Logarithmic CFT and 2D Minimal Gravity

Yukitaka Ishimoto ¹

Theor. Phys. Lab., RIKEN, Japan

work in progress hep-th/0406262 (with Sh. Yamaguchi) hep-th/0312160, hep-th/0405237

For a talk@Riken, June, 2005

¹ E-mail: y.ishimoto@riken.jp

2D Minimal Gravity

```
or Minimal String Theory (MST)
```

— interesting string 'laboratory' as a 2D string [Seiberg et.al]

is [2D Gravity + (p,q) minimal CFT matter]

 \bigvee

local continuum approach

topological discrete approach

field rep. of the surface

Liouville Gravity

discretisation of the surface

Matrix Model

2D Minimal Gravity

```
or Minimal String Theory (MST)
```

— interesting string 'laboratory' as a 2D string [Seiberg et.al]

is [2D Gravity + (p,q) minimal CFT matter]

local continuum approach

topological discrete approach

field rep. of the surface

Liouville Gravity Matrix Model

discretisation of the surface

Perturbation [Zamolodchikov]

2D Minimal Gravity

```
or Minimal String Theory (MST)
```

— interesting string 'laboratory' as a 2D string [Seiberg et.al]

is [2D Gravity + (p,q) minimal CFT matter]

local continuum approach

topological discrete approach

field rep. of the surface

Liouville Gravity

discretisation of the surface

Matrix Model

$$? \Rightarrow$$
 algebraic approach

algebraic approach $SL(2,{f R})$ WZNW?

2D Minimal Gravity

```
or Minimal String Theory (MST)
```

— interesting string 'laboratory' as a 2D string [Seiberg et.al]

is [2D Gravity + (p,q) minimal CFT matter]

local continuum approach

topological discrete approach

field rep. of the surface

discretisation of the surface

Liouville Gravity Matrix Model

[Nakayama]

algebraic approach $SL(2, \mathbf{R})$ WZNW?

2D Minimal Gravity

```
or Minimal String Theory (MST)
- \text{ interesting string 'laboratory' as a 2D string [Seiberg et.al]}
is [2D Gravity + (p,q) minimal CFT matter]
\downarrow \qquad \qquad \qquad
```

underlying theory? Logarithmic CFT?

Worldsheet Action

$$= \begin{array}{c|c} \mbox{2d gravity (Liouville FT)} & + & (p,q) \mbox{ minimal CFT} \\ \hline & [\mbox{Polyakov '81}][\mbox{DDK '88'89}] & & [\mbox{BPZ '84}] \\ \hline & c_{tot} = c_L + c_{p,q} = 26. \end{array}$$

Interesting for:

— String Theory, LFT itself, CFT on Random Surfaces, Integrability ...

Brief History from Logarithms

- 2d gravity gravitationally dressed CFT as Logarithmic CFT (LCFT) [Bilal, Kogan '94]
- A puncture-type operator of LFT appears in LCFT [Kogan '97]
- ullet A logarithmic Liouville 4-pt function in $(p,q)\!=\!(4,3)$ MST [Yamaguchi '02]
- Chiral logarithmic 4-pt functions in the Coulomb gas [Ishimoto '03]
- A op-valued relation of logarithmic degenerate field [Zamolodchikov '03]

Aim:

- 2d gravity (LFT) $\stackrel{\longleftrightarrow}{Relation}$ LCFT.
- Logarithms in Minimal String Theory.
- Its relation to Matrix Models.

To do:

4-pt Liouville correlation functions of <u>tachyons</u> in 2d (p,q) minimal gravity <u>a full correlation function</u> in Gravitational Ising Model to see a relation to LCFT.

Plan of Talk

1. 4pt Func of Liouville Sector

- 1.1 Action, 'Tachyon' primary
- 1.2 Condition for integer s
- 1.3 Integral Formulas
- 1.4 Logarithms in 4pt func. of s=1

based on [hep-th/0406262]

2. 4pt Func of Full theory

based on [JPS talk, etc.]

