
Introduction

The morphology of the retina can be imaged with very high 
spatial resolution by recent imaging techniques such as 
scanning laser ophthalmoscopy (SLO)1,2 and optical coher-
ence tomography (OCT).3,4 However, these imaging instru-
ments do not allow objective assessment of retinal function, 
which is essential for making correct diagnoses of various 
retinal disorders. Because the quality of vision, such as 
visual acuity and visual fi elds, depends not only on the ana-

tomical density of the photoreceptors but also on their 
neural function, mapping retinal responsiveness is impor-
tant both from physiological and clinical points of view.

At present, the functional topography of cone-derived 
retinal responsiveness is obtained by multifocal electroreti-
nograms (mfERGs) in the clinic,5 but the spatial resolution 
of mfERGs is limited. Intrinsic signal imaging with infrared 
light6–14 and functional OCT15–17 has been used recently to 
map light scattering changes of the photoreceptors follow-
ing neuronal activities. However, these techniques have not 
been brought into the clinic, mainly because of their low 
signal-to-noise ratios (SNRs).

Some 50 years ago, the bleaching of photopigments was 
determined quantitatively by measuring refl ectance changes 
during the bleaching and regeneration processes in human 
retinas. This method was used to determine precisely the in 
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vivo kinetics of the photopigments in the cone and rod 
photoreceptors.18–22 Retinal densitometry was later used to 
measure the spatial and spectral distribution of the refl ec-
tance changes by examining images obtained with either a 
fundus camera or by SLO, that is, by imaging fundus refl ec-
tometry.14,23–31 These techniques allowed the investigators to 
map objectively and noninvasively the cones and rods as 
bleach-derived light refl ectance changes in both normal and 
diseased eyes.

Imaging fundus refl ectometry, however, has fundamental 
problems both theoretically and technically,31,32 and it is not 
widely used in the clinic in spite of numerous reports pub-
lished by different laboratories. One practical problem is 
that the recording period during which the subject must 
fi xate a target steadily is long and uncomfortable. This is a 
common problem shared by many of the imaging tech-
niques, such as OCT, that are used to study the ocular 
fundus. However, a much more critical problem in refl ec-
tometry measurements is that a small displacement of the 
fundus image during the long fi xation period leads to a loss 
of important densitometric information.

To overcome this limitation, we measured the retinal 
refl ectance changes by taking consecutive snapshot images 
with short duration fl ashes (<1.0 ms), and analyzing the 
density of corresponding areas of the retina, pixel by pixel, 
as a function of time. A topographic map of the bleached 
photoreceptors was obtained within 12 s from each of three 
healthy human subjects, and the reliability of the results was 
confi rmed in an experiment on an anesthetized monkey. A 
commercial fundus camera with minimal modifi cations was 
used, and the bleaching topography was obtained by simple 
analyses of the images.

Methods

Apparatus

A slightly modifi ed commercial fundus camera (AFC-210, 
NIDEK, Aichi, Japan) was used. The fi eld of view covered 
45° of the ocular fundus. To observe the fundus, light from 
a halogen lamp (Fig. 1B, I) was passed through an infrared 
interference fi lter (H) and the optical system of the camera 
(F, B, and A) to illuminate the retina, and the retinal image 
was monitored by the image on a charge-coupled device 
(CCD) camera. This image was used to adjust the fi eld 
viewed and to focus on the retina before the recording. A 
small fi xation target of a green light-emitting diode (LED), 
masked by a triangular pattern, was placed in the optical 
path (E). A movable mirror (C) was placed between the 
objective lens and the CCD camera, which was used to 
change the optical pathway either to the CCD camera for 
focusing or to a complementary metal oxide semiconductor 
(CMOS) camera for recording the images (EOS-5D, Canon, 
Tokyo, Japan). Just before the fl ash, the mirror was mechan-
ically displaced for 1/50 s so that the retinal image could be 
photographed by the CMOS camera. A ring-shaped xenon 
strobe (G) (fl ash duration <1.0 ms) was placed in the optical 

pathway of the halogen lamp. The variation in the intensity 
of the xenon fl ash strobe was less than ±1.0%, which is 
negligible considering that the refl ectance changes at the 
fovea were 20%–40% in the monkey and 15%–20% in the 
humans.

