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Abstract

In this paper, we measure the responses of image
patches, used as filters, on different image ensembles and
examine how the responses are affected by reducing the res-
olution of the image ensembles. By comparing the set of re-
sponses obtained at high and reduced resolutions, we find
that for the ensembles of natural and object images (cars),
there is a limit resolution of about 15x15 and 10x10 pix-
els, respectively, beyond which the filter responses are sig-
nificantly affected by resolution reduction. We support the
result by a simple theoretical analysis based on image en-
semble statistics.

There are two consequences to this result. First, it
provides a natural working resolution, determined solely
from the image ensemble statistics, to which higher reso-
lution templates can be reduced without losing a signifi-
cant amount of information. This can be used, in partic-
ular, to reduce the search space for useful visual features in
many applications. Secondly, in contrast to many studies,
it suggests that features that are more complex than Ga-
bor patches can be effectively used as first layer filters and
combined in order to represent more complex shapes and
appearances.

1. Introduction

In computer image analysis, useful visual information is
generally extracted from an input image by first applying
a set of filters, or features, in order to simplify the image
representation and facilitate further high level tasks. Suc-
cess of the feature extraction step is critical for applications
such as object recognition or determining correspondences
in pairs of images, and depends largely on the quality of the
feature selection. While many approaches use low-level de-
scriptors based on local operations that can be computed ef-
ficiently [16, 3, 6], other popular methods consist of using a
simpler representation based on feature appearance, i.e. the

two-dimensional gray-level matrix. Appearance based fea-
tures that were tested throughout the literature vary greatly
in size and complexity, from small and generic [12, 15, 23]
to intermediate complexity image fragments, often selected
with an exhaustive search [8, 21, 1, 18], and full-object
templates [20]. In these approaches, computation of vi-
sual similarity is performed by convolution or Normalized
Cross-Correlation (NCC). Reasons for their popularity in-
clude mathematical interpretation (projection onto a fea-
ture space), invariance to contrast changes (with NCC), and
also because the features can be generic as well as class-
specific. The fact that correlation type operations perform
rigid, pixel-wise comparisons between image patches, how-
ever, forms a critical limitation of many of these methods.
Natural variation in the appearance of visual objects and
scenes suggests that, on the contrary, some degree of flex-
ibility should be incorporated into the similarity measure.
Several approaches that account for local appearance vari-
ability have therefore been proposed, such as decomposing
rigid features into sub-features [4, 9], using global gray-
level or local gradient histograms [17, 7], and the blurring
of fine details by combining a small number of feature prin-
cipal components [5].

In this paper, rather than understanding how to deal with
local variability in images, we attempt to uncover the visual
properties of image ensembles that can be effectively cap-
tured by rigid matching of patches, using NCC as a visual
similarity measure. In particular, we aim to estimate a limit
of visual detail, i.e. resolution, that is determinant for the set
of filter responses, measured over some image ensembles,
such as the ensembles of natural images, car images, or ran-
dom noise images. For this, we compute a set of responses
of square filter patches measured on a large set of randomly
selected test patches, represented at some high resolution,
and observe the evolution of the responses as the resolution
of the filter and test patches is progressively reduced. Be-
cause low frequency components dominate the spectrum in
natural and car images [13, 19], the response set of patches
on natural and car image ensembles is not significantly af-



fected by the low-pass filtering up to some limit resolution
beyond which the set of responses is significantly affected.
The evolution of the response set is measured by comparing
the responses at high resolution to the responses at lower
resolutions with Normalized-Cross Correlation. In addition
to simulations, we perform a theoretical analysis that shows
how the limit depends on the spectrum of the image en-
sembles and supports the quantitative results. We find that
for natural images and cars, the limit resolution is of about
15x15 and 10x10 pixels, respectively.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the image ensembles used in our ex-
periments. In Section 3, we explain how we compute the
patch response sets and our method to determine the effec-
tive resolution of the patches. In Section 4, we provide a
theoretical analysis that explains the evolution of the filter-
patch response sets as the resolution is reduced. In Section
5, we show the simulation results demonstrating the reso-
lution limit for natural images and cars. We also provide
comparisons with ensembles of random images. Finally, in
Section 6, we provide a discussion of the results and a con-
clusion.

