

is given by Gauss-Bonnet one.
t'Hooft, Veltman

G3/(R? — 4R, R"Y + Ryupc RMYP7) ~ total derivative

At 2-loop, however, there appear G3;R3 counter terms,
which are UV divergent.

Supersymmetry has been studied to remove UV divergence.
Maximal supergravity is N=8 in D=4,
32 super charges

Is N=8 supergravity UV finite?

At least there are R* terms at 3-loop.



-+ UV divergence in N=8 supergravity
From 2-loop calculation, it was speculated on the critical
dimension which contains UV divergence at L-loop.

Bern et al.(1998)

10
DC:T—I_Q

Explicit 3-loop calculation, however, tells us that Dec = 6
for I, = 3. This critical dimension is the same as that of
N=4 super Yang-Mills theory. Bern et al.(2007)

§)

If this is true, we have D=4 UV finite point particle
theory of gravity.



- How to calculate?

Three key techniques:
1. Perturbative QCD calculation (spinor helicity formalism)
2. Cut construction method
Al—loop ~ Atree o gtree | I(s,t U)Atree
3. Kawai-Lewellen-Tye relation (KLT)

Mtree N Atree > Atree
gravity YM YM

By using these, we can calculate loop amplitudes of gravity.
Ml—loop - Mtree % Mtree
N (Atree)4
N I/(S, £, U)Mtree
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2. Spinor Helicity Formalism
and Cut Construction Method

First let us calculate 4-point gluon amplitude in N=4 SYM by
employing spinor helicity formalism.

In this formalism, color factors are separated, and gluon
polarization vector is expressed by spinors.

—+ _ k) - _ g k™)
(s 0) = V2(qk) (@) = V2[gk]

Notations are as follows:
k) = [i*) = us(k;) : massless on shell spinor with helicity *
(gk) = u—(q)u4 (k)
[qk] = uy (@)u—(k)
& (q) = (ks q)

q is called a reference momentum and can be chosen arbitrarily.



Gauge transformation is realized by a shift of reference momentum.

~ Vit
HD =0 =5 G

X ky

Following relations are useful and make calculations simple.
& (q)-q=0, &"(q) = (ki q)
& (0) €M (q) =€ (q) €5 (q9) =0
e (k) e () = & () - €5 (k) =0
From these,
A%ree(lj:a 2+7 o 7n+) =0
Maximally Helicity Violating (MHV) amplitude is

A%ree(1_72_73+7 C 7n+) # 0



* Tree level 4 gluon MHV amplitude

P54
o aa s
p, k
v, p

i , 1
ﬁ(nup(p - C])u + Upu(q — k) + an(k - p)p) _“7#”/52—

1 4
) %Cﬁi s s = Ot k)= (ke ke) u = (ks o+ ks)?

Alree(17,27,37 4T)

7

2 o .
=(J5) ()i - a0 = ko) + 6T - (2ha o+ ky) €775 - (~2k1 — k)
x [e3 - ef (k3 — ka)u + e €3 - (2ka + k3) + d,ed - (—2k3 — ka)]
(65 - €3)(ey - h2)(ef - ki3)
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* 1-Loop 4 gluon amplitude by cut construction method

Loop amplitudes can be constructed via unitarity.

1=5"S=(1—iTH(1+4iT") = 2ImT =T'T

2

b =p—Fk1 — ko

AZIOP(17 27 3T 4T)

s-cut

Alree(—rf 17 27 i) Alee(—g 3t at i)

d4 26
_/ 4= 26 2 < 0 t2 )5 RS
(27) &) 05 s-cut




A product of tree level amplitudes is given by

Alree(—ef 17 27 ) AR (—5, 3T, 47 0))
(12)%(1 — £2)*
(12)(202)(lo — £1)(—L11)(€1 — £2)(—£23)(34)(4L1)
i(12)% —i(23)(41) (01 — 15)?
(12)(23)(34)(41)(202)(—£11){4L1){—123)
[£11](14)[441]{01£2)[£23](32)[205](l241)

—=jAYe(17,27,37,4T)

(p— k1)*(p + ka)*
tl’(ﬁl 14@16232@2)

(p = k1)*(p + ka)?

1
= —istAe(17,27, 3T 4™)
4 (0~ k)20 + Fa)?