To enable more accurate fi xation in this imaging refl ec-
tometric method, the fi xation target was modifi ed as follows: 
the circular mask for the fi xation target was replaced by a 
triangular one, and the subjects were instructed to fi xate on 
one apex of that triangle during the whole recording period. 
The intensity of the target illumination was set lower than 
the threshold level of bleaching in this system.

Data Analyses

The raw images were fi rst converted to TIFF images (350 
dpi, 16 bit, 4368 × 2912 pixels) using Digital Photo Profes-
sional Ver. 2.1.1.4, developed by the manufacturer of the 
fundus camera. These images have separate information for 
blue, green, and red components of the images, which cor-
respond to the three peak sensitivities of the CMOS: 460, 
540, and 640 nm (Fig. 2, raw images). However, each of the 
spectral characteristics of the CMOS might not be equally 
converted to the TIFF image, and, unfortunately, the techni-
cal details of the color-image processing are not disclosed 
by the manufacturer. The peak sensitivities of the CMOS 
were measured with a spectral light source (OL490 Agile 
Light Source, Optronic Laboratories, Gooch & Housego, 
Melbourne, FL, USA).

In the human measurements, the alignment of consecu-
tive images was performed by normalized grayscale correla-
tion, to correct for misalignments of the retinal images due 
to eye movements (x–y axes and rotation) before the dif-
ferential analyses. When the location of the true correlation 
peak was being estimated, the alignment was improved by 
fi tting an analytical model of the correlation peak based on 
a similarity interpolation estimation, which allowed for sub-
pixel estimation. We applied the algorithm from the Matrox 
imaging library version 9.0 to estimate the exact position of 
the correlation peak with 0.01 pixel resolution. If the motion-
derived displacements among the consecutive fl ashes were 
too large to be corrected by the off-line alignment, the data 
were discarded. The fl ash-induced refl ectance increases 
(bleaching) were calculated by dividing the refl ectance of 
the fi rst image by the subsequent images, pixel by pixel (Fig. 
2, differential images). These differential images were spa-
tially smoothed by a simple moving average (32 × 32 pixels 
in monkey and 54 × 54 in human) to reduce the noise of the 
CMOS camera before the profi le and the topographic 
images of bleaching were displayed. They were then sepa-
rated into red, green, and blue components (Fig. 2).

Subjects and Recording Protocols

Snapshot images were taken from one rhesus monkey 
(Macaca mulatta) and three healthy human subjects (subject 
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Figure 1A, B. Snapshot imaging 
refl ectometry. A Fundus camera 
system used. B Schematic 
drawing of the optics. A, objec-
tive lens; B, pin-hole mirror; C, 
movable mirror; D, dichroic 
mirror; E, triangle-shaped fi xa-
tion target with light-emitting 
diode; F, full refl ection mirror; G, 
xenon fl ash strobe; H, infrared 
interference fi lter; I, halogen 
lamp; CMOS, complementary 
metal oxide semiconductor 
camera; CCD, charge-coupled 
device camera.

Figure 2. Consecutive snapshot 
images of the ocular fundus of a 
monkey. Following transforma-
tion to TIFF images, the raw 
images were realigned by sub-
pixel registration, and differen-
tial images were obtained. The 
fi rst image was used as a refer-
ence. The differential images 
were then separated into the 
three color components.

1, a 43-year-old man; subject 2, a 38-year-old man; and 
subject 3, a 33-year-old woman).

