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Chapter 1

General Introduction

1.1 Introduction

Motivation of the thesis

Quantum spin models on lattices have been attracting theoretical and experimental inter-
ests extensively, since they can describe various magnetic materials well. The interests in
quantum spin systems extend from the aspects of material applications to purely statistical
mechanical ones.

For quantum antiferromagnets, e.g. the Heisenberg model, it has been expected that
quantum effects strongly appear at low temperatures and hence low-temperature properties
may be quite different from those of the classical limit. Though the question has been
long studied, understanding of quantum antiferromagnets from the statistical mechanical
point of view is still subtle and progressing now. One of the reasons is that the models
contain nontrivial quantum many-body problems, though the model Hamiltonians have
simple forms. It is also because phase transitions can occur only in the infinite limit of
system-size. For these reasons, we expect rigorous treatment to resolve the problem and we
also need advanced approximate studies that give a reliable answer to delicate questions.

To understand properties of a system at low temperatures theoretically, we first need
knowledge of ground-state properties of the Hamiltonian. We next need knowledge of
elementary excitations in the system at T = 0. These are what we would like to discuss in
the present thesis. In Part I, we study ground-state properties of quantum antiferromagnets
on various lattices. We are especially interested in whether spontaneous breakdown of
symmetries of the model Hamiltonian occurs in the thermodynamic limit. In Part II,
we discuss natures of elementary excitations at T = 0. Throughout this thesis, we are
consistently interested in the problem how quantum effects appear in physical properties
of the relevant system.

Scope of the thesis

This thesis presents both exact and approximate results which have some bearing on low-
temperature properties of quantum antiferromagnets. We consider only standard models
with nearest-neighbor interactions. Our discussions are mainly based on rigorous results.
These results occasionally provide a new physical insight and a fresh way of looking at a
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4 Chapter 1 General Introduction

particular problem. Moreover, rigorous results sometimes serve as an aid to intuitive ideas,
providing certain checks and standards of comparison for approximate arguments. However,
there are sometimes limitations in rigorous studies for technical reasons. This is the case
of quantum antiferromagnets on a triangular lattice. Then we give several approximate
analyses, which will be reported in Chapter 3.

We will give a brief proof for rigorous results, if they are new or closely related to our own
results. On the other hand, concerning well-established rigorous results, we may avoid being
too nervous on mathematics. Furthermore, we omit studies on the infinite-volume states
using C∗-algebras. However, since understanding of equilibrium states is very important in
discussions about symmetry breaking, we sometimes refer to them without proof. (If the
reader is seriously interested in rigorous quantum statistical mechanics, see the texts by
Ruelle [126], and Bratteli and Robinson [19], for example.)

1.2 Models of quantum antiferromagnets

Here we present the model Hamiltonians treated in the present thesis. Various antiferro-
magnetic compounds are well described by the Heisenberg model. The Hamiltonian of the
spin-S Heisenberg antiferromagnet on a finite lattice Λ ⊂ Zd is given by

HΛ = J
∑

〈i,j〉∈Λ

(Sx
i Sx

j + Sy
i Sy

j + Sz
i S

z
j ), (1.1)

where the summation runs over all nearest-neighbor sites and Sα
i (α = x, y, z) denote spin

operators at the site i that satisfy

[Sα
i , Sβ

j ] = iδijεαβγS
γ
i (1.2)

with S2 = S(S +1). This Hamiltonian (1.1) has the spin-SU(2) symmetry. We also discuss
the anisotropic Heisenberg model, i.e., the XXZ model. The Hamiltonian of the spin-S
XXZ antiferromagnet is given by

HΛ = J
∑

〈i,j〉∈Λ

(Sx
i Sx

j + Sy
i Sy

j + λSz
i S

z
j ), (1.3)

where 0 ≤ λ < 1. This Hamiltonian has the spin-O(1) symmetry.

1.3 Equilibrium states of quantum lattice systems

In this section we briefly summarize universal natures of the equilibrium states [126]. From
the Hamiltonian HΛ, the equilibrium state on the lattice Λ is obtained as

ωΛ(· · ·) =
Tr · · · exp(−βHΛ)

Tr exp(−βHΛ)
. (1.4)

This state is invariant under the time evolution; for any operators A, we have

ωΛ(A(t)) = ωΛ(A), (1.5)
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where
A(t) = exp(itHΛ)A exp(−itHΛ). (1.6)

The state ωΛ also satisfies the Kubo-Martin-Schwinger condition

ωΛ(AB(iβ)) = ωΛ(BA) (1.7)

for arbitrary operators A and B. Since we are interested in bulk properties of the system,
we take the thermodynamic limit to make boundary effects of finite lattices disappear.
Mathematically speaking, phase transitions can only occur in the thermodynamic limit.
Hence we take the infinite-volume limit of ωΛ and thereby obtain the equilibrium state

ω(· · ·) = lim
Λ↗Zd

ωΛ(· · ·). (1.8)

Again the state ω(· · ·) satisfies conditions (1.5) and (1.7), where A(t) denotes the time
evolution of the local operator A in the thermodynamic limit.

When the system has a unique pure phase in the thermodynamic limit, the state ω is
an ergodic state and has the cluster property

lim
|x|↗∞

{
ω

(
αx(A)B

)
− ω

(
αx(A)

)
ω(B)

}
= 0 (1.9)

for arbitrary local observables A and B, where αx means the translation by x. On the other
hand, if the state does not have the cluster property, there may be multiple phases.

Spontaneous symmetry breaking

In the case that a symmetry is broken, we obtain completely different states by changing
a parameter of the Hamiltonian slightly and then taking the thermodynamic limit. Oc-
currence of the symmetry breaking depends on the dimensionality, the temperature and
the symmetry of the Hamiltonian. Sometimes it is expected that the spin size, frustration
effects and the connectivity of the lattice also affect the occurrence. We will discuss this
subject in Chapters 2 and 3.

The interactions of the Hamiltonian are invariant under a large group G (for example
SU(2)), and consequently the equilibrium state ω is invariant under G. If the symmetry
breaking occurs, we obtain a state with broken symmetries and it has a symmetry Hα

smaller than G. The symmetry breaking can be understood by writing ω as the superpo-
sition

ω(· · ·) =
∫

dαωα(· · ·), (1.10)

where {ωα} are ergodic states with broken symmetries and the cluster property, and dα is
the measure on G/Hα. It is expected that, if the symmetry is spontaneously broken, the
symmetric mixed state ω is decomposed into ergodic states (or pure phases).
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Chapter 2

Ground states of quantum
antiferromagnets on bipartite lattices
— rigorous results —

In this chapter, we briefly review rigorous results on ground-state properties of quantum
antiferromagnets on hypercubic lattices. We also give our new results as Propositions.
Section 2.1 contains correlation inequalities. The spin-correlation functions have been rig-
orously bounded from above and below. Since the correlation functions provide information
about the strength of both long-range correlations and fluctuations, one can prove or rule
out the existence of the antiferromagnetic long-range order using these inequalities. We
discuss the absence of the long-range order in one-dimensional systems in Section 2.2,
and symmetry breaking in two- and higher-dimensional systems in Section 2.3. In Sec-
tion 2.3.2, we show that various physical quantities have classical values in the large-S
limit. Section 2.4 contains exact results on the ground state and low-lying excited states of
a finite-volume system. The rigorous inequalities given in this chapter will be used again
in Part II of this thesis. Thus the contents of the present chapter also give an introduction
to the following chapters.