=iAlee(17,27,37,4™)




1-loop 4 gluon amplitude is given by

AZT199P(17 27, 3F 47)

s-cut
d4—2€p 1
2m)42¢p2(p — k1)2(p — k1 — k2)2(p + ka)?ls-cut

= istAYe%(17,27,37, 41T)T1 (s, 1)

=z'stA5ree(1‘,2‘,3+,4+)/(

s-cut

Combining t-channel cut, the amplitude becomes

AZ1O%P(17, 27 3% 4T)
=istAYe(17,27,3T, 4+){:/:i(3, t) + i (t, u) + i (u, 3)}

XX




Bern, Rozowsky, Yan

o 2"|Oop 4p-|- in N=4 SYM Bern, Dixon, Dunbar,

Perelstein, Rozowsky

2 loop amplitude is constructed by cutting tree and 1-loop.

o |
SYM 2-loop _ : + ' T
Ag — e N !
« _—t— 2 : R
3 12 9:: Q:.__o g|'= 2=0

= ist ALY (is)I5 (s,t) + istAYC(it)IL (t,s) + -

18

Rung rule ;¢

2d
14

UV divergence arises in 7 dimensions

tgD°F*



- Estimation of UV divergences by rung rule

Let us evaluate L-loop diagram by using rung rule

¢
k <

A

[

2(L—-2
ALflOOp N StAZreet/ddLe(ﬁ-l—k) ( )

(¢2)3LF1

(d+2)L—-4
6L+ 2

Critical dimension for N=4 SYM is given by

DM =442¢



3. KLT Relation at 3 and 4 points Interactions

Here we see that 3pt interaction of gravitons in supergravity
is really obtained by 3pt interaction of superstrings.

(¢1 ®51,k1|Q N ) {3 ® (3, k3)

V(¢ ® o, ko)

M3z = ((1 ® (1, k1|Vo (¢, 5k2)Vo(Ca, 5k2)|¢3 ® (3, k3)
= A3 %9 A3

3pt amplitude in closed string theory is equal to the
tensor product of two 3pt amplitudes in open string
theory. (KLT relation)



* 3 gluon amplitude

Az = g{C1,k1Vo (¢, kz)lC; k3)
~ g{C1l(¢2 - ks — CBRARY ) |Ca)

Generator of rotation in (x"1,..,x"8)
(IR Ics) = ¢ich - ci¢s
~ g((C1 - k2) (G2 ¢3) + (C2 - k3)(Cz - ¢1) + (C3- k1) (¢ - (2))

3
=k (=Y k=0
p==]

When group factors are included, this expression corresponds
to the interaction term in Yang-Mills theory.

A3 ~ tr((@uAy - 8VA,U)[AM7 AV])



- 3 graviton amplitude
M3 = g2((¢1-¢2)(Ca- k1) + (C1-¢3) (G- k3) + (G2 ¢3)(C1 - K2))
@((C1-C2)(C3- k1) + (G- 332 k3) + (G2 C3)(Cy - ko))
~ 3g2(h*Ph°9,05h. 5 + 2hP8yhs 0050 7°)
K=k (=k-C= Sj:k.i:f}
=1
In the last line, graviton o is identified with symmetric

traceless part of (o ® (g

(b5 ~ antisymmetric part of (o ® ()

(¢ ~ trace part of (o ® (5)
This correctly reproduce 3 point interaction in Einstein-Hilbert
action.

R~ Yo YT — 2(hPR1°0005hs + 2P0y hsqdgh )



¢ KLT Re|0'|'i0ﬂ (Tree Ievel) Kawai, Lewellen, Tye

In the low energy limit :

Openstring”2 <«— Closed string

l l

Gauge Theory Gravity

3

(tr((&uz@y Oy AL AR, AU}))‘" «> =gR

Since we are considering maximally supersymmetric case,
the above statement becomes

(Super Yang-Mills)*2 <— Supergravity
N=4 N=8



* Tree level 4-point amplitudes

Tree level 4 graviton amplitude is expressed as a "product” of
two tree level 4 point gluon amplitudes.

op tree [ (=8/2)[(—t/2)
S )
_ T(=5/8)T(=/8) (~u/8)

