多バンド超伝導体における パウリ常磁性効果

理研 岡山大院自然 堤 康雅

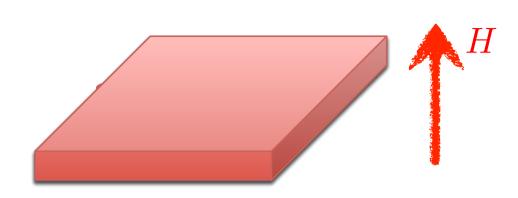
市岡優典,

町田一成

謝辞:東大物性研

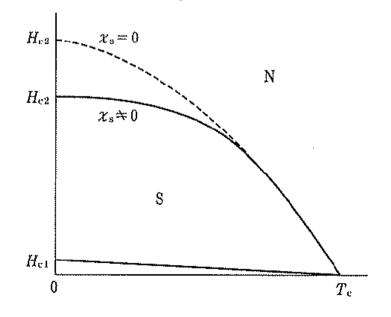
橘高俊一郎, 榊原俊郎

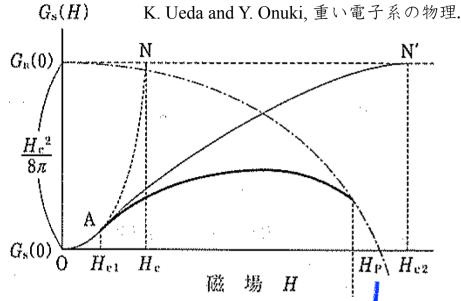
Pauli paramagnetic effect



渦糸半径: ξ

$$H_{\rm orb} = \frac{\phi_0}{2\pi\xi^2}$$





スピン帯磁率:
$$\chi_s \neq 0$$

$$G_{\rm n}(H) = G_{\rm n}(0) - \frac{1}{2}\chi_{\rm s}H^2$$

パウリリミット:
$$H_{\mathrm{P}} = \frac{\Delta}{\sqrt{2}\mu_{\mathrm{B}}}$$

$$H_{\rm c2} < H_{\rm P}$$

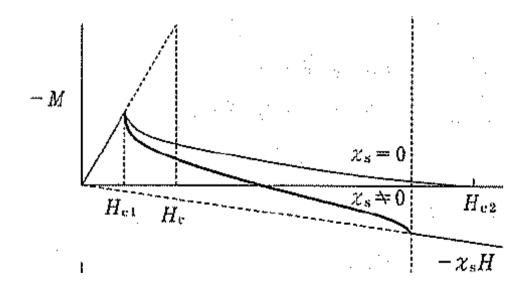
without FFLO

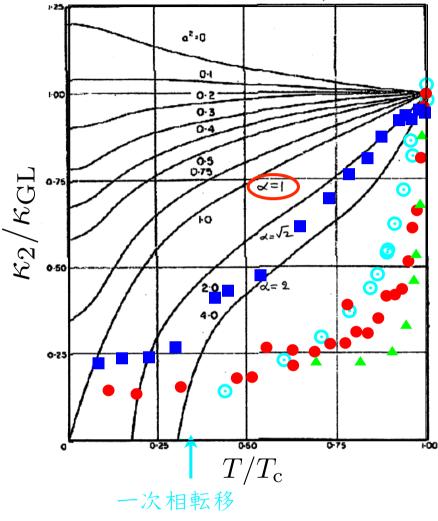
Maki parameter

$$\alpha \equiv \frac{\sqrt{2}H_{\rm orb}}{H_{\rm P}}$$

$$\frac{d(M_{\rm s} - M_{\rm n})}{dH} \bigg|_{H = H_{\rm c2}} = \frac{1}{4\pi} \frac{1}{(2\kappa_2^2 - 1)\beta_{\rm A}}$$