2. Image ensembles used and patches

In this section, we describe the different image ensem-
bles that we tested, the extraction of the patches and explain
exactly what we mean by resolution.

2.1. Images Ensembles

In our experiments, we used an ensemble of 600 natural
images, taken from the commonly used database introduced
in [22], and a set of 1275 car images, mostly seen from
the side, appearing at scales varying by a factor of about 2,
with some clutter in the background. The car images were
downloaded from the internet. The natural images were of
size 1024x1536, and the car images were of about 60x82
pixels. Examples of these images are shown in Figure 1.

In addition, we also tested patches from an ensemble of
random images, with a predefined Fourier amplitude spec-
trum of the form f−0.5, where f is the L2 norm of the 2-D
frequency, in order to confirm our theoretical model (Sec-
tion 4). Examples of patches, randomly selected from the
different image ensembles and at different resolutions are
shown in Figure 2.

2.2. Definition of resolution

We define the resolution of a patch Ps by its size s, cor-
responding to the Nyquist frequency after filtering with a
blurring Kernel Gs. The bold font represents the Kernel
in Fourier space. The low-pass blurring Kernel used is the
Hanning window, commonly used for image sub-sampling.

Figure 1. Examples of images from the natural and car image sets
used. Natural images are log-scaled for presentation.

Figure 2. Examples of image patches extracted from natural scenes
(top 2 lines), cars (lines 3 and 4) and random images with Fourier
spectrum of the form f−0.5 (lower line). The patches are shown
at different resolutions along the horizontal axis, left to right: 41
(full resolution), 31, 21, 11 and 5 pixels per side.

The finest resolution was s0 = 41, and we tested various
resolution for s, down to s = 5.

For example, the top right patch shown in Figure 2, P5,
of size 5x5, was obtained by filtering and down-sampling
P41: P5 = ↓ F−1(P41.G5), where F−1 is the inverse
Fourier transform and ↓ is the down-sampling operator.

3. Patch responses and Resolution Similarity
Function

For a given image ensemble, we want to understand how
the responses of a filter patch, extracted from the ensemble
and measured on a large number of patches from the same
ensemble, are affected when the resolution of the patches is
reduced. We first define the Patch Response Vector and then
the Resolution Similarity Function (RSF), that measures the
similarity between patch responses at different resolutions.

3.1. Patch Response Vector

The set of responses of a filter patch Ps, of resolution
characterized by the size s, is represented by a vector Vs

that we call the Patch Response Vector (PRV), whose entries
Vi,s are defined by equation (1):

Vi,s = Ps ⊗ Ti,s =↓ (Ps0 ∗ Gs)⊗ ↓ (Ti,s0 ∗ Gs) (1)



where: i ∈ [1..N ], ⊗ represents the NCC operator, ∗ is the
convolution operator, Ti,s represents a test patch indexed by
i, and N is the number of test patches.

The test patches Ti,s and the filter patch Ps are from the
same image ensemble. In our simulations, described in Sec-
tion 5, we used N = 2000 test patches.

3.2. Resolution Similarity Function

To compare the responses of a patch for different res-
olutions, we define the Resolution Similarity Function
(RSF), that is obtained by computing the normalized cross-
correlations between the Patch Response Vector of the patch
at the highest resolution s0 = 41, and the Patch Response
Vector of the patch obtained at some lower resolution s. The
RSF is given by equation (2):

RSF (Vs0 ,Vs) = Vs0 ⊗ Vs (2)

In Section 4 we provide a theoretical analysis of the RSF
and in Section 5, we show quantitative simulation results
for the different image ensembles.