M(1+s/8)r(1+t/8)r(1+u/8)

gF*

Mé%l tree  _ t8F4 R t8F’4

By using the relation of gamma functions,

o T(=s/8)r(=t/8)r(~u/8) . <7r_t> M(—s/8)I (=t/8) (~t/8)I (—u/8)
F(1+s/8)M(1+¢/8)r(1+ u/8) 8/ T(1+u/8) r(1+ s/8)

we obtain KLT relation (closed)~(open)”2

) 7t
Mé(fl tree ~ Sin (%")Azp tree > Azp tree

istuMLTe ~ stALEE x gy Alree Low energy

KLT relation makes it possible to calculate gravity amplitudes
by recycling YM amplitudes



4. Loop Calculation and Finiteness in N=8

S-U o?r\'gar'ison between YM tree and SUGRA tree

Recall tree level 4pt amplitudes in N=4 SYM.

treecq1— 5o— 2+ 2+y — (12)* __é (12)[34] _ !
As (1203040 = i sy zayan) 1 [3[12]<34>] =¢
treef1— o— 4+ 2+ — ; <12>4 —_i 8<12>[34] —_i
Az (17,2747, 3 )‘Z<12><24><43><31>_ w [ [12]<34>] o w

By using these tree level 4pt amplitude in N=8 SUGRA becomes

M}Lree(l—72—73—|—’4+) — —isAE{ee(l_,2_,3+,4+)A2ree(1_, 2—’44" 3+)
,(1 1) [ <12>[34]]2
= —

t T “112](34)

= —i(l—l— 1)02

t U

The coefficients for graviton amplitudes are squares of the
coefficients for gluon amplitudes.



* 1-loop 4pt amplitudes in N=8 SUGRA

A product of 2 tree level amplitudes is evaluated as

M}l:.ree(_gii_> 1_7 2—7 g;_)Mgl:.ree(_Kga 3+7 4+7 ﬁ]__)
= — 2Aee(—rf 17, 27 ey AL~y , 3T 4t i) Ao (e 17 2~y AR (e, 3T, 4T —63)

g2

(01 — k1)?(ly — k3)?(ba + k1)2 (01 + k3)?

. tree 1 ! ! '
=istuMy (1,2, 3’4)(@1 — kq)2 T (41 — kg)z) ((fz — k3)? * (b2 — k4)2>

— {stAE{ee(r, 2~ 31 4+)}2

Combining the above expression with the cut construction method,
1-loop 4pt amplitudes are obtained.

d4—26

MI1OP (1= o= 3t 4ty = D nmiree(—ef, 1—,2—,£j)£izM£ree(—eg,3+,4+,£;)

(27-‘-)4-—26@% 2
= istuM®°(1,2,3, ) {1 (s,t) + i (t,u) + T3 (u, s) |

Green, Schwarz, Brink

Again the coefficients for graviton amplitudes are squares of the
coefficients for gluon amplitudes.



+ 2-loop 4pt in N=8 SUGRA

Bern, Rozowsky, Yan

Bern, Dixon, Dunbar,
Perelstein, Rozowsky

2-loop 4pt amplitudes for N=8 SUGRA can be obtained by

squaring the SYM factor

MO = (st AF)2 (215 (s,8) + 215 (t9) + -+

= stuMi"®®(is2IF (s,t) + it 1L (t,s) + -+ -)

. 2

18

UV divergence arises in 7 dimensions

t8t8D4R4

Rung rule

it2




+ Estimation of UV divergences in N=8 SUGRA
by rung rule

Let us evaluate L-loop diagram
A
¢ l t
k<

L-loo tree,?2 drL ,(0+k)4(L=2) _
M, P stuMy ~~t /d E( (62))3“'1 (d;“fz 8

Critical dimension for N=8 SUGRA is given by

DSUGRA — 5 4 10



* 3-loop calculation tells ...

From 2 particle cuts construction, we obtain

S t2(0 4+ k)*

3d 3d
20 16

Leading divergence in the right diagram can be cancelled
by non-rung-rule diagram

3d . 3d
16 18

4pt graviton amplitude at 3-loop is divergent in 6 dimension.
This is the same as N=4 SYM. Thus the conjecture is

DIVCHRA =4 48 for N=8 SUGRA.
If this is true, D=4 N=8 SUGRA is UV finite.