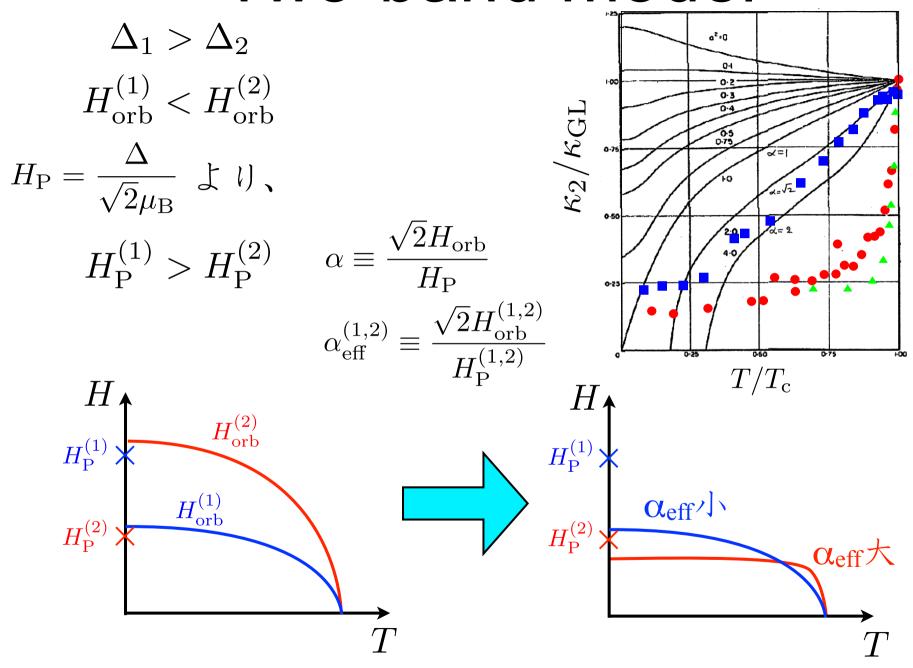
 $(eta_{\rm A} \approx 1.16)$ 正三角渦格子





- D. Saint-James et al., Type II Superconductivity (1969).
- CeCoIn₅: S. Ikeda *et al.*, JPSJ **70**, 2248 (2001).
- CeCu₂Si₂: S. Kittaka *et al.*, arXiv:1307.3499.
- ▲ UBe₁₃: Y. Shimizu *et al.*, JPSJ **80**, 093701 (2011).
- KFe₂As₂: F. Hardy, private communication.

Two-band model



Quasiclassical theory

Eilenberger equation

$$-i\hbar \underline{\boldsymbol{v}_{i}} \cdot \boldsymbol{\nabla} \hat{g}(\boldsymbol{k}_{i}, \boldsymbol{r}, \omega_{n} + i\mu_{B}B)$$

$$= \left[\begin{pmatrix} i\omega_{n} - \underline{\mu_{B}B} + \underline{\boldsymbol{v}_{i}} \cdot \boldsymbol{A}(\boldsymbol{r}) & -\underline{\Delta_{i}(\boldsymbol{r})} \\ -\underline{\Delta_{i}^{*}(\boldsymbol{r})} & -(i\omega_{n} - \underline{\mu_{B}B} + \underline{\boldsymbol{v}_{i}} \cdot \boldsymbol{A}(\boldsymbol{r})) \end{pmatrix}, \hat{g}(\boldsymbol{k}_{i}, \boldsymbol{r}, \omega_{n} + i\mu_{B}B) \right]$$

$$\hat{g} = -i\pi \begin{pmatrix} g & if \\ -i\underline{f} & -g \end{pmatrix}$$

Self-consistent condition

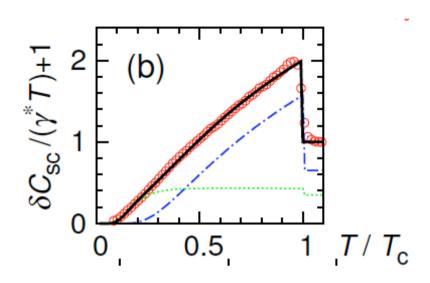
オーダー
パラメーター
$$\Delta_{i}(\mathbf{r}) = \sum_{j} N_{0j}\pi k_{B}T \sum_{|\omega_{n}| \leq \omega_{c}} \langle \underline{V_{ij}}f(\mathbf{k}_{j},\mathbf{r},\omega_{n})\rangle_{\mathbf{k}_{j}}$$