3. Logarithmic CFT?

2D minimal gravity: Action

$$\mathsf{MST} \; (\mathsf{conformal} \; \; \mathsf{gauge}) \longrightarrow \boxed{\mathsf{LFT}} + \boxed{\mathsf{Minimal} \; \mathsf{CFT}}$$

We First Focus On This \uparrow

The Action on S^2 [David88, DK89]:

$$S_{\rm L}[\hat{g},\phi] = \frac{1}{8\pi} \int d^2z \sqrt{\hat{g}} \left(\hat{g}^{\alpha\beta} \partial_{\alpha} \phi \partial_{\beta} \phi - Q \hat{R} \phi + 4\mu \, e^{\alpha\phi} \right), \quad (1)$$

 $\hat{g}_{\alpha\beta}$: the reference metric; \hat{R} : 2d scalar curvature

 μ : the renormalised cosmological constant

$$Q=-lpha-rac{2}{lpha}$$
 with $lpha=-\sqrt{rac{2q}{p}}$ \implies LFT $=$ CFT with $c_{
m L}=1+3Q^2$

[Curtright, Thorn '82].

2D minimal gravity: Tachyon

'Tachyon' \equiv Liouville primary $\otimes (p,q)$ primary [DDK]:

$$O_{r,t} = \int d^2z \sqrt{\hat{g}} O_{r,t}(z,\bar{z}),$$

$$O_{r,t}(z,\bar{z}) = e^{\beta_{r,t}\phi(z,\bar{z})} \Phi_{r,t}(z,\bar{z})$$
(2)

with the on-shell condition $\Delta_{O_{r,t}}=1$

 $O_{r,t}(z,\bar{z})$: a gravitationally dressed operator.

 $\Phi_{r,t}(z,\bar{z})$ is a Kac primary field of the (p,q) matter.

 $e^{\beta_{r,t} \phi(z,\bar{z})}$ is a gravitationally dressing operator of the Liouville sector.

 $\beta_{r,t}$ is fixed by the on-shell condition [Seiberg '90, Polchinski '91]²:

$$\beta_{r,t} = (1-r)\frac{1}{\alpha} + (1+t)\frac{\alpha}{2}, \qquad (3)$$

These are common and basic ingredients...

 $[\]overline{\,\,^2{\rm The\ conformal\ dim\ of}\,\,e^{\beta\phi(z,\bar{z})}\,\,{\rm is}\,\,h_{\beta}=-\frac{1}{2}\beta\,(\beta+Q).}$

4-pt Liouville Correlation Functions of Tachyons

[Di Francesco, Kutasov '91]

By integrating out the Liouville zero mode ϕ_0 ($\phi=\phi_0+ ilde{\phi}$) :

$$\left\langle \prod_{i=1}^{4} e^{\beta_i \phi(z_i, \bar{z}_i)} \right\rangle = \left(\frac{\mu}{2\pi} \right)^s \frac{\Gamma(-s)}{-\alpha} \tilde{G}_{L}^{(s)},$$

$$\tilde{G}_{\rm L}^{(s)} = \left\langle \prod_{i=1}^4 e^{\beta_i \tilde{\phi}(z_i, \bar{z}_i)} \left(\int d^2 u \ e^{\alpha \tilde{\phi}(u, \bar{u})} \right)^s \right\rangle,$$

with the free field action of $\tilde{\phi}$. $\beta_i=\beta_{r_i,t_i}$ and $h_i=h_{\beta_{r_i,t_i}}$ for short, and

$$s = -\frac{1}{\alpha} \left(Q + \sum_{i=1}^{4} \beta_i \right). \tag{4}$$

Regularisation for $s \in \mathbf{Z}_+$: $\left(\frac{\mu}{2\pi}\right)^s \Gamma(-s) \longrightarrow \left(\frac{\mu}{2\pi}\right)^s \frac{(-1)^{s+1}}{\Gamma(s+1)} \ln \mu$.

 \diamond Then, we just need evaluate $\tilde{G}_{
m L}^{(s)}$ as in [Dotsenko, Fateev '84 '85].

Liouville correlation function for $s \in \mathbb{Z}_{>0}$

$$\tilde{G}_{\rm L}^{(s)} = \prod_{1 \le i < j \le 4} |z_i - z_j|^{-2(h_i + h_j) + \frac{2}{3}h} |\xi|^{2(h_1 + h_2) - \frac{2}{3}h - 2\beta_1 \beta_2}$$

$$\times |1 - \xi|^{2(h_2 + h_3) - \frac{2}{3}h - 2\beta_2\beta_3} I^{(s)}(-\alpha\beta_1, -\alpha\beta_3, -\alpha\beta_2; -\frac{1}{2}\alpha^2; \xi, \bar{\xi}), \quad (5)$$

where
$$h=\sum_{i=1}^4 h_i$$
, $\xi=\frac{z_{12}z_{34}}{z_{13}z_{24}}=\frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_3)(z_2-z_4)}$ and:

$$I^{(s)}(a,b,c;\rho;\xi,\bar{\xi}) = \int \prod_{i=1}^{s} d^{2}u_{i} \prod_{i=1}^{s} \left[|u_{i}|^{2a} |1 - u_{i}|^{2b} |u_{i} - \xi|^{2c} \right] \prod_{1 \le i < j \le s} |u_{i} - u_{j}|^{4\rho}.$$
 (6)

To sort...