5. Non-renormalization Conditions in Type ITA

+ 11 dim. L-loop amplitude on a torus Green, Russo, Vanhove

Calculation of 11 dim. L-loop amplitude is difficult. By using
power counting, however, we can restrict its form. The L-loop
amplitude on a torus which includes p2tr4 term will be

9L 1 _
sp=3 pITYUAL=e=280 AV [ dPay/ =gV (R, 2)(V D) D2 LR
w=0"_9rL+49 subdivergences  -11 derivatives 28; +8

q

where
k=v+pL, g¢=zw—v, V=RoRi

F(,9) =%+ + Q42"+ ... 4+ (Euclidean DO)

And following constraints are imposed
f1 =0, o =2, B > 2(L > 2) w >0



- Higher derivative action in type ITA

By considering the duality between M and ITA,
lp = Lsgs, Ri1 = {sgs

Effective action in ITA from genus . can be derived

k —1R9L—6—2k— +3 k — _
Sé):Z@k 1R9L—6—2k Qq/dgx\/—m 3a+3 ._'_TAZhez(h D¢ 4 ...)p2kRp4
q

a=2++ %k — %q
Terms which are linear to 74 survive after decompactification

2¢ =34k — 3h or w=343k—3h—20]

w>0 gives h <k+1—32p3,
L=1 h—1<k
L>1 h <k

Then we obtain strong conditions.



- Conditions for higher derivative terms in type IIA

h-loop amplitude in type ITA contributes as follows.

1. No contributions to R* D?R* ... D2(h=Dp4
2. D?'"R* can be determined by 1-loop in 11 dim.

3. p2(h+1) ... are permitted and may arise from
L-loop in 11 dim. (L>1)

Leading term in low energy can be given by

S(10) = ?(h—l)/\/dlox\/_—g€2(h—1)¢D2hR4

—8h+8 _10 2h+8




- Dimensional reduction

If the same property holds for lower dimensions, the
leading contributions can be given by

Stqy = Egd_Q)(h_l)Agld_4)h_6/ddx\/—_gez(h_l)¢D2hR4

If this is true, UV divergences are absent in dimensions
which satisfy

o
d< 4+ —
+h

4 dim. N=8 supergravity seems to be UV finite



6. Higher Derivative Corrections in String Theory

Higher derivative corrections in string theories are
considerably investigated in various ways

- String scattering amplitude

* Non linear sigma model

» Superfield method

* Duality

* Noether's method ...and so on

For example, corrections which include R”4 terms are obtained
by evaluating scattering amplitudes of 4 external gravitons

Tree One loop



So far the complete form of the eight derivative
action is not known. Known bosonic part ( R* part) is as
follows.

L(o/)3 ~ 6_2¢<t8t86R4 + ﬁ€106106R4> Tree

+ C<t8t8€R4 — ﬁ€106106R4 — %610t83R4> |OOP



t8t8R4

This expression is obtained by calculating the on-shell 4

graviton amplitude. Green, Schwarz
\ 4 S
Tree level
2 3 o3
AF®S = g2 (N1 |[VaAV3|Va) 470 = [ apTr(AVIAVAV3AVY)
= —g KT = KI

A : propagator, V), : massless vertex operator

1) bede f gh ~
K = tgtimnergghedeloh gL g2 13 f @ Fh PR g, fij = Bkic; = ki6,)
__ ytyklmnop abcdef gh N - D
— t8 t8 Rijab C Ropgh fZ] ® fab - R’L]ab Gross,Witten
G Sl
_ T(=s/8)I(=t/8)[ (—u/8) 2 o+ o e
T T(1+s/8)M(1L+t/8)F(1+u/8)  stu
P2 sugra pole
I:/—F(TT)Ng grap

72



4
€10€102

This expression is obtained by calculating the beta
functions of non-linear sigma model at 4 loop order.