ベクトル
ポテンシャル 超伝導電流 $\mathbf{j}_{s} = -\sum_{i} N_{0i} \frac{T}{\kappa^{2}} \sum_{|\omega_{n}| \leq \omega_{c}} \langle \mathbf{v}_{i} \operatorname{Im}\{g\}\rangle_{\mathbf{k}_{i}}$
 $\mathbf{A} = \mathbf{B} \times \mathbf{r}/2 + \mathbf{a}$ 常磁性磁化
 $\nabla \times \nabla \times \mathbf{a} = \mathbf{j}_{s} + \underline{\nabla} \times \mathbf{M}_{\operatorname{para}}$ $M_{\operatorname{para}} = \frac{B(\mathbf{r})}{B} - \sum_{i} N_{0i} \frac{T}{\mu_{B}B} \sum_{|\omega_{n}| \leq \omega_{c}} \langle \operatorname{Im}\{g\}\rangle_{\mathbf{k}_{i}}$

Density of states (DOS)

$$N_{i\sigma}(E) = \frac{1}{S} \int dS N_{i\sigma}(\mathbf{r}, E) = \frac{1}{S} \int dS \underline{N_{0i}} \left\langle \text{Re}[g(\mathbf{k}_i, \mathbf{r}, \omega_n + \underline{i\sigma\mu_B B})|_{i\omega_n \to E + i\eta}] \right\rangle_{\mathbf{k}_i}$$
LDOS

Parameter



CeCu₂Si₂: S. Kittaka et al., arXiv:1307.3499.