— What are possible combinations for a particular s? (sec 1.2)

— How to calculate $I^{(s\neq 0)}(\xi, \bar{\xi})$ (sec 1.3).

1.2 Four fields for $s \in \mathbb{Z}_{>0}$

- \diamond Generally, $s \in \mathbf{Q}$ for coprime p,q. \Rightarrow Analytic continuation from $s \in \mathbf{Z}_{\geq 0}$.
 - c.f. 3pt func. in [Dorn, Otto '92]
- \diamond Each $eta_i \leftrightarrow (r_i, t_i)$ lives on the conformal grid $G_{p,q}$.

$$G_{p,q} = \left\{ (r,t) \in \mathbf{Z}^2 | 0 < r < q, 0 < t < p \right\}.$$

For this not to be an empty set, we assume $p \geq 2, q \geq 2$.

Finding possible combinations of four fields for given s, p, q \rightarrow a combinatorics problem on 8-dimensional lattice $(G_{p,q})^4$.

$$2s = \frac{p}{q} \left(\sum_{i} r_i - 2 \right) - \left(\sum_{i} t_i + 2 \right). \tag{7}$$

Kac Table, Conformal Grid $G_{p,q}$

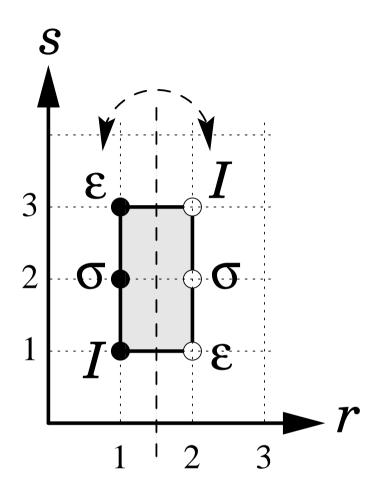


Figure 1: The Kac table for the Ising model (c=1/2).

Four fields for $s \in \mathbb{Z}_{>0}$ and s = 1

 \diamond For $s \in \mathbb{Z}_{\geq 0}$, eq. for r_i become dependent of t_i , and prescribes a 3-dim surface in 4-dim lattice.

$$\sum_{i} r_{i} = n \cdot q + 2 \quad \text{for } n = 1, 2, 3. (for 4pt)$$

$$\sum_{i} t_{i} = n \cdot p - 2(1+s). \tag{8}$$

e.g. for (p,q)=(4,3) case, the following combinations give s=0.

$$\langle \epsilon \epsilon \epsilon \tilde{I} \rangle \sim \langle \epsilon \epsilon \epsilon \rangle, \quad \langle \epsilon \epsilon \sigma \sigma \rangle.$$

 \diamond when $p \geq 4, \ q \geq 3, \ ^{\exists}$ fields $s.t. \ s = 1$:

$$\langle O_{r,t} \ O_{q-(r-1),p-(t+2)} O_{r,t} \ O_{q-(r-1),p-(t+2)} \rangle$$
for $2 \le r \le q-1, \ 1 \le t \le p-3.$ (9)

 \cdot # of combinations is (p-3)(q-2).

1.3 Integral expressions and explicit calculations for s=1

By Dotsenko's formula [D88]:

$$I^{(1)}(a,b,c;0;\xi,\bar{\xi}) = \int d^2u |u|^{2a} |1-u|^{2b} |u-\xi|^{2c}.$$
$$= G_1 |F_1(\xi)|^2 + G_2 |F_2(\xi)|^2,$$

where G_i 's are coefficients and $F_i(\xi)$'s are two independent hypergeometric functions. In LCFT cases, this form may be <u>indefinite</u>.