[ijklmnop] Hab d h .
6[abcdefgh] Ra Z‘jRC klRefmnRg op Grisaru, Zanon

BAtr(RAR)ANtr(RAR)

In heterotic SUGRA, the 3-form field strength is defined as
H=dB — o/tl’(wdw -+ %w3>
dH = —Oé/tl’(R A R) Bianchi id.
By the string-string duality between hetero/T"4 and
ITA/K3
/K Id(*e_QCDHHA) = —Oé/tl’(R A R)

10 dim. origin of this equation is given by Vafa, Witten
BAtr(RAR)ANtr(RAR)

const. on K3



Again, known bosonic part ( R* part) in type ITA is written as

-2
L(O/)3 ~ € qbl’tree + CIl—Ioom
4 1 4
Itree = tglge R + z57€10€10e R,
— 4 1 4 1 4
Il—loop = tgtge R — 4.—2!61061061? — 6610t8BR

We can obtain a part of the higher derivative corrections
to the N=1, D=11 supergravity by lifting the type IIA
result. Then there are two candidates which will be
invariant under the local supersymmetry

4 4
tgtge R —|—4L!€11€116R :

t8t8€R4 — 4%61161161?4 — %GlltgAR4

Our goal is to check these forms by local supersymmetry



7. 11 dim. Supergravity

M-theory is defined as a strong coupling limit of type IIA
superstring theory. Low energy limit is described by 11 dim.
supergravity.

R = esgs
S SN ITA (%)
. les
0 0

11 dim. SUGRA S——° IIA SUGRA

— gsgs

11 dim. supergravity consists of a vielbein, a Majorana gravitino
and 3-form field

256 =44 9 128 P 84
e“us  Yus  Auwp



11 dim. SUGRA action is given by Cremmer et al.

1_ 1 1
2/%%15:/dll.CU€<R—EQ/Jp’Yp'uyl/Juy—”Fuynguupa> —g/AAF/\F-F

Here the field strength of the Majorana gravitino is defined
by using modified covariant derivative

1 y 1 y
Duthy = Dyptpy + Fuipy,  Fp = —gijmwk + —Fyjp ™

288
Yuv = Dppy — Doy

This action possesses N=1 local supersymmetry in 11 dimensions.
The susy variations are given by

6€a,u pm E’ya’(p,uv 5lplu = QDME, 5A,LLVP - _35,)/[/,Ll/¢p]



In addition to the local supersymmetry, 11 dim. SUGRA
action preserve the parity invariance.

1. General coordinate inv. and local Lorentz inv.

2. Gauge symmetry A— A4 dA
3. N=1 local supersymmetry
4. Parity inv. 210 = =210 A5 —A = 1%

M-theory should also be invariant under the above symmetries,
since these are compatible with dualities.



8. Higher Derivative Corrections in M-theory

Since perturbative methods in M-theory are not developed,
it is impossible to obtain higher derivative terms by
evaluating scattering amplitudes of membranes. The best way
to determine this structure is to use the invariance under
local supersymmetry

Noether method + computer programming

Here we mainly concentrate on bosonic terms and consider
cancellation of O(1) and O(F) terms step by step.

Variation| O(1) O(F) O(F"2)
o) O O
ow>)| X X X




Q. How many R4 terms ?

For example let us consider a ferm

B4 [1] — RabcdRabcdRefghRefghv

It is possible to assign a matrix by counting number of
overlapping indices

O 400
4 0 0 O
O 0 O 4
O 040

Inversely the above matrix will generate R”4 term uniquely

Thus it is important to classify possible matrices. There
are 4 matrices up to permutations of 4 Riemann tensors.

O 4 00O O 3 01 O 0 2 2 O 112
4 0 0 O 3010 O 0 2 2 1 021
O 004|101 0 3|12 200f"|]1 201
O 0 40 1 0 30 2 2 00 21 10



Finally 7 independent terms are assigned for these matrices

B1[1] = RopeaRabedRefghRefghs  B1[2] = RapcaRbcdh RefghRaefgs
B1[3] = RapeaRefgnRape f Redghs  B1l4] = RacbdReghRaeb f Regdhs
B1[5] = RupcalactgBefhRedgh,  B1l6] = RupealaefglfenRedghs
B1[7] = RucbdRae fgRe fhRegdn

Q. How many A R”4 terms ?

There are two terms

1 1
B11[1] = —5 AN trR° AtrR?, Bi1[2] = —5 AN trR*

These are related to the anomaly cancellation terms in hetero



In order to cancel variations of these bosonic terms, it is
necessary to add fermionic terms to the ansatz

