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0. Introduction

e |lattice chirality
— introduce extra dimension (Kaplan '92)

— realize chiral fermions on the boundaries

e lattice SUSY (Kkaplan-Katz-Unsal '02)
based on idea of “deconstruction”
(Arkani-Hamed—Cohen—Georgi '01)

— create a new dimension (latticized)
from internal degrees of freedom

— original motivation :
a UV completion of a 5d theory

— finite N matrix models can accomodate
exact SUSY
—> SYM in (141)d, (2+41)d, (3+41)d
without fine-tuning



e Nnew interplays between lattice and matrix

— twisted reduced models
<——> |lattice field theories
on noncommutative geometry (NCG)

— Monte Carlo sim. of matrix models

— @Ginsparg-Wilson fermions on NCG

— topological issues on NCG

— quenched reduced models
as large N gauge theory

e further studies may benefit both sides |
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1. deconstruction (Arkani-Hamed—Cohen—Georgi '01)

4d theory with SU(k)Y gauge group
with bifundamental complex scalar field

b, — gncbng;rl_,_l (1)
Dy®n = Ou®n —iAld, + i, ALTL (2)

N
S—/d4x {—1 N trF?
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9” n=1
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+ Y tr(Dpdn) Dudn + Y tr(dl ey, — £21)2

“moose” (or “quiver”) diagram

At low energy :

<Cbn($)> = fUn ; Une€U(k) (3)

— 5d SU(k) gauge theory
with latticized 5-th dimension



— “hopping” in extra dimensions

e From the viewpoint of 4d theory

— Higgs mechanism
SU(k) x --- x SU(k) — SU(k)
N

— massive gauge bosons = KK excitations

e |orentz inv. restored in the cont. lim.
by taking lattice spacing : a = %

e |ocality in 5-th direction
«—— particular choice of interaction
represented by the moose diagram



2. realization in matrix models

2.1 rough idea

clock and shift matrices

w = exp(2wi/N)

(L )
Q= ol (4)
\ wN=11y, )
( o 1 0 \
0 1y
1,
\ 1% 0 )
satisfying 't Hooft-Wey!| algebra
QP = wPQ (6)

“orbifolding” : QTdQ = &
— $d becomes block-diagonal



P shifts the diagonal blocks

Plop =

(®N )

P4

\ T By

moose diagram can be realized as

N
Tre(PToP)] = Y tr(®n®, 1)

(TDN—I—l

space-time indices
gauge indices

n=1

= &4 (periodic)

relation to NCG (see later)

(7)

(8)

(9)

}treated on equal footing



2.2 toroidal compactification of M-theory

IKKT model (bosonic part)

S = _Tr ([XM,XV]Q) (10)

Xy (w=1,---,10) : hermitian matrices

toroidal compactification in 1-direction

QX107 = X1+ R1
{QX;QT = le- (G >2) (11)
(Qf)(s) = e f(s) (0<s<2m) (12)
[ X1 = iRZ 4+ A(s)
solution : { X; = Yj(g) (> 2) (13)

S = [dstr{RA(VYi(s)? - Vi, V1% (14)

o 1
V = 5a EA(S) (15)

10d YM reduced to 1 dim.
consistent with T-duality



2.3 finite N version

Eguchi-Kawai model

S =-

Tr(U U USUY)

U, = e*» == Hermitian model

(16)

“toroidal compactification” in 1l-direction

|

QU1 Q!
QU,QT

Uy = P (particular

U = UiP

——

general solution

(017

= wl;
= U (G >2)
solution)
QUIQT = U}
\
i)
o) )
(2) \
~ (2
Y
(V)
U;™’ )

(17)

(18)

(19)

10



The action becomes

N 10
~(n) (n+1) ()T (n
S = — Zl Zztr(Uf gt DgimigimTy
n=1)7=
N 10
r(n) 77 (n) 7r(n) T (n)
= > (GO

n=14j>2

gauge symmetry C U(kN)

g{m) g gt - link
o gmpiMgmit (5 >2) ¢ site
(20)

“Deconstruction” is realized naturally.

But unitary matrices cannot accomodate SUSY.

Can finite N Hermitian matrix model
leads to any sensible lattice theory
via orbifolding ?

note : no. of d.o.f. is the same...
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3. SYM on the lattice : (14 1)d

target theory :
(34+1)d N =1 SYM reduced to (1 + 1)d

L = Tr (—%FWFW—Wz'D\U
—(DpS)I(DS) + V2(W L[S, WR] + h.c.)
1
_1gT 912
15t 512)
(vg,v1) : gauge field

S : complex scalar

v 2-comp. Dirac} adjoint rep.

Mother theory :
(341)d N=1SYM reduced to (0+ 1)d
superfield notation in (14+1)d — (04 1)d

V = (vg—o0)— 20\ — 2i0)\ — 200d
P = ¢+ V20y+i00¢
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Orbifolding :

1% (21)
wd (22)

QVQ
QTeQ
Daughter theory :

1 < .
n

+|Do ¢nl* + ¥n iDotpn
—An[UnLAn] ~+ Yn(ontpn — ¢n0n+1)
~V2 (ifn(Anthn + ndpt1) + hc.)