- ♦ One way: the <u>differentiation</u> method [Ya '02, etc.]
- \diamond Another way: perform the same analytic continuation as in [D88], then express two of them in $|\xi-1|<1$:

$$I^{(1)}(a,b,c;0;\xi,\bar{\xi}) = -\sin(\pi a) I_2(\xi) I_3(\bar{\xi}) - \sin(\pi b) I_4(\xi) I_1(\bar{\xi}), \quad (10)$$

where

$$I_{1} \equiv \int_{1}^{\infty} du \, u^{a} (u-1)^{b} (u-\xi)^{c}$$

$$= \frac{\Gamma(-1-a-b-c) \Gamma(1+b)}{\Gamma(-a-c)} {}_{2}F_{1}(-c,-1-a-b-c;-a-c;\xi) ,$$

$$I_{2} \equiv \int_{0}^{\xi} du \, u^{a} (1-u)^{b} (\xi-u)^{c}$$

$$= \frac{\Gamma(1+a) \Gamma(1+c)}{\Gamma(2+a+c)} \xi^{1+a+c} {}_{2}F_{1}(-b,1+a;2+a+c;\xi) ,$$

$$I_{3} \equiv \int_{-\infty}^{0} du \, (-u)^{a} (1-u)^{b} (\xi-u)^{c} = \int_{1}^{\infty} du \, (u)^{a} (u-1)^{b} (u-(1-\xi))^{c}$$

$$= \frac{\Gamma(-1-a-b-c) \Gamma(1+a)}{\Gamma(-b-c)} {}_{2}F_{1}(-c,-1-a-b-c;-b-c;1-\xi) ,$$

$$I_{4} \equiv \int_{\xi}^{1} du \, u^{a} (1-u)^{b} (u-\xi)^{c} = \int_{0}^{1-\xi} du \, (u)^{b} (1-u)^{a} (1-\xi-u)^{c}$$

$$= \frac{\Gamma(1+b) \Gamma(1+c)}{\Gamma(2+b+c)} (1-\xi)^{1+b+c} {}_{2}F_{1}(-a,1+b;2+b+c;1-\xi) . \tag{11}$$

Substituting the above into (10), we obtain:

$$I^{(1)}(a, b, c; 0; \xi, \bar{\xi}) = -\Gamma(-1 - a - b - c) \Gamma(1 + c)$$

$$\times \left[\sin(\pi a) U_{23} \xi^{1+a+c} \right]$$

$$\times {}_{2}F_{1}(-b, 1 + a; 2 + a + c; \xi) {}_{2}F_{1}(-c, -1 - a - b - c; -b - c; 1 - \bar{\xi})$$

$$+ \sin(\pi b) U_{41} (1 - \xi)^{1+b+c}$$

$$\times {}_{2}F_{1}(-a, 1 + b; 2 + b + c; 1 - \xi) {}_{2}F_{1}(-c, -1 - a - b - c; -a - c; \bar{\xi}) \right],$$
(12)

with
$$U_{23}=\frac{[\Gamma(1+a)]^2}{\Gamma(2+a+c)\;\Gamma(-b-c)}$$
 and $U_{41}=\frac{[\Gamma(1+b)]^2}{\Gamma(2+b+c)\;\Gamma(-a-c)}$.

Note:

- \blacksquare No-pole condtion: $a, b, c \not\in \mathbf{Z}_-$.
- The analytic continuation is well-defined and exact when (a+b+c)<-1 and ξ is real. However, we assume that ξ can be analytically continued to ${\bf C}$ (or regard as a regularised expression).

Evaluation of $\tilde{G}_{\rm L}^{(s)}$ for s=1

$$\tilde{G}_{L}^{(1)} = |z_{1} - z_{3}|^{-4h_{1}} |z_{2} - z_{4}|^{-4h_{2}} |\xi(1 - \xi)|^{-2\beta_{1}\beta_{2}} \times I^{(1)}(A, A, -1 - A; 0; \xi, \bar{\xi}).$$
(13)

where

$$I^{(1)}(A, A, -1 - A; 0; \xi, \bar{\xi}) = \frac{(-1)^{1+r} \pi^2}{\sin\left(\pi(1+t)\frac{q}{p}\right)} \times \left\{ {}_{2}F_{1}(-A, 1+A; 1; \xi) {}_{2}F_{1}(-A, 1+A; 1; 1-\bar{\xi}) + (c. c.) \right\}. (14)$$

and

$$-\alpha \beta_1 \equiv A = -1 + r - (1+t)\frac{q}{p},$$

$$-\alpha \beta_2 = -r + (1+t)\frac{q}{p} = -1 - A,$$
(15)

- A Crossing symmetric and Monodromy invariant as usual.
- \clubsuit Most conditions for this calculation are satisfied by $A \not\in \mathbf{Z}$.