Fy = [eR>Pp2lon,  Fa = [eR*PpaDyo]os

Variations of the ansatz are expanded by the following terms

Vi = [eR*&p]116, Vo = [eR°DReyolgg, Va = [eR>EDvs]a0

The cancellation mechanism up to O(F) is sketched as

0B11 ~ WV
(5F1 ~ V1® VoD V3
0F> ~ Vo @& V3

244 Equations among 126 Variables



After miraculous cancellation, the bosonic part is determined as

1
Lposon = 54.3 a<t8t8R + 4|€11€11R )
+ Loo(tgtgsRY — & R* — Leiq1tgAR?
»al(lsls ZTEL1€11 G€11ls

The first term corresponds to tree level and the second does to
one-loop part in type ITA superstring



The next step is to examine the invariance under local
supersymmetry up to O(F~2)

In order to execute the cancellation to this order, we have
to add

Bo1 = [eR>F?]30, Boo = [eR®°DE?]o4

Fi1 = [eRPFy]4a7, Fio = [eR?Fotbs]190
Fi3 = [eR°DF{ipole1a, Fia = [eRDF(>Dvo]113

The variations of this ansatz are expanded by

Vi1 = [eR°DRF&)]1563, Vio = [eR>F&s]513
Viz = [eR®DF&}]ggs, Vig = [eRDRDF&)5]371
Vis = [eR°DFeD5]335, Vig = [eR°DDF&ys)is51




The cancellation mechanism up to O(F"2) is sketched as

0By ~ Vi@V ® Vi1

0B11 ~ W1 ® Vi1 ® V13

0F) ~ Vi@ Vod Vs D Vio® Vi3

oFp ~ Voo Vs ® V1o ® Via © V15

0821 ~ Vi1 ® V13

0B2p ~ Vig ® Vie
oF11 ~ Vi1 & Vio & Vi3

0F15 ~ Vi

0F13 ~ Vi3 @ V14 @ Vis @ Vig
0F14 ~ Vig © V15 © Vie

4169 Equations among 1544 Variables



From this cancellation we obtain

1 4 _ 1 4 1 4
Lposon = ﬂb<t8t8R —zre11€11 R — Ger1tg AR >

+ [R3F2] + [R2(DF)2]

The structure of R"4 terms is completely determined by
local supersymmetry



[R3F2] part is governed by two parameters

+ (3a — 24b) R pupRijgh Rijcalabcal e fgh + (2a — 48b) Re pop Rijeg RijdnFabedFe fgh

+ (=8a + 96b) R, rupRicigRiginFabedFefgn + (—=8a + 72b) RyeanRiji f RijhcFoabe Fode
+ (3a — 6b) ReqapRijkiRijri FopabFoped + (—12a 4 96b) Ryt Ryjgn RijeaFabedFe foh

+ (8a — 192b) Ryie f RyjvcRijanFabedlefgh + (—=16a 4 1920) Ryjic t Ryjve Ridin FubcaFe fgh
+ (O)Ryide Rikbf RijkeFoabeFodef + (—64a + 5760) RyiqeRjvk f RijkeFoabe Fode f

+ (=32a + 288b) Ryiqe Rikvc Rijk f Foabe Foder + (—16a + 192b) RyicalRjkin Ri ki Fopab Foped
+ (@ — 120) R;jcaRiav Rijki FopabFoped T (O) RijacRiibd Rijki FopabFoped

+ (8a — 96b) Ry jcRipiaRikji FopabFopea + (16a — 144b) Ry qe Rika r RjkbeFoabe Fode f

+ (=16a + 144b) R;;qeRiak f Rikbe FoabeFodef + (0) RijcalikiaRjkivFopabFoped

+ (=8a + 96b) R;jeaRiriaRjtkoFopavFoped + (5ra — 192b) R juaRikbe Rjck t Foabe Fode f

+ (=%ta 4+ 1920) R jaRibke Rjck f FoabeFodes + (16a — 1920) R;jacRiptaRikivFopabFoped
+ (16a) R;jacRikiaRjikoFopabFopea + (—48a + 384b) R; g5 Rikialjkiv Fopab Foped