4. Analysis of the Resolution Similarity Func-
tion

In this section, we provide a theoretical analysis of the
RSF as a function of the resolution s.

We start by expressing the entries of the Patch Response
Vectors as a function of the patch Fourier components and
the Fourier components of the blurring Kernel Gs. We also
assume the patches, in pixel space, are normalized to mean
0 and standard deviation 1, which is done a-priori in NCC
matching:
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Here, K is a normalizing constant, P j
s and T j

i,s represent the
complex Fourier component j or the filter patch Ps and the
test path Ti,s respectively, at resolution s. The sums are over
all the complex Fourier components j. x is the conjugate
operator. |x| represents the norm. Eq. (4) results from the
definition in eq. (1). We can ignore the down-sampling.

We can now express the RSF:

RSF (Vs0 ,Vs) = Vs0 ⊗ Vs (6)
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where the index i goes over all the test patches.
In eq. (7), we assumed that the mean of Vi,s and Vi,s0

is 0. This is justified when the number of test patches is
sufficiently large so that Vi,s and Vi,s0 cover uniformly the
whole spectrum of responses, from -1 to 1.

We now consider the upper term of eq. (7) and replace
Vi,s and Vi,s0 by their definition in eqs. (4) and (5):
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In eq. (9), we used the fact that Vi,s0 = Vi,s0 , since Vi,s0

is a real number. In eq. (10), the fourth order terms repre-
senting the correlations between the components of differ-
ent frequencies, that should appear, actually cancel out by
assuming the different frequency components are not corre-
lated over the image ensemble. This is not necessarily true,
but we found that they are dominated by the terms present in
eq. (10) (data not shown here). This assumption is also jus-
tified by the very good fit between the experimental curves
and theoretical predictions shown in Section 5.

Finally, we assume that individual patches of the same
ensemble have a Fourier amplitude spectrum close to the
average amplitude spectrum over the ensemble, that we de-
note Qs0 [13, 19]. This is an approximation for natural and
car image patches, while it is exact for the f−0.5 noise im-
ages. The final expression for

∑
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We can apply similar considerations for both sums in the
denominator of eq. (7), and obtain the final expression of
the RSF:
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Equation (12) entirely describes the behavior of the RSF
as a function of the resolution (size), through the resolu-
tion dependent blurring Kernel Gs, and the average Fourier
amplitude spectrum of the image ensemble, represented by
Qs0 .

5. Experimental results

In this section, we present the simulation results. We
show the RSF curves as a function of resolution (size) ob-
tained experimentally for the different image ensembles, to-
gether with the RSF predicted by equation (12).



The results are summarized in Figure 3. The curves in
the figure were obtained as follows. For a given image en-
semble, 200 filter patches were selected randomly. For each
filter patch, 2000 test patches were randomly chosen from
the same ensemble. The RSF curve was then obtained ac-
cording to equations (1) and( 2). The curves shown in the
figure are the average curves over the 200 RSF curves ob-
tained for the individual filter patches. To plot the theoreti-
cal predictions, we computed Qs0 by averaging the norm of
the 2000 test patches Fourier amplitudes. We then plugged
Qs0 and the spectrum of the filtering Kernel Gs into equa-
tion (12). 1-D cuts of the amplitude spectra Qs0 , for the dif-
ferent image ensembles, are shown in Figure 4, illustrating
in particular the stronger components at high frequencies in
the noise images.

In Figure 3, we observe the graphs from right to left, and
see that the curves for natural and car image ensembles re-
main very close to 1, up to the lower resolutions of s = 15
and s = 10 respectively, when the curves cross the RSF
value of 0.99. Beyond these resolutions, the curves appear
to drop more significantly. This indicates that the response
properties of the patches are not affected by loss of visual
detail until these lower limits. As shown in our theoretical
analysis, the variations of the RSF, and thereby the values of
the limit resolutions, are directly related to the form of the
image ensemble amplitude spectrum, that is roughly of the
form f−1 for both cars and natural scenes [13, 19]. In con-
trast, the RSF of the f−0.5 noise images falls off sharply
at the onset of resolution reduction, because the low fre-
quency components are less dominant. The RSF value is
1 for s = 41, since this is the original resolution of the
patches.