1.4 Result with Logarithms

This correlation function is logarithmic

since

$${}_{2}F_{1}(-A, 1+A; 1; \xi)$$

$$= \frac{\sin(\pi A)}{\pi} \left[\ln(1-\xi) {}_{2}F_{1}(-A, 1+A; 1; 1-\xi) \right]$$

$$- \sum_{n=0}^{\infty} \frac{(-A)_{n}(1+A)_{n}}{(n!)^{2}} (1-\xi)^{n} \left\{ 2\psi(n+1) - \psi(-A+n) - \psi(1+A+n) \right\} \right], \tag{16}$$

where $(a)_n$ is the Pochhammer symbol and $\psi(x)=\frac{\partial}{\partial x}\ln(\Gamma(x))$. Hence,

2D minimal gravity

or Minimal string theories are logarithmic.

Plan of Talk

- 1. 4pt Func of Liouville Sector
 - 1.1 Action, 'Tachyon' primary
 - 1.2 Condition for integer s
 - 1.3 Integral Formulas
 - 1.4 Logarithms in 4pt func. of s=1
- 2. 4pt Func of Full theory
- 3. Logarithmic CFT?

4-pt function of Full Theory

[JPS talk, work in progress]

Recall 'tachyon' primary field (2):

$$O_{r,t} = \int d^2z \sqrt{\hat{g}} \, e^{\beta_{r,t}\phi(z,\bar{z})} \Phi_{r,t}(z,\bar{z}) \,, \tag{17}$$

We show the form of 4-pt func. of the full theory:

$$\langle O_{2,1} O_{q-1,p-3} O_{2,1} O_{q-1,p-3} \rangle$$

$$= \int \prod_{i=1}^{4} d^{2} z_{i} \langle \prod_{i=1}^{4} O_{i}(z_{i}, \bar{z}_{i}) \rangle_{L+M+gh}$$

$$= \left(\frac{\mu}{2\pi}\right)^{s} \frac{\Gamma(-s)}{|\alpha|} \int \prod_{i=1}^{4} d^{2} z_{i} \ \tilde{G}_{L}^{(s)} \times G_{M} \times G_{gh}. \tag{18}$$

and try to compute in the (p,q)=(4,3) case, i.e.,

Gravatational Ising model.

communication with Al. Z

Gravity part by Liouville

$$\tilde{G}_{L}^{(1)} = -\frac{\pi^{2}}{\sin\left(\frac{2\pi q}{p}\right)} |z_{13}|^{-4h_{1}} |z_{24}|^{-4h_{2}} |\xi(1-\xi)|^{-2\beta_{1}\beta_{2}} \times \left\{ {}_{2}F_{1}\left(-A,1+A;1;\xi\right) {}_{2}F_{1}\left(-A,1+A;1;1-\bar{\xi}\right) + (c.c.) \right\},$$
where $A = 1 - \frac{2q}{p}, \quad \frac{\beta_{1}}{\alpha} = 1 - \frac{p}{2q}, \quad \frac{\beta_{2}}{\alpha} = -1 + \frac{p}{q},$

$$h_{1} = -\frac{3(p-2q)}{4q}, \quad h_{2} = 2 - \frac{2q}{p}.$$
(20)

In the (p,q)=(4,3) case, $O_1=O_2$ and $\Phi_{2,1}\equiv\epsilon$, and

$$h = \frac{1}{2}, \quad \alpha = -\sqrt{\frac{3}{2}}, \quad Q = -\frac{7}{\sqrt{6}}, \quad \beta = -\frac{1}{\sqrt{6}}, \quad \beta^2 = \frac{1}{6}, \quad A = -\frac{1}{2}.$$
 (21)

Hence,

$$\tilde{G}_{L}^{(1)} = \pi^{2} |z_{13}z_{24}|^{-2} |\xi(1-\xi)|^{-\frac{1}{3}} \times \{ {}_{2}F_{1}(1/2, 1/2; 1; \xi) {}_{2}F_{1}(1/2, 1/2; 1; 1-\bar{\xi}) + (c.c.) \} . (22)$$

