外部研究機関

KEK 物質構造科学研究所グループ (グループリーダー:熊井 玲児)

電荷移動錯体型誘電体における量子強誘電

熊井玲児^{1,2},小林賢介¹,堀内佐智雄^{2,3},賀川史敬^{2,5},村上洋一¹,十倉好紀^{3,4,5}

KEK 物構研 PF/CMRC¹, JST-CREST², 產総研³, 東大院工⁴, 理研 CEMS⁵

誘電性は磁性や電気伝導性と並ぶ重要な物性のひとつであり、物理的な興味はもとより、その 特性を活かした応用的観点から物質探索、材料設計の一つのターゲットとしても注目されてき た。とりわけ強誘電体はその誘電率の大きさ、分極反転などを利用した電子デバイスから、圧電 性による電気エネルギーと機械エネルギーの直接変換を利用した機械的デバイスへ、また光学特

性を利用する光学デバイスなど、日常的に利用 する身近なデバイスへの非常に広範な応用例を もつ。有機物からなる誘電体開発は決して最近 はじめられたものではなく、分子性の強誘電体 の例はこれまでにもいくつか知られているが、 その多くはチオ尿素に代表されるように、分子 自身が永久双極子をもつことが多い。対称性の 低い有機分子において、分子自身が双極子をも つことは何ら特別なことではないが、それらの 双極子モーメントが結晶中で打ち消し合わずに 自発分極をもち、かつ外部電場によって反転可 能である(=強誘電体)ことはまれであり、その発 見は偶然に頼ることが多かった。近年数多く報 告されている[1]多成分系の強誘電体では、分子 自身のもつ双極子だけを利用するのではなく、

図 1. TTF-QBr_{4-n}Inの誘電率の温度依存性

分子の組み合わせとその配列を利用して強誘電性を発現させるものであり、その分極起源は分子 自身の形状や電子状態だけでなく、結晶中における分子の配列にある。分子の配列を利用した誘 電体構築のための有用な手法として、電荷移動錯体の利用があげられる。電子供与性の TTF と 電子受容性のクロラニル(CA)に代表される DA 交互積層型構造が有名であるが、この結晶では、 電子型強誘電と呼ばれる新たな機構によって、その巨大な分極が説明できることが近年報告され ており[2]、有機強誘電体における分極の増大のための新たなアプローチとして注目されている。 クロラニル(CA)の塩素を他のハロゲンにおきかえた錯体では、TTF-CA とは異なる結晶系がいく つか出現することが知られているが、このうち、臭素とヨウ素を含む置換体(QBr₄, I, n = 2, 3, 4) との錯体では、TTF-CA とよく似た一次元の交互積層型の 1:1 錯体を形成することがわかった。 図1に示すように、誘電率の温度依存性の測定から、ヨウ素の数の減少に応じて、すなわち、分 子体積が減少するにつれて、低温での誘電率が増大する傾向を示すことがわかった。さらにヨウ 素の数の少ない QBr₃I との錯体では、異なる結晶系が出現するため、TTF-QBr₂I₂に静水圧を印加 して誘電率の挙動を確認したところ、圧力の上昇にともない、低温での誘電率がさらに増大し、 0.25 GPa 以上の圧力では明確に誘電率にピークが観測され、誘電転移の存在が示唆された。誘 電転移を示すピークは圧力とともに高温にシフトし、1.66 GPa で室温での転移が生じることが 明らかになった(図 2)。高圧低温相における結晶構造の変化を明らかにするために、この領域に おける回折実験を行ったところ、対称性の変化を示すピークの変化や、超格子ピークなどは観測 されず、室温相(triclinic P-1)と同じ対称性を有していることが明らかになった。このことは、高

圧相において、反強誘電的な秩序の形成が起こっていないこと、すなわち TTF-CA の場合と同様に強誘電体へと転移していることを示している。図3に TTF-QBr₂I₂における温度-圧力相図を示す。この図から、0.25GPa において、量子強誘電状態が形成されていることがわかる。低温における誘電率の圧力依存性を図4に示す。高圧下において、同じく量子臨界的な挙動を示す DMTTF-QBr₄[3]の場合と比較すると、量子臨界点(QCP)近傍における誘電率に大きな差があることがわかる。これは、DMTTF-QBr₄が高圧下で反強誘電的な秩序形成を示すことに対して、TTF-QBr₂I₂では強誘電的な秩序となることの違いから生じていると考えられる。現在、低温における強誘電相の形成を明確に示すため

に、分極-電場履歴の測定及び低温高圧における結晶構造解析を試みている。

- S. Horiuchi and Y. Tokura, *Nature Materials*, 7, 357 (2008). S. Horiuchi, R. Kumai, J. Fujioka and Y. Tokura, *Physica B*, 405, S334 (2010).
- [2] S. Horiuchi, Y. Okimoto, R. Kumai, and Y. Tokura, Science, 299, 229 (2003).
- [3] K. Kobayashi, S. Horiuchi, R. Kumai, F. Kagawa, Y. Murakami, and Y. Tokura, *Phys. Rev. Lett.*, 108, 237601 (2012).