While the RSF curves of individual filter patches do not
have to be equal to one another, the deviations of the RSF
values are necessarily very small up to the limit resolutions
because the curves hold tightly to the maximum value of 1.
Therefore, we omitted indications of variance for clarity.

We illustrate the resolution limits by also showing ex-
amples of filter-patches at different resolutions, with their
individual RSF values, in Figures 5, 6 and 7. The different
figures correspond to the three different image ensembles
tested. Plotting the values displayed in these figures in the
(RSF (s), s) plane would yield an individual RSF curve.
For example, from left to right, top to bottom in Figure 5,
the RSF value of the natural filter-patch remains 1 (up to a
precision of 0.01) until a resolution of s = 15, then it begins
to drop. For the car filter-patch, the limit observed in Figure
6 is s = 11. For the f−0.5 noise image patch, the decrease
in the RSF value is immediate.

6. Discussion and conclusion

In the present study, we measured the responses of filter-
patches to a large set of test-patches, extracted from within a
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Figure 3. Average RSF curves for the different image ensembles
tested. Blue: natural. Orange: cars. Green: random f−0.5 noise.
Solid lines represent the RSF curves obtained experimentally. Dot-
ted lines indicate the theoretical curve predicted by eq. (12). The
theoretical curves overlap with the experimental ones for the nat-
ural and car ensembles. The discrepancy between the theoretical
curve and the experimental curve for the random f−0.5 noise im-
ages for the higher resolutions is due to the fact we did not take
into consideration the down-sampling. We observe that as the res-
olution is reduced, the RSF curves remain at about 1 for the natural
and car images, until the resolution reaches about 15 pixels and 10
pixels respectively, beyond which the curves begin to drop. For
the random images, in contrast, the RSF curve begins to drop at
the onset of resolution reduction.

Figure 4. Cut of the log-amplitude spectra Qs0 along the y-
frequency 0, for the different image ensembles. Blue: natural.
Orange: cars. Green: f−0.5random noise. x-axis: horizontal fre-
quencies. y-axis: log of the amplitude spectrum. The curve for
the noise ensemble was translated vertically for presentation. The
high frequencies are more dominant for the random images, im-
plying the RSF function falls off more sharply as the resolution is
reduced (Figure 3).

same image ensemble, using Normalized Cross-Correlation
as the matching measure. By comparing the set of responses
obtained for high and reduced image patch resolutions, we
showed, in simulations and by a simple theoretical calcula-
tion, how the set of patch responses depends on the image
ensemble spectral statistics. In particular, we found that the
filter-patches respond in an almost identical manner at high



Figure 5. Examples of RSF values obtained for different sizes of
a natural image patch filter. The RSF value is given for each size
of the filter. For the display, the patches were not down-sampled.
The RSF begins to drop after the resolution passes below a size of
15 pixels.

s: 41, RSF: 1.00 s: 31, RSF: 1.00 s: 27, RSF: 1.00 s: 25, RSF: 1.00 

s: 23, RSF: 1.00 s: 21, RSF: 1.00 s: 19, RSF: 1.00 s: 17, RSF: 1.00

s: 15, RSF: 1.00 s: 11, RSF: 1.00 s: 9, RSF: 0.99 s: 7, RSF: 0.98 

s: 5, RSF: 0.97 

Figure 6. Car image ensemble. Examples of RSF values obtained
for different sizes of a patch filter. The RSF drops when the reso-
lution is below 11 pixels.