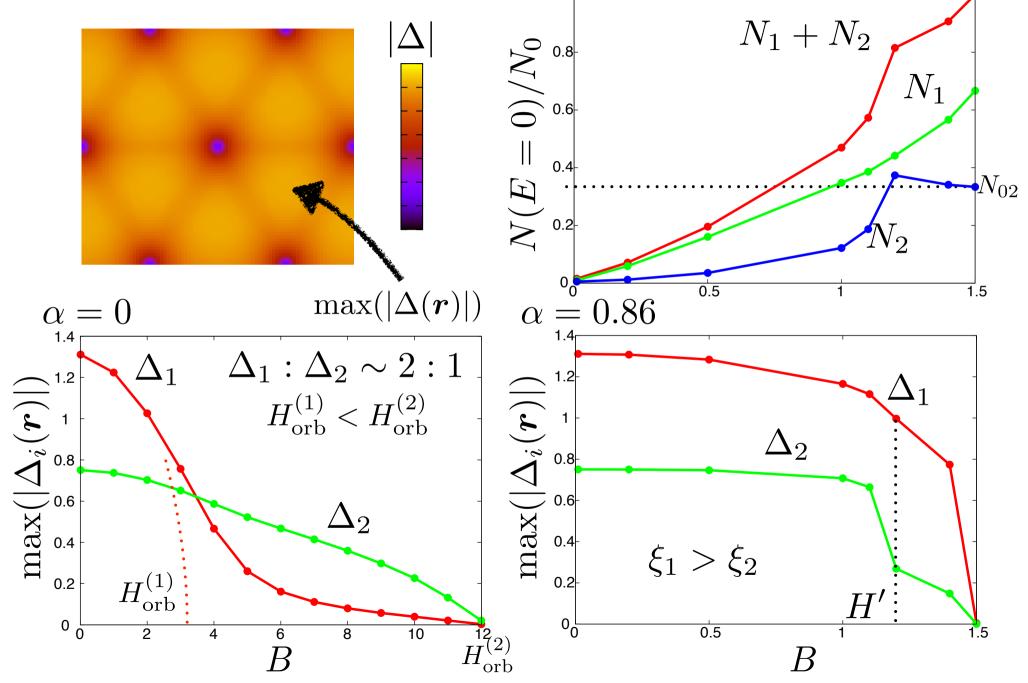
s-wave two-gap model

$$N_{01}: N_{02} = 65:35$$

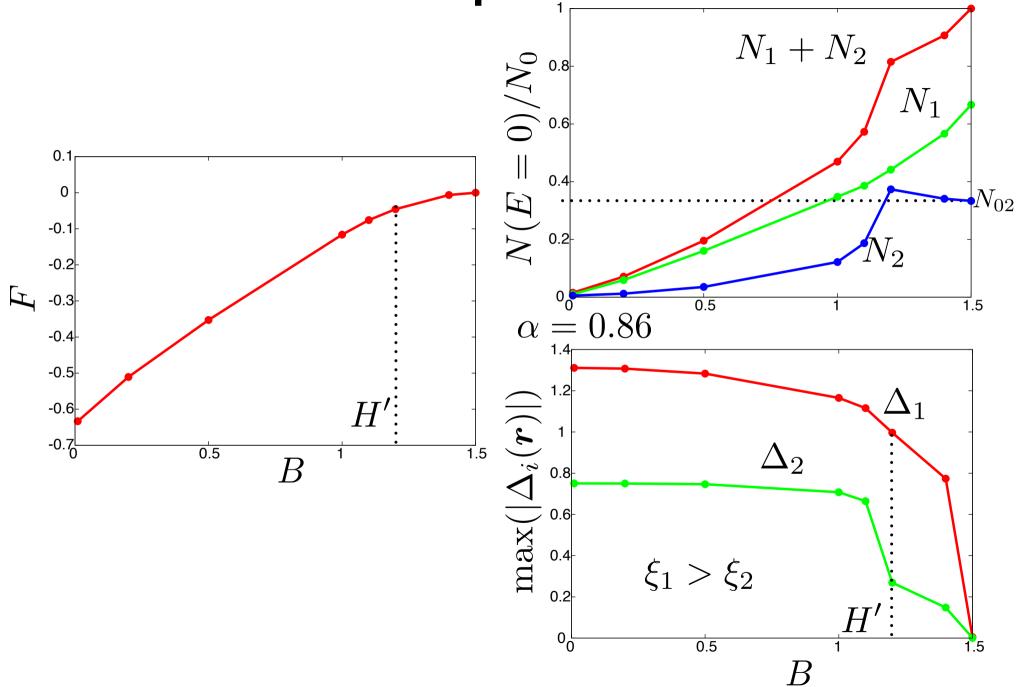
$$\frac{\Delta_1}{k_B T_c} = 1.76, \ \frac{\Delta_2}{k_B T_c} = 0.7$$

$$N_{01}:N_{02}=2:1$$
 $\Delta_1:\Delta_2\sim 2:1$
 $V_{11}=V_0,\ V_{22}=1.5V_0,\ V_{12}=V_{21}=0.05V_0$
 $H_{\mathrm{orb}}\sim \frac{\Phi_0}{2\pi\xi^2}\sim \frac{\Phi_0}{2\pi\hbar^2}\left(\frac{\Delta}{v_{\mathrm{F}}}\right)^2 \downarrow \emptyset$,
 $v_{\mathrm{F}1}:v_{\mathrm{F}2}=4:1$
 $H_{\mathrm{orb}}^{(1)}:H_{\mathrm{orb}}^{(2)}\sim 1:4$
 $H_{\mathrm{P}}^{(1)}$
 $H_{\mathrm{orb}}^{(2)}$
 $H_{\mathrm{orb}}^{(2)}$
 $H_{\mathrm{orb}}^{(2)}$
 $H_{\mathrm{orb}}^{(2)}$