The experimental protocol for the monkey was approved 
by the Experimental Animal Committee of the RIKEN 
Institute, and all experimental procedures in animals were 
carried out in accordance with the guidelines of the insti-

tute. For the human experiments, the procedures used con-
formed to the tenets of the Declaration of Helsinki, and 
informed consent was obtained from each individual who 
participated in this study after an explanation of the proce-
dures used. The project was approved by the Institutional 
Review Board of National Institute of Sensory Organs.
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Monkeys were fi rst injected intramuscularly with atro-
pine sulfate (0.08 mg/kg) and then anesthetized with dro-
peridol (0.25 mg/kg) and ketamine (5.0 mg/kg). The animals 
were paralyzed with vecuronium bromide (0.1–0.2 mg/kg 
per hour) to suppress eye movements, and artifi cially ven-
tilated with a mixture of 70% N2O, 30% O2, and 1.0%–1.5% 
isofl urane. Electroencephalograms, electrocardiograms, 
expired CO2, and rectal temperature were monitored con-
tinuously throughout the experiments. Before the record-
ing, the pupils were fully dilated with topical tropicamide 
(0.5%) and phenylephrine hydrochloride (0.5%). After 
30 min of dark adaptation, the retina was focused on the 
camera plane by observing the infrared images with the 
CCD camera. Then, fi ve fundus photographs were taken by 
white fl ashes at 4-s intervals for a total of 16 s. The fl ash 
intensity was 101.0 cds/m2.

The retinas of the human subjects were measured under 
room illumination without dark adaptation. Following 
pupillary dilation, each subject’s head was stabilized on a 
head and chin rest. During the whole duration of the mea-
surements, the subject fi xated on one apex of a triangle, 
which was illuminated by a green LED. Four fundus photo-
graphs were taken by white fl ashes at 4-s intervals. The fl ash 
intensity was either 31.8 (subject 1) or 63.6 (subjects 2 and 
3) cds/m2.

Results

In the monkey, the refl ectance of the whole recording region 
of the retina was increased by the consecutive fl ashes (Fig. 
3). The increase in the refl ectance in all three colors always 
peaked at the fovea. The bleaching profi les of four consecu-
tive images in red showed that the refl ectance gradually 
increased at the fovea (15% in second/fi rst and 23% in fi fth/
fi rst images), whereas the increase was not apparent in the 
perimacular region at around 10° temporal to the fovea 
(Fig. 3, top right). The bleaching profi les for green and blue, 
on the other hand, showed that the refl ectance gradually 
increased both at the fovea (20% in the second/fi rst image 
and 40% in the fi fth/fi rst image for green), and in the peri-
macular region (10% in the second/fi rst image and 20% in 
the fi fth/fi rst image for green) (Fig. 3, middle and bottom 
right).

The refl ectance ratio of the central peak to the surround-
ing area (10° temporal to the fovea) in the fi fth/fi rst 
image was high for the red (3.3) and low for the green 
(2.0) and blue (1.8) images (Fig. 3, right). These results 
can be easily explained by the contribution of cone 
photoreceptors to the red image, and both cone and rod 
photoreceptors to the green and blue images. These fi ndings 
are good evidence that refl ectivity changes measured by this 
method are not artifacts but are derived from the 
photoreceptors.

It should be noted that the refl ectance at the optic disc 
and part of the retinal vessels decreased following fl ashes. 
These are intrinsic signals that are derived from light scat-
tering changes following blood fl ow increases.7–10

In the human subjects, only the data for green with the 
largest refl ectance changes, are presented in Fig. 4. As in the 
monkey, the refl ectance of the central region was increased 
by consecutive fl ashes. The bleaching topography in the 
macula corresponds well with the anatomical distribution 
of cones,33,34 electrophysiological cone activity,5 and psycho-
physical cone sensitivity. Because the images were taken 
without dark adaptation and under room illumination, the 
response in the perimacular region was not as prominent as 
in the monkey. The data from the human subjects were 
affected by eye-movement artifacts, and some noise from 
the retinal vessels and superfi cial refl exes may have affected 
the images, even following subpixel adjustment of the 
images (Fig. 4, subjects 2 and 3, arrows). It is notable that 
the intrinsic signal (light refl ectance decrease) refl ecting 
blood fl ow increases was clearly observed at the optic 
disc.7–10