s: 41, RSF: 1.00 s: 31, RSF: 0.93 s: 27, RSF: 0.92 s: 25, RSF: 0.91 

s: 23, RSF: 0.90 s: 21, RSF: 0.89 s: 19, RSF: 0.88 s: 17, RSF: 0.86 

s: 15, RSF: 0.83 s: 11, RSF: 0.77 s: 9, RSF: 0.74 s: 7, RSF: 0.70 

s: 5, RSF: 0.61 

Figure 7. f−0.5 noise images. Examples of RSF values obtained
for different sizes of a f−0.5 patch filter . We observe there is
no resolution limit, the RSF value drops at the onset of resolution
reduction.

resolutions (41x41 pixels) and at reduced resolutions, up to
the limit of about 15x15 pixels for natural images and 10x10

pixels for the cars. In contrast, the responses of patches
from a random noise image ensemble, where the lower fre-
quency components of the images are less dominant, were
significantly affected at the onset of resolution reduction.

First, the results suggest a basic lower limit resolution
for the initial filter measurements in computer vision appli-
cations, because the responses of patches at higher resolu-
tions, providing in principle more visual information, are
actually fully explained by the responses of patches repre-
sented at the lower resolution limit. The resolution limits
we found in our examples imply that features with a richer
frequency content than Gabor type filters, derived by differ-
ent encoding principles [10, 2], can be effectively used to
extract information from the visual environment. Such fea-
tures are shown in Figures 5 and 6. Reducing the resolution
further leads to a deterioration of the responses and thereby
a loss of information about the visual world. We can note
that our result is in line with recent physiological studies,
that suggest that primary visual cortex neurons may repre-
sent more complex stimuli than simple Gabors [14, 11].

Secondly, these results suggest that numerous computer
vision applications using correlation based operators may
benefit, in terms of computational complexity, from reduc-
ing the resolution of the filters down to the lower resolution
limits that depend on the image statistics. More generally,
the results suggest a method to incorporate prior knowledge
about the image statistics, that can be used in learning ap-
plications. For example, in recognition methods that are
based on selecting useful visual features with an exhaustive
search through a large set of image patches, as in [21, 1, 18],
the lower resolution limit can reduce the size of the feature
search space.

We can mention several difficulties with our method that
should be addressed. First, although we can clearly observe
a cut-off in the car and natural image curves shown in Figure
3, it is not clear where to place the limit resolution exactly.
In our experiments, we determined limit resolutions by an
arbitrary RSF threshold of 0.99, but a more appropriate way
would be to determine the threshold in an application de-
pendent manner. Second, it is not clear whether the value
of the initial feature size, 41x41 pixels here, will affect the
RSF curves significantly. This is not expected, however,
due to the scale-invariance properties of natural image en-
sembles [13]. Finally, the method for comparing the patch
responses at different resolutions (eq. 2) may be critical for
determining the resolution limits. For example, the compar-
ison could be performed by computing the Mutual Informa-
tion (MI) between the Patch Response Vectors (Section 3),
rather than using NCC. MI can, in principle, capture more
complex dependencies between random variables than can
NCC. However, the use of MI would raise other issues, such
as how to determine the binning. NCC is a straightforward
method for comparison that captures the essential common



properties of two random vectors, and leads to a simple the-
oretical analysis.

In conclusion, we found a rough limit resolution for im-
age patches when they are used as a first stage in the pro-
cessing of natural scenes and object images. This limit de-
pends solely on the spectral statistics of the image ensem-
ble. Using higher resolution patches would not be more
informative because their response properties do not differ
significantly from the responses of patches at the lower limit
resolution. We also found that the features of the limit res-
olution are more complex than simple Gabor type features,
commonly used in computer vision applications, suggest-
ing that more complex features can be effectively used in
the first stages of visual processing. Finally, our results
and analysis suggest that knowledge about image ensem-
ble spectral statistics can be incorporated into applications
requiring learning, such as object recognition, in order to
simplify the computational complexity of the algorithm and
facilitate the learning stage. This will be tested in future
work.
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