2.1 Correlation inequalities

Here, we review useful rigorous inequalities. Using these inequalities, one can derive rigorous
bounds for the spin-correlation functions of the Heisenberg and XXZ antiferromagnets on
a hypercubic lattice. We discuss the correlation functions both in the pure ground state
and in the symmetric (or mixed) one.

Let H denote the Hamiltonian. The thermal average is given by

〈B〉 =
Tr[B exp(−βH)]

Tr exp(−βH)
(2.1)

for an arbitrary operator B. We discuss the following two correlation functions: The direct
correlation function

1

2
〈AC + CA〉 (2.2)

7



8 Chapter 2 Quantum antiferromagnets on bipartite lattices — rigorous results —

and Kubo’s canonical correlation function (or the Duhamel two-point function)

β(A,C) =
∫ β

0
dλ〈eλHAe−λHC〉. (2.3)

First we give various useful inequalities and mathematical preparations in Sections 2.1.1–
2.1.3. Then, in Section 2.1.4, we show upper and lower bounds for the spin correlation
functions of the Heisenberg and XXZ antiferromagnets at T = 0.

2.1.1 Bogoliubov inequality and it’s extension to T = 0

We start from the Bogoliubov inequality and it’s extension to T = 0. Bogoliubov first gave
lower bounds for the correlation functions [17].

Theorem 2.1.1. (Bogoliubov): Let A and C be arbitrary operators. Then we have

|〈[A,C]〉|2 ≤ β(∆A†, ∆A) · 〈[[C†, H], C]〉, (2.4)

where ∆A = A−〈A〉, and the square brackets denote the commutator, [A,C] = AC−CA.

Theorem 2.1.2. (Bogoliubov): Let A and C be arbitrary operators. Then we have

|〈[A,C]〉|2 ≤ β

2
〈{∆A†, ∆A}〉 · 〈[[C†, H], C]〉, (2.5)

where {A, C} = AC + CA.

Mermin and Wagner [94], and Hohenberg [47] used (2.5) to rule out spontaneous sym-
metry breaking at finite temperatures in one- and two-dimensional systems with continuous
symmetries. This inequality is, however, powerless for systems at T = 0. Then we need
other inequalities that give lower bounds of the correlation functions at T = 0. An example
is the uncertainty relation [127, 122]:

Theorem 2.1.3. (Uncertainty relation): Let A and C be arbitrary operators. Then
we have

|〈[A,C]〉|2 ≤ 〈{∆A†, ∆A}〉 · 〈{∆C†, ∆C}〉. (2.6)

This fundamental relation describes quantum fluctuations at arbitrary temperatures.
Recently, Pitaevskii and Stringari [122] used this relation to obtain lower bounds of the
correlation functions at T = 0. Moreover, extending the uncertainty relation, Shastry [129]
showed the following inequality:

Theorem 2.1.4. (Shastry): Let A and C be arbitrary operators. Then we have

|〈[A,C]〉|2 ≤ 〈{∆C†, ∆C}〉
√
〈[[A†, H], A]〉 · β(∆A†, ∆A) tanh





β

2

[〈[[A†, H], A]〉
β(∆A†, ∆A)

]1/2


 .

(2.7)
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This inequality also corresponds to an extension of the Bogoliubov inequality to T = 0.
This inequality works even at T = 0. Using this inequality, Pitaevskii and Stringari [122],
and Shastry [129] showed the absence of the long-range order in the ground state of the
one-dimensional Heisenberg antiferromagnet. (See Section 2.2.)

In the rest of this subsection, we show a proof for these inequalities (2.4)–(2.7). Let us
consider the following two-point spectral function

pA,C(ω) =
1

Z

∑
m,n

{exp(−βEm) + exp(−βEn)}〈m|A|n〉〈n|C|m〉δ(ω − En + Em), (2.8)

where Z = Tr exp(−βH), and {|m〉} denote the eigenstates of the Hamiltonian with the
eigenvalues {Em}. This function (2.8) is the spectral representation of the time-correlation
function 〈{A(t), C}〉, where A(t) = exp(iHt)A exp(−iHt). It satisfies the following conve-
nient frequency-sum rules [143, 48]:

∫ ∞

−∞
dω tanh

βω

2
pA,C(ω) =

1

Z

∑
m,n

{exp(−βEm)− exp(−βEn)}〈m|A|n〉〈n|C|m〉

= 〈[A,C]〉, (2.9)
∫ ∞

−∞
dω

tanh(βω/2)

ω
pA,C(ω) =

1

Z

∑
m,n

exp(−βEm)− exp(−βEn)

En − Em

〈m|A|n〉〈n|C|m〉

= β(A,C), (2.10)
∫ ∞

−∞
dω · ω tanh

βω

2
pA,C(ω) =

1

Z

∑
m,n

{exp(−βEm)− exp(−βEn)}(En − Em)〈m|A|n〉〈n|C|m〉

= 〈[[A,H], C]〉, (2.11)
∫ ∞

−∞
dωpA,C(ω) =

1

Z

∑
m,n

{exp(−βEm) + exp(−βEn)}〈m|A|n〉〈n|C|m〉

= 〈{A,C}〉. (2.12)

Using (2.8), we can prove Theorems 2.1.1–2.1.4 as follows.

Proof of Theorem 2.1.1. Let us define the functional

(f(ω)A, g(ω)B) ≡
∫

dωf †(ω)g(ω)pA†,B(ω) (2.13)

for elements in the tensor-product space F⊗A, where F denotes the space of the functions
of ω, and A denotes the space of the operators. Equation (2.13) satisfies the definition of
the inner product as follows.

1) (f(ω)A, f(ω)A) =
∫

dω|f(ω)|2pA†,A(ω) ≥ 0,

2) (λf(ω)A, g(ω)B) = λ∗(f(ω)A, g(ω)B),

3) (f(ω)A + g(ω)B, h(ω)C) = (f(ω)A, h(ω)C) + (g(ω)B, h(ω)C),
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for arbitrary f(ω)A, g(ω)B and h(ω)C in F ⊗A. We hence have the Schwarz inequality

∣∣∣∣
∫ ∞

−∞
dωf †(ω)g(ω)pA†,C(ω)

∣∣∣∣
2

≤
∫ ∞

−∞
dω|f(ω)|2pA†,A(ω) ·

∫ ∞

−∞
dω|g(ω)|2pC†,C(ω). (2.14)

Inserting f(ω) =
√

tanh(βω/2)/ω and g(ω) =
√

ω tanh(βω/2) in (2.14), we obtain

|〈[A, C]〉|2 ≤ β(A†, A)〈[[C†, H], C]〉, (2.15)

where we have used the sum rules (2.9)–(2.11). Transforming the operator A into ∆A and
using the relation [∆A,C] = [A,C], we obtain (2.4).

Proof of Theorem 2.1.2. First, note that

tanh x ≤ x (2.16)

for x ≥ 0. Inserting x = β(En − Em)/2 into (2.16) and using the sum rules (2.10) and
(2.12), we have

β(∆A†, ∆A) ≤ β

2
〈{∆A†, ∆A}〉. (2.17)

Then, we obtain (2.5), using (2.4) and (2.17).