Discussion

We measured the refl ectance changes of the ocular fundus 
by taking consecutive snapshots of the retina with a com-
mercial fundus camera and obtained a topographic map of 
cone photoreceptors that corresponded to the density of the 
cones in normal retinas. Only a slight modifi cation of a com-
mercially available fundus camera, namely, the shape of the 
fi xation target was changed, was made to reduce the eye and 
head movement during recording in order to obtain reliable 
photographs. The dental impression plate, commonly used 
in previous studies, was not needed for these measurements. 
Many different types of instruments have been used for 
imaging fundus refl ectometry.32,35 Early attempts were made 
with slightly modifi ed conventional fundus cameras. These 
investigators compared photographic images on 35 mm fi lm 
photographs before and after bleaching or photographs of 
locally bleached retina, by embedding masks in the light 
path to bleach selected areas of the retina.14,23–25 The density 
contrast of rod photopigments was estimated both in normal 
subjects and in patients with night blindness; however, this 
method had inherent problems in calibration, and the topo-
graphic representation of cone or rod bleaching was not 
reliable.

Fundus refl ectometry with video-based fundus 
cameras was later introduced.26–29 The density map of cone 
photopigments corresponding to the anatomical distribu-
tion of the cones was obtained in humans,26 and the rod-
dominant photopigment density was also estimated from 
the peripheral retina.27,28 However, the recording protocols 
were too complicated and the bleaching topographies 
obtained by these methods did not have enough image 
quality for clinical assessment of either the cone or rod 
photopigments.

SLO has also been used to measure bleach-related 
refl ectance changes.30,31 The confocal nature of SLO has the 
great advantage of reducing unwanted scattered light from 
the retinal surface, inevitable in fundus camera-based 
imaging refl ectometry. The foveal cone density with a peak 
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Figure 3. Pseudocolor topographies of the light refl ectance changes in the right eye of a monkey for the three color components. Red and blue 
color scales indicate increased (brightening) and decreased (darkening) light refl ectance, respectively. The horizontal and vertical profi les of the 
refl ectance changes are shown on the right. The retinal images were cropped to the central 37°.
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Figure 4. Pseudocolor topogra-
phies and horizontal and vertical 
profi les of the light refl ectance 
changes in the three human sub-
jects. Only the results of the 
fourth and the fi rst image for the 
green component are shown. 
The red and blue color scales 
indicate light refl ectance 
increases (brightening) and 
decreases (darkening), respec-
tively. Arrows (subjects 2 and 3) 
indicate artifactual decreases or 
increases of light refl ectance due 
to scattering from the superfi cial 
layer. The retinal images were 
cropped to the central 30°.
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at the fovea is clearly evident in healthy subjects.36 However, 
for mapping the distribution of the photopigments, the 
recording protocol is still too complicated, and the number 
of modifi cations that have to be made to the commercial 
instrument make it diffi cult to use in the clinic.37

Recently, changes in the intensity of fundus autofl uores-
cence during bleaching have been used to assess photopig-
ment distribution. However, the measured refl ectivity is 
strongly affected by absorption of macular pigments, limit-
ing its use.38

In our technique, the fundus images were obtained by 
consecutive photographs taken by short-duration fl ashes of 
identical intensity, and the pixel values of the consecutive 
images were compared with the initial referential image to 
extract the fl ash-evoked light refl ectance increases. For the 
cone distribution to be mapped, subjects did not need to be 
dark adapted or to have their heads fi xed by a dental 
impression mouthpiece. The total recording time was only 
the 12 s required for taking four consecutive photographs. 
For the recordings, the original fundus camera was 
minimally modifi ed: the shape of the fi xation target was 
changed from a circle to a triangle so that each subject could 
fi xate on an apex to reduce eye movements during the 
recording. Both the apparatus and recording protocol 
appear to be the simplest of any developed version of 
imaging refl ectometry.

