東北大学グループ (グループリーダー:山下 正廣)

単分子磁石を用いた量子分子スピントロニクスの創成

山下正廣

東北大学大学院理学研究科

単分子量子磁石(SMM)は上向き・下向きスピンの保持と操作が可能な新奇分子であり、1分 子を1メモリとして捉えることが可能なため次世代メモリ等への応用が強く期待されている。 我々はSMMの機能向上、安定性の獲得、およびデバイス等への応用的研究展開を目指し、フラ ーレンやカーボンナノチューブ(CNT)といったナノカーボン物質の内部空間にSMMを内包し 閉じ込めた系の創出と解析を行っている。ナノカーボン物質とSMMを融合させた例はまだ少な いが、何れも高いSMM特性や量子分子スピントロニクスへの応用が期待できる結果が報告され ており^{1,2}、非常に興味深い。以下に、我々が現在着目しているナノカーボン-SMM 複合系として、 DySc₂N 内包フラーレンおよび Dy-アセチルアセトン[Dy(acac)₃]錯体内包 CNT について紹介する。

DySc₂N内包フラーレンは、フラーレンの0次元内部空間に SMM 特性を発現する DySc₂N を取り込んだ新奇分子である。 特に C_{80} ケージフラーレンに内包させたもの ($DySc_2N@C_{80}$) について合成と単離、および SMM 特性の部分的解析が既に報 告されており、高い SMM 特性を示すことが示唆されている³。 しかし、その詳細な解析が不十分である点と、量子分子スピ ントロニクスへの応用展開を目指す観点から、DySc₂N@C₈₀ の多量合成と物性測定を現在行っている。合成は、名古屋大 学の篠原久典教授の協力の元、アーク放電法により試みた。 従来の一般的な金属内包フラーレンの合成法は、金属含有炭 素棒を用い低圧下 He フロー中で行うものであり、ここに微量 の N₂を混入させることで金属窒化物 M₃N の内包フラーレン を得ることができる。しかしこの手法では空のフラーレンも 多量に生成するため、分離が煩雑となる。そこで我々は新た に密閉系で合成が可能な小型のアーク放電装置(図2)を組み 立て、窒素源としてアンモニアガスを導入してアーク放電を 行った⁴。その結果、M₃N内包フラーレンの収率向上を達成す

ることに成功した(図 3)。現在までに目的 とする $DySc_2N@C_{80}$ を数 mg 程度得ることが できており、磁化測定から SMM 特性の一つ である特異なヒステリシスの観察に成功し ている。今後は合成条件の検討をしつつ $DySc_2N@C_{80}$ を多量に合成し、その詳細な SMM 特性の評価を行うと共に、量子分子ス ピントロニクスへの応用展開を目指す。

図 1. DySc2N@C₈₀の構造モデル

図 3. 窒素源として (a) 窒素、および (b) アンモニアガス を用いてアーク放電法により合成した M₃N@C₈₀を含む サンプルの高速液体クロマトグラフィー分析結果

Dy(acac), 錯体内包 CNT は、SMM 特性を示すこ とが知られている Dy(acac), 錯体⁵を CNT の一次元 内部ナノ空間に内包させた新奇物質である。CNT の内部空間に内包させるメリットとして、SMM 特 性の向上、および CNT の高い電気伝導性等を活か した量子分子スピントロニクスへの応用展開が期 待できる点が挙げられる。我々はまず、市販品で あり入手が容易な Dy(acac)₃(H₂O)₂を用い CNT 内 部への導入を試みた(図4)。CNTとしては多層お よび単層のものを用い、それぞれ溶液法および昇 華法による内包操作を行った。図5に透過型電子 顕微鏡観察および磁化測定による測定結果を示 す。透過型電子顕微鏡像から CNT 表面に不純物が 無く、また内部に錯体由来と思われるコントラス トを確認することができた。エネルギー分散形 X 線分光分析から Dy の存在を確認することもでき たため、Dy(acac)₃(H₂O)₂の内包に成功したと言え る。また、図に示した磁化測定結果は交流磁化率 測定により得られたものであり、周波数依存性を 確認することに成功している。これは SMM に特 有な現象の一つであり、CNT 内部においても SMM 特性を保持していることを示唆する結果である。 しかし、残念ながら測定結果からは緩和時間に相 当するピークトップを観察することは出来なかっ

図4. Dy(acac)₃(H₂O)₂及びその内包CNTの構造モデル

図 5. Dy(acac)3(H2O)2 を内包した多層および単層 CNT の透過型電子顕微鏡観察、エネルギー分散形 X線分光分析、および交流磁化率測定結果

た。そこで、拡張デバイモデルによるフィッティングから各温度における緩和時間を求め、アレ ニウスプロットから活性化障壁 *AE* および頻度因子 τ を求めた。その結果、多層 CNT に内包した サンプルは *AE* = 12.1 cm⁻¹、 τ = 1.65 x 10⁶ s、また単層 CNT に内包したサンプルは *AE* = 5.17 cm⁻¹、 τ = 2.42 x 10⁶ s と求められた。CNT 内包前の状態では *AE* = 22.6 cm⁻¹、 τ = 1.38 x 10⁴ s であるため、 期待とは逆に SMM 特性の低下が確認された。これは、CNT 内包時において Dy(acac)₃(H₂O)₂ 中の 配位水が脱離した、あるいは配位構造が変化した可能性が考えられる。そこで現在、配位水をよ り安定な二座配位子である 1,10-フェナントロリン (phen) に置換した Dy(acac)₃phen を用いて評 価を行っている。すでに単層 CNT への内包操作を行い、孤立した 1 本の内包 CNT について観察 を行うことで、より明確な内包確認に成功している。今後は、Dy(acac)₃phen について磁化測定・ 評価を行い、Dy(acac)₃(H₂O)₂ と比較検討する。そして、量子分子スピントロニクスへの応用展開 を目指す。さらに、DySc₂N@C₈₀を単層 CNT へ内包するなど、さらなる新奇な系の構築を試みる。

【参考文献】

[1] M. Urdampilleta *et al.*, *Nat. Mater.* 2011, *10*, 502. [2] M. C. G.-López *et al.*, *Nat. Commun.* 2011, *2*, 407. [3] R. Westerström *et al.*, *J. Am Chem. Soc.* 2012, *134*, 9840. [4] L. Dunsch *et al.*, *J. Phys. Chem. Solids* 2004, *65*, 309. [5] S.-D. Jiang *et al.*, *Angew. Chem. Int. Ed.* 2010, *49*, 7448.