Proof of Theorem 2.1.3. When f(ω) = tanh(βω/2) and g(ω) = 1 in (2.14), we have

|〈[A,C]〉|2 ≤ 〈{C†, C}〉
∫ ∞

−∞
dω tanh2 βω

2
pA†,A(ω), (2.18)

where we have used the sum rules (2.9) and (2.12). Since the function pA†,A(ω) is a sum-
mation of the delta functions with positive coefficients, the integration with respect to ω
conserves the inequality of the integrand as

∫ ∞

−∞
dω tanh2 βω

2
pA†,A(ω) ≤

∫ ∞

−∞
dωpA†,A(ω). (2.19)

Hence (2.18) becomes

|〈[A,C]〉|2 ≤ 〈{C†, C}〉 · 〈{A†, A}〉. (2.20)

Transforming A into ∆A and C into ∆C, we have (2.6)

Proof of Theorem 2.1.4. Let us consider (2.18). The integration in the right-hand side
of (2.18) is rewritten in the from

∫ ∞

−∞
dω tanh2 βω

2
pA†,A(ω) =

∫ ∞

0
dω tanh2 βω

2

{
pA†,A(ω) + pA,A†(ω)

}
. (2.21)

We define the positive measure dµ(ω) by

dµ(ω) = tanh
βω

2

{
pA†,A(ω) + pA,A†(ω)

}
. (2.22)
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Applying Jensen’s inequality to the convex function tanh x, we obtain

∫ ∞

0
tanh

βω

2
dµ(ω)

/ ∫ ∞

0
dµ(ω) < tanh

[
β

∫ ∞

0
ωdµ(ω)

/
2

∫ ∞

0
dµ(ω)

]
. (2.23)

From the Schwarz inequality we have

∫ ∞

0
dµ(ω) <

[∫ ∞

0
ωdµ(ω)

∫ ∞

0
ω−1dµ(ω)

]1/2

=
{
〈[[A†, H], A]〉 · β(A†, A)

}1/2
, (2.24)

where we have used the sum rules (2.10) and (2.11). We arrive at (2.7), using (2.18), (2.21),
(2.23) and (2.24).

2.1.2 Falk–Bruch inequality

Another useful inequality was derived by Falk and Bruch [31]. This inequality gives an
upper bound for 〈{A†, A}〉.

Theorem 2.1.5. (Falk and Bruch): Let A be an arbitrary operator. Then we have

β(A†, A) ≥ β〈{A†, A}〉tanh y

2y
, (2.25)

where y is the solution of

y tanh y =
β〈[[A†, H], A]〉

2〈{A†, A}〉 . (2.26)

Proof of Theorem 2.1.5. Let x be the variable defined by

x = y tanh y =
β〈[[A†, H], A]〉

2〈{A†, A}〉 . (2.27)

Then, y is a function of x. We consider the function

f(x) =
1

y
tanh y, (2.28)

which is well-defined, monotone-decreasing and convex with respect to x in the region
(0,∞). (See Ref. [27].) Clearly, the function f satisfies

f(y tanh y) =
1

y
tanh y. (2.29)

In order to transform the function f(x), we next consider the function

h(x) =
1

Z
Tr[A†e−xHAe−(β−x)H ]

=
1

Z

∑
m,n

|〈n|A|m〉|2 exp[−βEm + x(Em − En)]. (2.30)
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The final equation means that h(x) is a Laplace transform of a positive measure dµ(t),

h(x) =
∫

extdµ(t). (2.31)

Using this measure, the correlation functions and the double commutator can be written
as

〈{A†, A}〉 = h(β) + h(0) =
∫

(eβt + 1)dµ(t), (2.32)

β(A†, A) =
∫ β

0
h(x)dx =

∫ 1

t
(eβt − 1)dµ(t), (2.33)

〈[[A†, H], A]〉 = h′(β)− h′(0) =
∫

t(eβt − 1)dµ(t). (2.34)

Thus we rewrite the variable x in the form

x = β
∫

t(eβt − 1)dµ(t)
/

2
∫

(eβt + 1)dµ(t). (2.35)

Let dν(t) be the measure such that

dν(t) = (eβt + 1)dµ(t)
/ ∫

(eβt + 1)dµ(t). (2.36)

Then we have

x =
β

2

∫
t tanh

βt

2
dν(t). (2.37)

Since f(x) is convex and dν(t) is a probability measure, we have

f(x) = f

(∫ βt

2
tanh

βt

2
dν(t)

)
≤

∫
f

(
βt

2
tanh

βt

2

)
dν(t)

=
∫ 2

βt
tanh

βt

2
dν(t) =

2β(A†, A)

β〈{A†, A}〉 , (2.38)

where we have used Jensen’s inequality.

In the zero-temperature limit, Theorem 2.1.5 is reduced to the following form.

Theorem 2.1.6. (Kennedy, Lieb and Shastry): Let A be an arbitrary operator.
Then the inequality

〈0|{∆A, ∆A†}|0〉2 ≤ χT=0
A · 〈0|[[A†, H], A]|0〉 (2.39)

holds at T = 0, where |0〉 denotes the ground state and χT=0
A = lim

β↗∞
β(∆A†, ∆A).

Let us consider the spectral function

SA,C(ω) ≡ ∑
n

{〈0|A|n〉〈n|C|0〉+ 〈0|C|n〉〈n|A|0〉}δ(ω − En + E0). (2.40)
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This spectral function satisfies the following useful sum rules [48, 68]:

∫ ∞

−∞
dωSA,C(ω) = 〈0|{A, C}|0〉, (2.41)

∫ ∞

−∞
dωω−1SA,C(ω) = lim

β↗∞
β(A,C), (2.42)

∫ ∞

−∞
dωωSA,C(ω) = 〈0|[[A,H], C]|0〉. (2.43)

Here we show a brief and straightforward proof of Theorem 2.1.6 by Kennedy, Lieb and
Shastry [68].

Proof of Theorem 2.1.6. The functional

(f(ω), g(ω)) =
∫ ∞

−∞
dωf †(ω)g(ω)S∆A†,∆A(ω) (2.44)

satisfies the definition of the inner product, and hence it satisfies the Schwarz inequality

∣∣∣∣
∫ ∞

−∞
dωf †(ω)g(ω)S∆A†,∆A(ω)

∣∣∣∣
2

≤
∫ ∞

−∞
dω|f(ω)|2S∆A†,∆A(ω) ·

∫ ∞

−∞
dω|g(ω)|2S∆A†,∆A(ω). (2.45)

Inserting f(ω) =
√

ω and g(ω) = 1/
√

ω in (2.45) and using the sum rules (2.41)–(2.43) we
have (2.39).