The refl ectance changes were induced by white fl ashes, 
and the raw images contained information on the blue, 
green, and red components of the image. However, the 
individual sensitivity of the commercial CMOS camera to 
these wavelengths was not available. In addition, the wave-
length of peak sensitivity of each color did not match that 
of the short (S)-, middle (M)- and long (L)-wavelength 
cones, and the wavelength bands greatly overlap. For the 
analysis, the raw images were fi rst transformed to TIFF 
images, ensuring the linearity of information on each color. 
The raw images obtained by this camera, however, are 
specially designed to show the color of the retinal compo-
nents, such as of the retinal pigment epithelium, optic disc, 
and retinal vessels, as clearly as possible to be useful for 
diagnosis of retinal diseases. The core information on color-
image processing has not been disclosed by the manufac-
turer. In fact, particular color information might be more 
weighted than that of other luminances for better observa-
tion of the retinal structures. Thus, the extracted informa-
tion on the three luminances could not be used for 
differential mapping of the densities of the rods, and of 
the S-, M-, and L-wavelength cones. Moreover, the refl ec-
tance changes (%) shown in the results do not refl ect the 
exact quantitative changes in photopigment bleaching 
because of postprocessing of the images before the raw 
images were obtained. In the future, replacement of the 
CMOS camera with a color CCD camera whose properties 
are provided by the manufacturer will allow us to map the 
density of the different types of photoreceptors without 
using band-pass interference fi lters.

In fundus camera-based imaging refl ectometry, the 
appearance of a major artifact that arises from unwanted 

scattered light from the retinal surface is inevitable. Because 
of the high refl ectivity of the inner limiting membrane and 
nerve fi ber layer, especially around the macular region, 
minute eye movements between consecutive images may 
induce pseudo-light refl ectance increases or decreases, 
which may mimic the bleaching topography. However, in 
the monkey’s retina, the ratio of the refl ectance of the 
central peak to the surroundings was high for the red 
and low for the blue and green images (Fig. 2). These results 
indicate that the cone photoreceptors contributed to the 
red image, and both cone and rod photoreceptors to the 
shorter wavelength images. Thus, the refl ectivity changes 
measured by this method are not artifacts but are derived 
from changes in the density of photopigments in the 
photoreceptors.

The principle by which the bleached topography was 
extracted is exactly the same as that used in earlier refl ec-
tometry techniques. Thus, our results suffer from the same 
artifacts inherent in those methods.31,32 First, artifacts are 
induced by movements of the retinal images during a 
recording session caused by head or eye movements. These 
are inherent in all of the refl ectometry systems, and one of 
the best solutions is to reduce the time for data acquisition. 
In our system, the duration for data recording was less than 
1.0 ms, determined by the duration of the xenon fl ash strobe. 
This short duration helped reduce movement artifacts and 
made off-line image registration easier. The short acquisi-
tion time, on the other hand, decreased the SNR, because 
we did not average data of different recording sessions. Our 
single-trial protocol, however, made the total recording 
time as short as 12 s, thus making this recording procedure 
more practical for clinical applications.

The second limitation of our technique is the inhomoge-
neous distribution of the light fl ash due to the optics of the 
fundus camera, where the light reaching the optical center 
is about three times as intense as that 15° from the center. 
The third limitation was the presence of scattered light from 
the inner limiting membrane and nerve fi ber layer around 
the macula. The scattered light is a serious problem when 
examining the spatial distribution of refl ectance changes, 
especially in younger subjects (Fig. 4, subjects 2 and 3). 
However, we examined the bleached topography of cones 
within the macular region, which is less vulnerable to such 
artifacts. When the bleached topography of the entire region 
within the vascular arcades is examined, such artifacts will 
be a more serious problem.

In conclusion, we took snapshots of the ocular fundus 
with a minimally modifi ed commercial fundus camera and 
obtained topographic maps of the bleached cone photore-
ceptors in anesthetized monkeys and alert human subjects. 
This technique will potentially provide new methods for 
clinical measurements of photoreceptor function in both 
normal and diseased retinas.
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