— ‘Unﬁbn — ¢n0n+1|2
_% <¢n$n — q_bn—l—lqbn—l—1>2]

80071 _I_ ’l:’UO,nO-n — iUn'UO)n
Dopn = 0Op¢n + tvgpndn — iPnvg pt1  ete.

Doo-n

classical moduli space :

on(t) = diag(ASH ... ARy (23)
expand around the U(k) symmetric point :
on(t) = 1, (24)

V2
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lattice spacing : a=1/f

decompose ¢ as

R(L) 4+ ih(2)

and identify
_ () S—J_I_ih(l) v — W
Ul - 9 - \/5 9 - —’LX
(26)

—= target theory (classical continuum limit)

Problems:

classical moduli space in (04 1)d SYM :
unstable quantum mechanically

But “radion” has mass of O(NN)
— fix initial/final conditions properly
Does it really work 7

recovery of full SUSY
«—— perturbative power counting argument
Nonperturbatively OK 7
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4. generalization to higher dim.

Consider : S =Tr(®q---Pyy)

Orbifolding :
Qu®; Q) =wied;  a=1,2,---,d (27)
matrix size = N¢%. k
Q1 = Q@ ® 1y ® ® 1y ® 1g
Qb = 1y ® Q ® ® 1y ® 1k
Q; = 1y ® 1y ® ® Q & 1
P(i) = P @ P2 @ ® Pt @ 1
particular solution : &; = P(F;)
P; =PLP(F) = QaP;Qu =P
general solution :
cb} — Z A(1) @ ¢ (i) (28)
mn

AR =J0) g. .. g J0d
(T = 6indjn
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Pm)AR)PR)T = A(R + m)

The action becomes
S = ) trigr(@)da(R+71) -
7

ey (AT A T 1))
gauge symmetry C U(N?. k)
6i(7)  — 9@ (@) g' @+ 7)) (29)
¢»;(1) : link connecting 7 and n + 7
(site, if 7, = 0)

>-;7; = 0 is necessary (otherwize S = 0)

A convenient choice for FJ ;
lin. comb. of charges associated with R sym.

rank of R sym. of the reduced model
= maximum lattice dimension

no. of fermions with ¥=20
= no. of unbroken supercharges
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5. Noncommutative geometry

5.1 a different type of compactification

(Connes-Douglas-Schwarz '97)

IKKT model : S = —Tr[X,, X,]?

Q1 = e ()P
Qy = ™0 @ ()]

~ ~

1, > : g xq clock & shift matrices

General solution : XM:X£LO> + Ay

1
8

X9 = s®1,
Ay / deAu(z) A(z)

x{0)

(30)

(31)

(32)
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A(x) : complete basis

A(z) = Y (Z1)M1(Zy)keeWeukuby/2gik-E

i
1 _
Z1 = e @ ()T
_2mi _
Zy = e 1 g ()

where ap — bg = 1 (3b).

ZILLQV — QI/ZILL
214> e_wZQZl

identifying Z, = e~ u,

[fl,fg] = 16 —— NCG !

XC(LO> . derivative op. on 2d NC torus;

X80, A = 222
vq O

Lq

IKKT model = 2d NCYM

(33)

(34)
(35)

(36)

I.e.,

(37)
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5.2 finite dimensional version

Take fy:nﬂq

matrix size : N = (mngq) X q

Q1 = (M)™® (1)
Q = (M)™® (M)]
Zy = (M)"@ (M)T
()" (F)° (38)

Action and orbifolding condition :

N
N
I

S = Y ZwTr|U U
pFEY
QU = 2w/, (39)

particular solution :

o

()t e1,
v$® = roe1, (40)
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General solution : U, = U,IIJ,U,lSO)
Uy = Y U@ A(a)
T

> (z)" (Z,)F2e—i0cuhuky/2ik-E
k

Uﬁm . lattice shift operator; i.e.,

U AU = Az - ) (41)

S = Yusw Zuw T [UuULULUY
= S T [UL(UELO)U;UL(LO”)(U§°>U;TU§°>T)U,’,T]
=3 tr (Uu(a;) « Uy(z + €efi) » Uy (z + ev)t « U,,(a;)T)

twisted Eguchi-Kawai model —
NC version of Wilson’s lattice gauge theory

Using the same orbifolding condition,
IKKT model = SYM on the NC lattice
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5.3 twisted reduced models and NCG

IKKT model : § = —Tr[X,, X,]?

expand around the classical solution

X1 = ¢q
~ 42
{Xz = D (42)
— NCYM
[,p] =4 realizable only at N =
finite /N version:
Eguchi-Kawai model
S = —Z, Tr(U U U UL (43)
0) _
classical solution : U%O) = ¢ (44)
Uy = P

Uy = U UL) = NCYM on the lattice

nonperturbative studies of
various field theories on NCG
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6. Summary and Discussions

e Deconstruction

— creating new dimensions (latticized)
from internal d.o.f.

— naturally realizable in matrix models
“orbifolding”

— toroidal compactifications of M-theory

e a proposal for SYM on the lattice
— moduli instability 7

— presence of gravity

e matrix models and NC geometry

— dynamical generation of 4d space-time
+* New Monte Carlo approach

* (Gaussian expansion method

— emergence of local field theory,
chiral fermions, gauge group, etc.
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