2.1.3 Dyson–Lieb–Simon inequality (Gaussian domination)

Theorems 2.1.1–2.1.6 are applicable to a wide class of quantum lattice systems, i.e., to
arbitrary quantum models on arbitrary lattices. From these inequalities, however, we cannot
obtain any upper bound for the Duhamel two-point function β(∆A†, ∆A). Up to now,
upper bounds of β(∆A†, ∆A) are obtained for limited models, which include the quantum
antiferromagnets on d-dimensional L × · · · × L hypercubic lattices Λ ⊂ Zd. We consider
the spin-S Heisenberg antiferromagnet. The Hamiltonian is given by

HΛ = J
∑

〈i,j〉∈Λ

(Sx
i Sx

j + Sy
i Sy

j + Sz
i S

z
j ), (2.46)

where J > 0 and the summation runs over all nearest-neighbor sites. We also consider the
spin-S XXZ antiferromagnet,

HΛ = J
∑

〈i,j〉∈Λ

(Sx
i Sx

j + Sy
i Sy

j + λSz
i S

z
j ), (2.47)

where J > 0 and 0 ≤ λ < 1. For these models, we are interested in the spin correlations
β(Sα

−k, S
α
k ) and 〈{Sα

−k, S
α
k }〉/2, where Sα

k = L−d/2 ∑
j∈Λ Sα

j exp(ikrj) for α = x, y and z.

Dyson, Lieb and Simon [27] first obtained an upper bound of β(Sα
−k, S

α
k ). We show the

upper bound in the following.
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Let us consider the XXZ model on the lattice Λ with a staggered magnetic field. The
Hamiltonian is defined by

HΛ(B) = J
∑

〈i,j〉∈Λ

(Sx
i Sx

j + Sy
i Sy

j + λSz
i S

z
j )−BOΛ, (2.48)

where 0 ≤ λ ≤ 1, and OΛ denotes the order-parameter operator

OΛ =
∑

i∈A

Sx
i −

∑

i∈B

Sx
i . (2.49)

The thermal average is given by

〈A〉TΛ,B =
Tr[A exp{−βHΛ(B)}]
Tr exp{−βHΛ(B)} . (2.50)

Theorem 2.1.7. (Dyson, Lieb and Simon): Let HΛ(B) be the Hamiltonian defined
by (2.48). Then, for arbitrary values of B, we have

β(Sα
−k, S

α
k )Λ,B ≤ 1

2Jd(1 + γk)
(α = x, y), (2.51)

β(Sz
−k, S

z
k)Λ,B ≤ 1

2Jλd(1 + γk)
, (2.52)

where

β(A,C)Λ,B =
∫ β

0
dλ 〈A exp{−λHΛ(B)}C exp{λHΛ(B)}〉TΛ,B (2.53)

and

γk =
1

d

d∑

ν=1

cos kν . (2.54)

Since the proof of this theorem is very complicated, we only show its brief sketch. (If
the reader is seriously interested in the proof, see the original paper [27].) The important
step by Dyson et al. is an extension of the method by Fröhlich, Simon and Spencer [35].
Fröhlich et al. used the following inequality in the proof of the classical cases:

{∫
exp[−(x− y − a)2]dµ(x)dν(y)

}2

≤
∫

exp[−(x− y)2]dµ(x)dµ(y) ·
∫

exp[−(x− y)2]dν(x)dν(y), (2.55)

where dµ and dν denote measures. This inequality was extended to the quantum case by
Dyson al et. in the following form.

Lemma 2.1.8. (Gaussian domination): Let H1 be a finite-dimensional vector space
and let H = H1 ⊗ H1. Let A be the operator A1 ⊗ 1 and Ã be 1 ⊗ A1 for an arbitrary
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operator A1 on H1. Then for arbitrary self-adjoint operators A, B, C1, · · · , Cl with real
matrix representations and for arbitrary real numbers h1, · · · , hl, we have

(
Tr

{
exp

[
A + B̃ −

l∑

i=1

(Ci − C̃i − hi)
2
]})2

≤ Tr
{
exp

[
A + Ã−

l∑

i=1

(Ci − C̃i)
2
]}
· Tr

{
exp

[
B + B̃ −

l∑

i=1

(Ci − C̃i)
2
]}

. (2.56)

We only introduce this lemma without any proof. This lemma is applicable to antifer-
romagnetic quantum spin systems that have the “bond-reflection symmetry”; namely, the
lattice is invariant under the reflection with a flat plane that only cuts bonds and divides
the lattice into two lattices. Using this lemma, Theorem 2.1.7 can be derived [27].

Remark: Theorem 2.1.7 is not exactly equal to what was obtained by Dyson, Lieb and
Simon. They only discussed the system without any magnetic field. We, however, find that
their theorems and lemmas are applicable to the Hamiltonian HΛ(B) in (2.48) as well.

Note that, if the system has a Néel order in the thermodynamic limit, the susceptibility
limΛ↗Zd β(Sα

−k, S
α
k )Λ,B would discretely change depending on B at B = 0. However, the

bounds (2.51) and (2.52) do not depend on B. This indicates that these bounds are not
optimal ones.

Using Theorems 2.1.5 and 2.1.7, Dyson, Lieb and Simon proved the existence of the
antiferromagnetic long-range order in the three-dimensional Heisenberg antiferromagnet
at sufficiently low temperatures [27]. After that, extending this proof, Jordão-Neves and
Fernando-Perez [60] proved the long-range order in the two-dimensional system at the zero
temperature. Further discussions about ground-state properties are given in Section 2.3.
Owing to the applicability of Theorem 2.1.7, we can obtain rigorous proofs only for systems
on lattices that have the bond-reflection symmetry. Thus we cannot apply this theorem to
models on a triangular lattice or on a kagomé lattice. Recently, using Lemma 2.1.8, Kubo
and Kishi obtained bounds for the Duhamel two-point functions of the quantum antifer-
romagnets on the square lattice with next-nearest-neighbor antiferromagnetic interactions,
i.e., the so-called J1–J2 model [70], and in the negative-U Hubbard model on arbitrary
lattices [76].

2.1.4 Bounds of correlation functions at T = 0

Here we show bounds of the correlation functions in the ground states of the Heisenberg and
XXZ antiferromagnets. Using the rigorous bounds given in the previous three subsections,
we can obtain upper and lower bounds of the spin correlation functions. As the ground
states, we consider the pure (or ergodic) states and a symmetric (or mixed) state. One of
the pure ground states is given by

〈· · ·〉T=0
x = lim

B↘0
lim

Λ↗Zd
lim

β↗∞
Tr[· · · exp{−βHΛ(B)}]

Tr exp{−βHΛ(B)}
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= lim
B↘0

lim
Λ↗Zd

lim
β↗∞

〈· · ·〉TΛ,B. (2.57)

Because the physical equilibrium state is one of the pure (or ergodic) states, we are interested
in the correlation functions in the pure state (2.57). On the other hand, in numerical studies
of finite-size systems the ground state becomes a symmetric state, which is defined by

〈· · ·〉T=0
0 = lim

Λ↗Zd
lim

β↗∞
Tr[· · · exp(−βHΛ)]

Tr exp(−βHΛ)
. (2.58)

(See Section 2.4.) For comparison with numerical studies, it is useful to discuss quantities
in the symmetric ground state.