+ (16a — 192b) R;qjcRikiaRjikp FopabFoped T (%a — 160) R, Rikim R ki FopgaFopgp

+ (—%ta + 64b) Ryt Ritma Rjkim FopgaFopgy + (5@ — 320) Rijr RitmaRjikm Fopaa Fopgy
+ (30) RyjiiRijmn Ristmn Fopar Fopqr + (—=50) RitejiRim jn Rrmin Fopgr Fopar



[R2(DF)2] part is governed by two parameters

+ (—160a + 96b) Ry 1y Rinnop Din Finog Di Fiipg + (=160 4 96b) Ry it RmnopDi FimngDi Fiopg
+ (8a — 48b) R; 11 Rmnop Di FjmngDoFlkpg + (8a — 48b) R; i Rmonp Dm FingDoFiipg

+ (—=240) Ry jri RimnoDm Fropq D Fiipg + (—320) R;jri Rimno D j Fmnpg D Fiopg

+ (8a) RjjkiRimnoDj FrnpqDoFlipg + (—16a + 960) R; 11 Riyno Dm Fjrpg Dk Flopg

+ (960) R; i1 Rimno Dm FjnpgDoFlpg + (16a — 960) R, 11 RimnoDnFrmjpg Dk Flopg

+ (960) R; j i RimnoDpFrnjqPpFiokg + (16a — 960) Ryt i Rimno Dm FjnpgDi Flopg

+ (O) RyjriRijmnDmFropg DiFlopg + (120) R; i RijmnDoFnmpgDoFigpg

+ (32b)RikleimjanFnoqukFlopq + (_%a)Rijk’lRijmnDk’FMOquanopq
+ (5a — 16b) Ry 31 Rijmn D FmopgDnFlopg + (24b) R; i RijmnDoFrmpgDoFripg
+ (32a — 32b) Rigji Rimjn Dy Finopa Dt Fropg + (0) Rikji Rimjn Dk FmopgDn Flopg
+ (=48b) R;1j1 RimjnDoFrmkpgDoFripg + (—40) Rk R i jem Dm Fropg D Fropg

+ (=160) R} ;11 Ri ko Dn FmopgDn Fiopg + (0) Ry 11 R ki Dm Fropg Dm Fropq

Appropriately choosing fwo parameters, this part can be
consistent with the result obtained by string scattering
amplitudes



Vanishing theorem :

Tree and one-loop amplitudes only contribute to the R*
terms

Proof :

In 11 dim. there is only one superinvariant which contain R*
terms. These become tree level or one-loop terms in type
ITA by Kaluza-Klein reduction. No terms more than one-
loop.

11d 10d

e~ 2P p4  Sum of KK non-zero modes

/ Green, Vanhove
R* R*

KK zero mode

X 62(9_1)¢R4(g > 1)



9. Summary

Finiteness of N=8 supergravity is reviewed

Higher derivative corrections in Type IT and M-theory
are considered via

» String scattering amplitude
* Local Supersymmetry



4. Perturbative and Non-perturbative Terms via Duality

+ 11 dim. 1-loop amplitude on a circle  Green. Gutperle, Vanhove
Russo, Tseytlin
Let us reexamine 1-loop amplitude for 4 gravitons in the low
energy limit

ME1O%P L ornT tgtg R I=/d27F(T?stu)
4 7T 8lg F 7_22 y Ly 9y by
This expression contains the integral of loop momentum, and it
is implicitly included in I

o 1 _ .
/dlop|w|7p — (a'10)" 2 w = exp(2miT)

In order to lift this to 11 dimensions, the sum of KK momentum
should appear.

00

I [ — /d_; Z e—ﬂ'Oélez/R%l
T m=—o0

2 1

= —/\3 +

3 ngé(3) L = Lgs




+ 11 dim. 1-loop amplitude on a torus

Momentum along 9™ dimension should be discretized.

I 1= [y ey
7'3/ m,n
/

— 3

Z3/5(2,2) V = RgRj1

10 dimensional type IIB is realized if Rg — O

Z3/2(£2,£2) is a non-holomorphic Eisenstein series
3/2
€25

Z3p(Q,Q) = m

(m,n)#(0,0)

= 2¢(3)g7 3% + 2L91/2 e S LI
k#0

D-instanton