Matter part by Coulomb gas

$$\langle O_{2,1}O_{q-1,p-3}O_{2,1}O_{q-1,p-3}\rangle_{M}$$

$$= |z_{13}|^{-4h_{2,1}}|z_{24}|^{-4h_{q-1,p-3}}|\xi|^{2\alpha_{1}\alpha_{2}}|1-\xi|^{-2\alpha_{1}\alpha_{2}+2-\frac{2p}{q}}$$

$$\times \left[G_{1}\left|_{2}F_{1}\left(\frac{p}{q},1-\frac{p}{q};4-\frac{p}{q};\xi\right)\right|^{2}+G_{2}\left|\frac{\xi}{1-\xi}\right|^{-2\left(3-\frac{p}{q}\right)}|_{2}F_{1}\left(\frac{p}{q},1-\frac{p}{q};-2+\frac{p}{q};\xi\right)\right|^{2}\right]$$

where G_i 's are some constants which satisfy the crossing symmetry and monodoromy invariance, and

$$c_{M} = 1 - \frac{6(p-q)^{2}}{pq} = 1 - 12\alpha_{0}^{2}, \quad \alpha_{0} = \frac{p-q}{\sqrt{2pq}}, \quad \alpha_{+} = \sqrt{\frac{2p}{q}}, \quad \alpha_{-} = -\sqrt{\frac{2q}{p}},$$

$$\alpha_{1} = -\frac{\alpha_{+}}{2}, \quad \alpha_{2} = \frac{2-q}{2}\alpha_{+} + \frac{4-p}{2}\alpha_{-},$$

$$h_{2,1}^{M} = \frac{3p-2q}{4q}, \quad h_{q-1,p-3}^{M} = -1 + \frac{2q}{p}, \quad \alpha_{1}\alpha_{2} = p-2 - \frac{p}{q}$$
(23)

In the (p, q) = (4, 3) case,

$$\langle \epsilon \epsilon \epsilon \epsilon \rangle_M = G_2 |z_{13} z_{24}|^{-2} |\xi(1-\xi)|^{-2} |1-\xi+\xi^2|^2,$$
 (24)

A full correlation function of the Grav-Ising model

Plugging all into one, one gets a moduli integral over C:

$$\langle \epsilon \epsilon \epsilon \epsilon \rangle_{All} = \langle O_{2,1} O_{2,1} O_{2,1} O_{2,1} \rangle$$

$$= \int \prod_{i=1}^{4} d^{2} z_{i} \langle \epsilon \epsilon \epsilon \epsilon \rangle_{L} \langle \epsilon \epsilon \epsilon \epsilon \rangle_{M} \langle \text{ghost factor} \rangle$$

$$= (\mu \ln \mu) G' \int d^{2} \xi |\xi(1-\xi)|^{-7/3} |1-\xi+\xi^{2}|^{2}$$

$$\times [K(\xi) K(1-\bar{\xi}) + K(1-\xi) K(\bar{\xi})]$$

$$= (\mu \ln \mu) G. \tag{25}$$

According to $c=\frac{1}{2}$ matrix model, G=0 [Crnković, Ginsparg, Moore '89]. We infer that G is a finite real constant. However, a straightforward calculation with no regularisation shows that this moduli integral is divergent. Because...

- 1. The integral is of the same order as the integral on the unit disk \underline{D} .
- 2. The integral on D is apparently divergent, since $\int_D |\xi(1-\xi)|^{-\frac{7}{3}} \sim \infty$.

We would need some regularisation such as analytic continuation. appearing in the calculation for the Virasoro-Shapiro amplitude...

Plan of Talk

- 1. 4pt Func of Liouville Sector
 - 1.1 Action, 'Tachyon' primary
 - 1.2 Condition for integer s
 - 1.3 Integral Formulas
 - 1.4 Logarithms in 4pt func. of s=1
- 2. 4pt Func of Full theory
- 3. Logarithmic CFT?