We first discuss the correlation functions in the pure state at T = 0, which are given by

S‖(k) = lim
B↘0

lim
Λ↗Zd

lim
β↗∞

〈
∆Sx

−k∆Sx
k

〉T

Λ,B
, (2.59)

S⊥α (k) = lim
B↘0

lim
Λ↗Zd

lim
β↗∞

〈
Sα
−kS

α
k

〉T

Λ,B
(2.60)

and

χ‖(k) = lim
B↘0

lim
Λ↗Zd

lim
β↗∞

∫ β

0
dλ

〈
∆Sx

−k exp{−λHΛ(B)}∆Sx
k exp{λHΛ(B)}

〉T

Λ,B
, (2.61)

χ⊥α (k) = lim
B↘0

lim
Λ↗Zd

lim
β↗∞

∫ β

0
dλ

〈
Sα
−k exp{−λHΛ(B)}Sα

k exp{λHΛ(B)}
〉T

Λ,B
(2.62)

for α = y and z, where ∆Sx
k = Sx

k − 〈Sx
k 〉TΛ,B. Using Theorems 2.1.1–2.1.8, we can obtain

both upper and lower bounds of these correlation functions.

Theorem 2.1.9. In the pure ground state, the Duhamel two-point functions (2.61) and
(2.62) satisfy

0 ≤ χ‖(k) ≤ 1

2Jd(1 + γk)
, (2.63)

m2
s

2Jd(ρx + ρy)(1 + γk)
≤ χ⊥y (k) ≤ 1

2Jd(1 + γk)
, (2.64)

m2
s

2Jd{ρx(1 + λγk) + ρz(λ + γk)} ≤ χ⊥z (k) ≤ 1

2Jλd(1 + γk)
, (2.65)

where

γk =
1

d

d∑

ν=1

cos kν , (2.66)

ms = lim
B↘0

lim
Λ↗Zd

1

Ld
〈OΛ〉T=0

Λ,B , (2.67)

ρα = lim
B↘0

lim
Λ↗Zd

1

Ldd

∑

〈i,j〉∈Λ

〈
−Sα

i Sα
j

〉T=0

Λ,B
(2.68)

for α = x, y and z.
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Proof of Theorem 2.1.9. The left-hand-side inequalities of (2.63)–(2.65) are derived from
Theorem 2.1.1: Considering (2.14) at T = 0, taking the Hamiltonian as HΛ(B) and setting
Ak = Sy

k and C = Sz
Q−k with Q = (π, · · · , π), we have

〈[A,C]〉T=0
Λ,B =

1

Ld
〈OΛ〉T=0

Λ,B (2.69)

and

〈
[[C†, H], C]

〉T=0

Λ,B
=

2J

Ld

∑

〈i,j〉∈Λ

〈
−Sx

i Sx
j − Sy

i Sy
j

〉T=0

Λ,B
(1 + γk) +

B

Ld
〈OΛ〉T=0

Λ,B . (2.70)

In the thermodynamic limit under the infinitesimally small staggered field, we obtain

lim
B↘0

lim
Λ↗Zd

〈[A,C]〉T=0
Λ,B = ms (2.71)

lim
B↘0

lim
Λ↗Zd

〈
[[C†, H], C]

〉T=0

Λ,B
= 2Jd(ρx + ρy)(1 + γk). (2.72)

Thus we arrive at the first inequality of (2.64). In the same way, taking Ak = Sx
k and

C = Sy
Q−k, we obtain the first inequality of (2.63). Furthermore, setting Ak = Sz

k and
C = Sy

Q−k, we have

lim
B↘0

lim
Λ↗Zd

〈
[[C†, H], C]

〉T=0

Λ,B
= 2Jd{ρx(1 + λγk) + ρz(λ + γk)}, (2.73)

and hence the first inequality of (2.65). The right-hand-side inequalities are derived straight
from Theorem 2.1.7.

In the Heisenberg antiferromagnet, or λ = 1, χ⊥y (k) and χ⊥z (k) are equal to each other

and are called the perpendicular susceptibility χ⊥(k). The correlation function χ‖(k) is the
parallel susceptibility. Both the upper and lower bounds of χ⊥(k) in (2.64) have the same
momentum dependence. If 0 ≤ λ < 1, on the other hand, the upper and lower bounds of
the perpendicular susceptibility have different momentum dependence.

Theorem 2.1.10. In the pure ground state, the spin correlations (2.59) and (2.60)
satisfy

0 ≤ S‖(k) ≤ 1

2

√√√√ρy(1− λγk) + ρz(λ− γk)

(1 + γk)
, (2.74)

m2
s

2

√√√√ λ(1− γk)

(ρx + ρy)(1 + γk)
≤ S⊥y (k) ≤ 1

2

√√√√ρx(1− λγk) + ρz(λ− γk)

(1 + γk)
, (2.75)

m2
s

2

√
1− γk

ρx(1 + λγk) + ρz(λ + γk)
≤ S⊥z (k) ≤ 1

2

√√√√(ρx + ρy)(1− γk)

λ(1 + γk)
. (2.76)
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Proof of Theorem 2.1.10. The left-hand-side inequalities are derived from Theorem 2.1.4:
At T = 0, equation (2.7) becomes

∣∣∣〈[A,C]〉T=0
Λ,B

∣∣∣
2 ≤

〈
{∆C†, ∆C}

〉T=0

Λ,B

√
〈[[A†, H], A]〉T=0

Λ,B · χT=0
A , (2.77)

where χT=0
A = limβ↗∞ β(∆A†, ∆A). Setting Ak = Sz

k+Q and C = Sy
−k, and taking the

thermodynamic limit limB↘0 limΛ↗Zd〈· · ·〉T=0
Λ,B , we obtain the first inequality of (2.75). In

the same way, taking Ak = Sy
k+Q and C = Sz

−k, we have the first inequality of (2.76)
and, setting Ak = Sy

k+Q and C = Sx
−k, we have the first inequality of (2.74). The second

inequalities are obtained by combining Theorems 2.1.6 and 2.1.9.

In the Heisenberg model (λ = 1), we have S⊥y (k) = S⊥z (k) because of the isotropy of the
model. The correlation function S⊥α (k) is called the perpendicular structure factor S⊥(k),
and S‖(k) is the parallel structure factor. Both the upper and lower bounds of S⊥(k) have
the same momentum dependence. For 0 ≤ λ < 1, however, the upper and lower bounds of
the perpendicular structure factor have different momentum dependence.

In the rest of this subsection, we discuss the correlation functions in the symmetric
ground state (2.58),

Sα(k) = lim
Λ↗Zd

lim
β↗∞

〈
Sα
−kS

α
k

〉T

Λ,B=0
(2.78)

and

χα(k) = lim
Λ↗Zd

lim
β↗∞

∫ β

0
dλ

〈
Sα
−k exp(−λHΛ)Sα

k exp(λHΛ)
〉T

Λ,B=0
(2.79)

for α = x, y and z. Note that, if the symmetry is not spontaneously broken, there exists
only one pure (or ergodic) state in the thermodynamic limit and hence there is no difference
between the correlation functions (2.59) [or (2.60)] and (2.78), and between (2.61), (2.62)
and (2.79).

We give correlation inequalities of the symmetric ground state in the following.

Theorem 2.1.11. In the symmetric ground state, the Duhamel two-point functions
(2.79) satisfy

χα(k) ≤ 1

2Jd(1 + γk)
(α = x, y), (2.80)

χz(k) ≤ 1

2Jλd(1 + γk)
. (2.81)

Proof of Theorem 2.1.11. Equations (2.80) and (2.81) are derived straight from Theo-
rem 2.1.7, by taking the thermodynamic limit lim

Λ↗Zd
lim
B↘0

〈· · ·〉T=0
Λ,B .