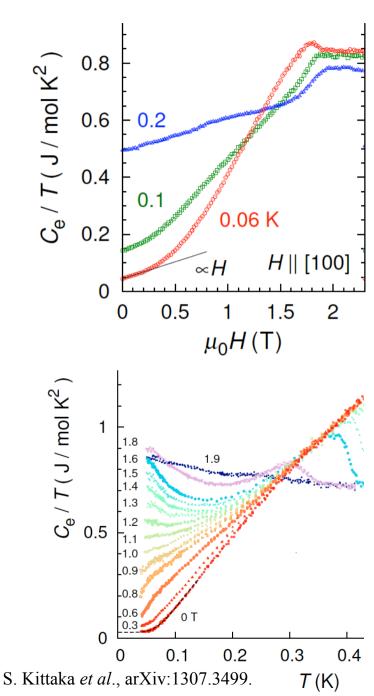
Field dependence



Field dependence



CeCu₂Si₂



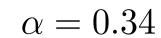
$$C_{\rm e} = T \frac{dS}{dT} = \int N(E) dE E \frac{\partial f(E)}{\partial T}$$

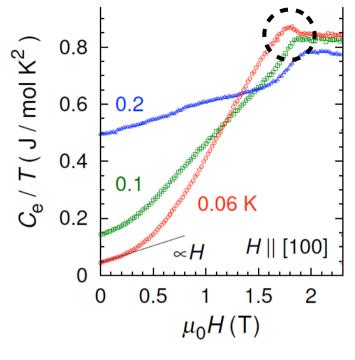
$$(E \to xT) = \int N(xT) T dx \frac{x^2}{4 \cosh^2(x/2)}$$

$$\frac{C_{\rm e}}{T} \equiv \gamma(T) = \int N(xT) dx \frac{x^2}{4 \cosh^2(x/2)}$$

$$T \to 0 \quad \text{Or} \quad \text{E.} \quad \text{F.} \quad \text{F.} \quad \text{F.} \quad \text{Or} \quad \text{E.} \quad \text{F.} \quad \text{F$$

CeCu₂Si₂



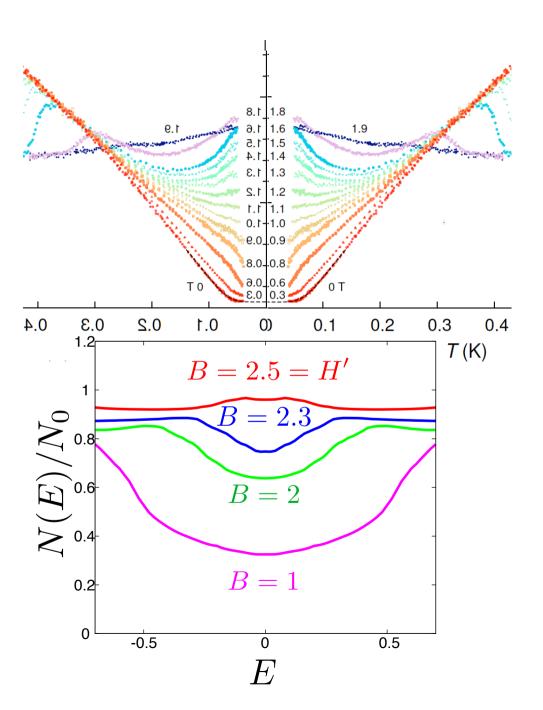


$$N_1 + N_2$$
 N_1
 N_1
 N_1
 N_1
 N_1
 N_2
 N_2
 N_2
 N_2
 N_2
 N_2
 N_2
 N_3
 N_4
 N_2
 N_4
 N_5
 N_6
 N_7
 N_8
 N_8
 N_9
 N_9

$$T
ightarrow 0$$
 のとき, $\gamma \propto N(0)$

CeCu₂Si₂

$$N(E) = a|E|^n$$
 のとき,
$$\frac{C_{\mathrm{e}}}{T} \propto T^n$$



Summary

- 『パウリ常磁性効果の理論を多バンド超伝導体にも適用できるように拡張。
- →一つのバンドのペア振幅が激減するH'が存在し、 ゼロエネルギー状態密度がノーマル状態を越える.
- →パウリ常磁性効果が強く効いていても 一次相転移が起こらないことがあり得る.

♥CeCu₂Si₂の比熱の振る舞いは本理論により

理解することができる.