Meaning of Logarithms in minimal CFT

[Gurarie '93]

At
$$c = -2$$
,
$$\langle \Phi_{1,2}\Phi_{1,2}\Phi_{1,2}\Phi_{1,2} \rangle$$

$$\sim |z_{13}z_{24}|^{1/4}|\xi(1-\xi)|^{1/4}$$

$$\times (K(\xi)K(1-\bar{\xi}) + K(1-\xi)K(\bar{\xi}))$$
(26)

Operator algebra (Fusion rules) for ordinary CFT are:

$$\Phi_1(z)\Phi_2(0) = \sum_{\{h_3\}} z^{-h_1 - h_2 + h_3} \Phi_3(0). \tag{27}$$

But the above implies a fusion rule:

$$\Phi_{1,2}(z)\Phi_{1,2}(0) \sim z^{1/4} \left(C(0) \ln z + D(0)\right) + \cdots$$
 (28)

Conformal property of C(0) and D(0) shows the Jordan cell under L_0 :

States:

$$L_0 |C\rangle = 0, \quad L_0 |D\rangle = |C\rangle.$$
 (29)

LCFT

LCFT (Logarithmic Conformal FT)

Gurarie '93, Knizhnik '87

- Non-unitarity —— Unitarity
- Logarithmically Degenerate fields

Correlation functions [Caux, Kogan, Tsvelik '96]

$$\langle C(z)C(w)\rangle \sim 0, \quad \langle C(z)D(w)\rangle \sim \frac{\alpha}{(z-w)^{2h_C}},$$

 $\langle D(z)D(w)\rangle \sim \frac{1}{(z-w)^{2h_C}} \left(-2\alpha \ln(z-w) + \alpha'\right).$ (30)

States:

$$L_0 |C\rangle = h_C |C\rangle,$$

$$L_0 |D\rangle = h_C |D\rangle + |C\rangle.$$
(31)

Fusion rules of the Liouville theory

Structure constant, i.e., 3pt func. [Dorn, Otto '92][Zamolodchikov 2 '95]

$$C_{\beta_{1},\beta_{2},\beta_{3}} = \left(\pi\mu \cdot \gamma \left(\alpha^{2}/2\right) \cdot \left(\alpha^{2}/2\right)^{1-\alpha^{2}/2}\right)^{s}$$

$$\times \frac{\Upsilon(\alpha/\sqrt{2})}{\Upsilon((\beta+Q)/\sqrt{2})} \prod_{i=1}^{3} \frac{\Upsilon(\sqrt{2}\beta_{i})}{\Upsilon((\beta-2\beta_{i})/\sqrt{2})}$$
(32)

where $\beta = \sum \beta_i$, $\gamma(x) = \Gamma(x)/\Gamma(1-x)$, and $\Upsilon(x)$ is the Barnes double gamma func., which is an entire func with zeros in the 1st and 3rd quadraple on the lattice $(m,n) \in \mathbf{Z}^2$, i.e., C_{123} has poles at

$$x = x_{m,n} \equiv \left(m\alpha + n \cdot \frac{2}{\alpha}\right) / \sqrt{2}.$$

Fusion rules [Curtright, Thorn '82][...]

$$e^{\beta_1 \phi}(x) e^{\beta_2 \phi}(0) = \int \frac{dP}{2\pi} C_{\beta_1, \beta_2}^{-Q/2 + iP} x^{P^2 + \dots} e^{\frac{1}{\sqrt{2}}(Q/2 - iP)\phi}. \tag{33}$$

Fusion rules of the Liouville theory

A pole at P=0, gives something like

$$\frac{1}{\epsilon}e^{-Q/2\phi},$$

with a small $\epsilon \to 0$.

Remind you that ... [Kogan, Wheater '00] [Rasmussen '04] [...]

$$O_1' = \frac{1}{\epsilon} (O_1 + (1 + \epsilon^2)O_2), \quad O_2' = \epsilon O_2.$$
 (34)

form a C-D-like states. Maybe, it may renown the interpretation of the structure constant and corresponding boundary states in the continuous spectrum...

Concluding remarks

 \spadesuit We have studied (p,q) minimal gravity (or MST).

showed the explicit form of the full correlation function with logarithms in the gravitational Ising model, in particular.

- \heartsuit No strange conditions for logarithms for generic p, q.
- Convergence of the moduli integration is still under investigation.

Minimal String Theory is Logarithmic! Emergence of $\ln \mu$ – inconsistent to Matrix Models?

The logarithms in the Liouville sector seem to suggest that the fields are logarithmically degenerate in fusion rules of the Liouville sector.

Interesting directions:

- Precise structure of local continuum theory (at the zero-volume limit).
- The effects of boundary
- Relation to Branes, Rings, Matrix Models, etc.