Theorem 2.1.12. In the symmetric ground state, the spin correlations (2.78) satisfy

Sα(k) ≤ 1

2

√√√√ρ1(1− λγk) + ρ2(λ− γk)

(1 + γk)
(α = x, y), (2.82)
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Sz(k) ≤ 1

2

√√√√2ρ1(1− γk)

λ(1 + γk)
, (2.83)

where

ρ1 = lim
Λ↗Zd

lim
B↘0

1

Ldd

∑

〈i,j〉∈Λ

〈
−Sx

i Sx
j

〉T=0

Λ,B
, (2.84)

ρ2 = lim
Λ↗Zd

lim
B↘0

1

Ldd

∑

〈i,j〉∈Λ

〈
−Sz

i S
z
j

〉T=0

Λ,B
. (2.85)

Proof of Theorem 2.1.12. We obtain (2.82) and (2.83) following the proof of Theo-
rem 2.1.9, with only the order of taking limits changed. First we take the limit B ↘ 0, and
then take the thermodynamic limit. Thereby we have (2.82) and (2.83).

Note that, if the symmetry is spontaneously broken in the pure state 〈· · ·〉T=0
x , the two

correlation functions Sα(k) and S⊥α (k) (or S‖(k)) have different upper bounds. For example,
in Section 2.3.2, we show the difference in the large-S limit of the two- and three-dimensional
Heisenberg antiferromagnets.

2.2 Absence of long-range order in d = 1 systems

In this and the next sections, we show how the rigorous inequalities were used in rigorous
proofs of the existence or absence of the long-range order. In this section, we discuss the
long-range order in the one-dimensional systems.

In the one-dimensional quantum antiferromagnets, the spin correlations are not strong
enough to produce the long-range order. It was rigorously shown that the one-dimensional
spin-S Heisenberg and XXZ antiferromagnets do not have the antiferromagnetical long-
range order. Hence the infinite-volume ground state would be unique and symmetric. Here,
we briefly show the rigorous proof as well as results of the exact solutions.

Rigorous proof

Pitaevskii and Stringari first presented a method of proving the absence of the long-range
order [122]. After that, Shastry [129] rigorously proved it, using Theorem 2.1.10. The proof
is as follows.

In the finite system Λ with the periodic boundary condition, the momentum summation
of the spin correlations becomes

1

L

∑

k

〈
Sy
−kS

y
k

〉T

Λ,B
=

1

L

L∑

i=1

〈
(Sy

i )2
〉T

Λ,B
=

〈
(Sy

1 )2
〉T

Λ,B
, (2.86)

where we have used the sublattice-translation invariance. Since k = π is the singular point
of the correlation functions in the thermodynamic limit, we exclude it from the momentum
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summation and thereby we have

1

L

∑

k 6=π

〈
Sy
−kS

y
k

〉T

Λ,B
=

1

L

∑

k

〈
Sy
−kS

y
k

〉T

Λ,B
− 1

L
〈Sy
−πSy

π〉TΛ,B

=
〈
(Sy

1 )2
〉T

Λ,B
− 1

L2

〈(∑

i∈A

Sy
i −

∑

i∈B

Sy
i

)2
〉T

Λ,B

. (2.87)

Taking the thermodynamic limit lim
B↘0

lim
Λ↗Z

〈· · ·〉T=0
Λ,B and replacing the summation L−1 ∑

k 6=π

with (2π)−1
∫ π

−π
dk, we have

∫ π

−π

dk

2π
S⊥y (k) =

〈
(Sy

1 )2
〉T=0

x
− lim

B↘0
lim
Λ↗Z

1

L2

〈(∑

i∈A

Sy
i −

∑

i∈B

Sy
i

)2
〉T=0

Λ,B

≤
〈
(Sy

1 )2
〉T=0

x
. (2.88)

Thus we know that the right-hand-side of (2.88) is bounded from above by the norm of
(Sy

1 )2, i.e. S2. On the other hand, we integrate both sides of the first inequality in (2.75)
to obtain the lower bound as

m2
s

2

√√√√ λ

ρx + ρy

∫ π

−π

dk

2π

√
1− γk

1 + γk

≤
∫ π

−π

dk

2π
S⊥y (k). (2.89)

The momentum integral in the left-hand-side of (2.89) diverges. For the consistency between
the lower and upper bounds to be kept, the staggered magnetization ms must be vanishing
for 0 < λ ≤ 1.

In the classical limit, the ground state has a Néel order where spins lay in the xy plane.
In the ground state of the one-dimensional quantum models, however, the order is vanishing
owing to quantum fluctuations. Thus the disorder of the ground state is a purely quantum
effect. Indeed, the vanishing of the order was proved on the basis of the uncertainty relation,
because Shastry’s inequality originated from the relation.

Antiferromagnetic Spin-1/2 Heisenberg and XY chains

Among plenty of quantum antiferromagnets, the antiferromagnetic spin-1/2 chains are the
special models, because the exact solutions are known and asymptotic forms of the corre-
lation functions were obtained from the solutions.

The one-dimensional spin-1/2 Heisenberg antiferromagnet was first solved by Bethe [14]
using a hypothesis, which was later proved by Yang and Yang [149]. From Bethe’s solution,
the ground-state energy [51], the magnetization curve [41] and the spin-wave spectrum [22]
were evaluated exactly. Asymptotic forms of the correlation functions were first studied by
Luther and Peschel [88] in the continuum limit. Izergin and Korepin [58] calculated the
correlation functions from the Bethe-ansatz solution and showed the power decay of the
spin correlations.

The one-dimensional spin-1/2 XY model was solved by Lieb, Schulz and Mattis [86].
They transformed the model to a free-fermion system and then obtained all the eigenstates.
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Katsura [64] evaluated various thermodynamic quantities. After that McCoy [90] calculated
the spin correlation functions and showed the asymptotic form

〈Sx
i Sx

j 〉T=0
0 ∼ 1

|i− j|1/2
. (2.90)

Furthermore, Araki and Matsui [8] proved the uniqueness of the ground state of the infinite-
volume system.

2.3 Symmetry breaking in d ≥ 2 systems

In this section, we discuss the long-range order in the two- and higher-dimensional systems.
It has been rigorously shown that the symmetry breaking occurs at T = 0 in the spin-S
Heisenberg antiferromagnet on the cubic lattice and in the S ≥ 1 Heisenberg antiferromag-
net on the square lattice. We briefly show the rigorous proof using correlation inequalities.
Furthermore, we discuss the large-S limit of the Heisenberg model and show that physical
quantities have the classical values in this limit.

2.3.1 Existence of long-range order

A rigorous proof for the existence of the long-range order was first given by Dyson, Lieb
and Simon [27]. They proved the long-range order of the three-dimensional Heisenberg
antiferromagnet at sufficiently low temperatures. Extending their proof, Jordão-Neves and
Fernando-Perez [60] proved long-range order in the ground state of the two-dimensional S ≥
1 Heisenberg model, and Kennedy, Lieb and Shastry [68] proved it for the three-dimensional
Heisenberg model with arbitrary spins. After that the rigorous proof was extended to the
XY model with d ≥ 2 and arbitrary spins by Kennedy, Lieb and Shastry [69], and to the
XXZ model by Kubo and Kishi [75] and by Nishimori and Ozeki [119].

Let us discuss the antiferromagnetic Heisenberg model with B = 0. Considering the
d-dimensional case of (2.87), we have

1

Ld

∑

k 6=Q

〈
Sx
−kS

x
k

〉T=0

Λ,B=0
=

〈
(Sx

1 )2
〉T=0

Λ,B=0
− 1

L2d

〈
(OΛ)2

〉T=0

Λ,B=0
, (2.91)

where Q = (π, · · · , π) and

OΛ =
∑

i∈A

Sx
i −

∑

i∈B

Sx
i . (2.92)

Taking the thermodynamic limit and changing the summation L−d ∑
k 6=Q into (2π)−d

∫
dkd,

we obtain ∫ ′ dkd

(2π)d
Sx(k) =

〈
(Sx

1 )2
〉T=0

0
− σ2, (2.93)

where k = Q is excluded from the integral region and σ2 denotes the long-range order
parameter,

σ2 = lim
Λ↗Zd

1

L2d

〈
(OΛ)2

〉T=0

Λ,B=0
. (2.94)
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Because of (2.93) and the isotropy of the model, we have

∫ ′ dkd

(2π)d

∑
α=x,y,z

Sα(k) =
〈
(Sx

1 )2 + (Sy
1 )2 + (Sz

1)
2
〉T=0

0
− 3σ2

= S(S + 1)− 3σ2. (2.95)

On the other hand, integrating both sides of the inequalities of Theorem 2.1.12 with k
except k = Q, we obtain the upper bound of (2.95) as

∫ ′ dkd

(2π)d

∑
α=x,y,z

Sα(k) ≤ 3
√

ρ1√
2

Id, (2.96)

where

Id =
∫ dkd

(2π)d

√
1− γk

1 + γk

. (2.97)

The integral Id is finite for d ≥ 2. Combing (2.95) and (2.96), we obtain

σ2 ≥ S(S + 1)

3
−
√

ρ1√
2

Id. (2.98)

Here the value of (−3ρ1) is the ground-state energy per bond; see (2.84). Since the Hamil-
tonian is a summation of local operators, the expectation values of energy are bounded
by the norm of the local operators. Anderson [4] thus obtained the inequality −3ρ1 ≥
−S(S + 1/2d). Then, (2.98) becomes

σ2 ≥ S(S + 1)

3
−

√
S(2dS + 1)

2
√

3d
Id. (2.99)

This inequality shows σ2 > 0 for S ≥ 1 both in two and three dimensions. Estimating (2.98)
more carefully, one can show the existence of the long-range order in the three-dimensional
S ≥ 1/2 Heisenberg antiferromagnet as well [68].

Recently, the occurrence of the symmetry breaking was rigorously proved. (Note that
the above arguments do not show the spontaneous breakdown of the symmetry, but only
show the existence of the long-range order.) Kaplan, Horsch and von der Linden [62]
showed that, if σ2 > 0 in the symmetric ground state, then the pure ground state has a
non-vanishing staggered magnetization, ms > 0. Later, Koma and Tasaki [73] showed the
relation ms ≥

√
3σ at any temperatures.

Two-dimensional S = 1/2 Heisenberg model

Finally, we would like to mention the long-range order of the two-dimensional S = 1/2
Heisenberg antiferromagnet. Since the discovery of the high-Tc superconductivity in La2−xSrxCuO4,
this model has been studied extensively, because the model is expected to describe the
compound without doping. Though there is no rigorous proof for this model (up to
now), many theoretical and numerical studies suggested the existence of the antiferro-
magnetic long-range order, from quantum Monte-Carlo simulations [124, 83], spin-wave
expansions [5, 77, 21] and series expansions [132]. (As a review, see [89] for example.)
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2.3.2 The large-S limit of the Heisenberg model

Here we discuss the large-S limit of the Heisenberg antiferromagnet on the square and
cubic lattices. First, we show the S dependence of ms, ρx, ρy and ρz in the S ↗ ∞ limit.
We can obtain bounds for physical quantities using the rigorous inequalities [104]. The
results indicate that the large-S limit of the quantum Heisenberg model corresponds to the
classical model.

Proposition 2.3.1. In the large-S limit of the Heisenberg antiferromagnets on the
square and cubic lattices, we have

lim
S↗∞

ms/S = 1, (2.100)

lim
S↗∞

ρx/S
2 = 1, (2.101)

lim
S↗∞

ρy/S
2 = lim

S↗∞
ρz/S

2 = 0. (2.102)

Proof of Proposition 2.3.1. The quantities ms, ρx, ρy and ρz are bounded from above
by the norms of local operators. Hence, we have

ms ≤ S (2.103)

and

ρα ≤ S2 (α = x, y, z). (2.104)

The ground-state energy per bond, (−ρx − ρy − ρz), is also bounded in the form [4]

(ρx + ρy + ρz) ≤ S(S + 1/2d). (2.105)

To obtain lower bounds of ms, we use Koma and Tasaki’s inequality [73], ms ≥
√

3σ,
and (2.99). Thus, we obtain

[
S(S + 1)−

√
3S(2dS + 1)Id/2

√
d
]1/2

≤ ms ≤ S (2.106)

for S ≥ 1. Taking the large-S limit, one obtains (2.100).

To bound ρx, ρy and ρz from below, we use (2.76), from which we find

ms
2

(ρx + ρz)1/2
≤ (ρx + ρy)

1/2. (2.107)

Using ρy = ρz, we obtain

ms
2 ≤ ρx + ρy. (2.108)

Combining (2.108) and (2.105), we have

ms
2 + ρy ≤ S(S + 1/2d), (2.109)
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where we have used ρy = ρz. Using (2.104), (2.108) and (2.109), we obtain bounds for ρα

(α = x, y, z) in the form

2ms
2 − S(S + 1/2d) ≤ ms

2 − ρy ≤ ρx ≤ S2. (2.110)

Taking the large-S limit and using (2.100), we obtain (2.101) and (2.102).

Using Proposition 2.3.1, we can obtain the correlation functions: In the large-S limit
of the Heisenberg antiferromagnets on the square and cubic lattices, the upper bounds of
χ⊥(k) and S⊥(k) become equal to the lower bounds, respectively, and hence we have

χ⊥(k) =
1

2Jd(1 + γk)
, (2.111)

S⊥(k) =
S

2

√
1− γk

1 + γk

. (2.112)

On the other hand, χ‖(k) and S‖(k) are bounded in the form

0 ≤ χ‖(k) ≤ 1

2Jd(1 + γk)
, (2.113)

0 ≤ S‖(k) ≤ O(S1/2)

√
1− γk

1 + γk

. (2.114)

As we have mentioned at the end of Section 2.1, the structure factors in the pure ground
state and in the symmetric ground state have different upper bounds. In the symmetric
ground state, we have ρ1 = ρ2 = S2/3, and hence

Sα(k) ≤ S√
6

√
1− γk

1 + γk

. (2.115)

Thus Sα(k) is smaller than S⊥(k).

2.4 Ground states and low-lying excited states of finite-

size systems

Ground states of finite-volume systems are studied and discussed in numerical calculations.
In this section we hence show exact results for these states, which provide useful information
for the numerical approaches to these systems. We discuss the spin-S Heisenberg and XXZ
antiferromagnets on a d-dimensional L× · · · ×L hypercubic lattice Λ ⊂ Zd. Let HΛ be the
Hamiltonian defined by (2.46) or (2.47).

In Section 2.4.1, we discuss properties of ground states and low-lying excited states
on the finite-volume lattice Λ. It is known that the ground state of HΛ is unique and
symmetric. Quantum numbers of various low-lying states can be determined as well. We
show that these states have the same spatial symmetry as the Néel-ordered states.

In Section 2.4.2, we discuss finite-size effects on the low-lying states. It was shown for
a class of quantum antiferromagnets that, if the ground state has a long-range order, low-
lying excited states of a growing number converge to the ground state in the infinite-volume
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limit. In the Heisenberg antiferromagnet on Λ, we show that the number of the low-lying
states that are counterpart of the infinite-volume ground state is, at least, of o(N2) (a
number lower order than N2), where N = Ld.

2.4.1 Marshall–Lieb–Mattis theorem

First we discuss the Heisenberg model (λ = 1). Exact information about the ground state
and some low-lying states was obtained by Marshall [92], and by Lieb and Mattis [85] in
the following form.

Theorem 2.4.1. (Marshall–Lieb–Mattis): Let HΛ be the Hamiltonian of the
Heisenberg antiferromagnet on the lattice Λ.
(1) The ground state is unique and it has the eigenvalue Stotal = 0. Let |ΦGS〉 be the
ground state. Then, all coefficients of U |ΦGS〉 in the bases that are eigenstates of {Sz

i } are
non-negative, where U = exp (iπ

∑
i∈B Sz

i ).
(2) The lowest state in the subspace of Sz

total = m has the total spin Stotal = m, and it
is not degenerate. Let |m, m〉 be the lowest state. Then, all coefficients of U |m,m〉 are
non-negative.

Thus the ground state |ΦGS〉 is symmetric, i.e., it is invariant under any global rotation
of spins. Using this theorem, we can specify other quantum numbers of these states. Let us
discuss a system with periodic boundary conditions and let the length L be an even integer.
The Hamiltonian is invariant under any sublattice translation and under any translation
of the point group G of the lattice. Eigenvalues of these translations are determined for
low-lying states as follows [103]:

Proposition 2.4.2. Let HΛ be the Hamiltonian of the Heisenberg antiferromagnet on
the lattice Λ and let |s, m〉 be the lowest state in the subspace Stotal = s and Sz

total = m,
where m is limited to −s ≤ m ≤ s. Then, the states |s,m〉 are invariant under elements of
the sublattice translation and the group G.

The point group G is C4V for the square lattice and Oh for the cubic lattice [78]. The
elements of G preserve the sublattice structure, namely, translate the sublattice A to A
and B to B. Hence the Néel-ordered states are invariant under elements of the sublattice
translation and the group G. This proposition thus shows that all states |s,m〉 have the
same spatial symmetry as Néel ordered states.

Proof of Proposition 2.4.2. Any element Ts of the sublattice translation satisfies (Ts)
L =

1, where the identity mapping is denoted by 1. The sublattice translation Ts, hence,
takes the eigenvalues ts = exp(i2πl/L), where l = 0, 1, . . . , L − 1. The eigenstates with
ts = exp(i2πl/L) and with ts = exp(−i2πl/L) are degenerate. According to Theorem 2.4.1,
the state U |s, s〉 is not degenerate in the Sz

total = s subspace and it takes non-negative
coefficients in the bases of the eigenstates of {Sz

i }. Hence U |s, s〉 should have the eigenvalue
ts = 1. Since U and Ts commute, the state |s, s〉 is invariant under any Ts. In the same
way, for any element R ∈ G, we obtain RU |s, s〉 = U |s, s〉. Since R and U commute, the
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state |s, s〉 is invariant under any R.

The states |s,m〉 (−s ≤ m < s) are also invariant under any sublattice translation Ts

and under any element R ∈ G, since the operator
∑

i S
−
i commutes with Ts and R.

Next we discuss the XXZ model with −1 < λ < 1. In this case, the total spin-angular-
momentum Stotal is not a good quantum number and only Sz

total is. Affleck and Lieb [3]
determined the eigenvalue Sz

total of the ground state as follows:

Theorem 2.4.3. (Affleck–Lieb): Let HΛ be the Hamiltonian of the XXZ antiferro-
magnets with −1 < λ < 1 on the lattice Λ.
(1) The ground state of HΛ uniquely exists in the subspace of Sz

total = 0. Let |ΦGS〉 be the
ground state. Then, all coefficients of U |ΦGS〉 are non-negative.
(2) The lowest state in the subspace of Sz

total = m is non-degenerate. Let |m〉 be the lowest
state. Then, all coefficients of U |m〉 are non-negative.

Using this theorem, we specify quantum numbers of |m〉 in the following form [103].

Proposition 2.4.4. Let HΛ be the Hamiltonian of the XXZ antiferromagnets with
−1 < λ < 1 on the lattice Λ, and let |m〉 be the lowest state in the subspace of Sz

total = m.
Then, the states |m〉 with arbitrary m have the same spatial symmetry as Néel ordered
states.

Proof of Proposition 2.4.4. This is derived in the same way as the proof of Proposition
2.4.2.

It should be remarked that Theorems 2.4.1 and 2.4.3 work only for finite systems; the
uniqueness of the ground state cannot be applied to the infinite-volume system.

Though topics of this thesis are limited to quantum antiferromagnets, we give a comment
on ferromagnets. We can show the uniqueness of the ground state and various exact results
for low-lying states of the ferromagnetic XXZ model as well. Results and proofs are given
in Section 3.3.A, and they are used in Section 3.3.

2.4.2 Finite-size effect on low-lying states

As shown in Section 2.3, symmetry breaking occurs at T = 0 in the three-dimensional
spin-S Heisenberg antiferromagnets and in the two-dimensional S ≥ 1 models in the ther-
modynamic limit. Furthermore, many theoretical and numerical studies indicate that the
spin-1/2 Heisenberg antiferromagnet has the long-range order. Hence, there exist multiple
ground states in the thermodynamic limit.

On the other hand, the ground state on a finite-volume lattice Λ is unique, as shown
in Theorems 2.4.1 and 2.4.3. It is expected that, to make the symmetry breaking occur
in the infinite-volume limit, plenty of low-lying states converge to the unique ground state
as the system size increases. Horsch and von der Linden [50] first showed the existence
of a low-lying excited state whose energy converges to that of the ground state. Recently,
Koma and Tasaki [74] proved that, if the system has the long-range order, ever increasing
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numbers of low-lying states converge to the ground state.
Let us discuss Koma and Tasaki’s theorems. Though their original theorems are ap-

plicable to a wide class of quantum models with continuous symmetry, we consider only the
spin-S XXZ model with −1 < λ ≤ 1 on the lattice Λ. Let |ΦGS〉 be the unique normalized
ground state of HΛ. The long-range order parameter µ is given in

1

N2
〈ΦGS|(OΛ)2|ΦGS〉 = (µS)2, (2.116)

where 0 ≤ µ ≤ 1 and N = Ld. Consider the following trial state

|Ψs〉 =
(O+)s|ΦGS〉
‖(O+)s|ΦGS〉‖ (2.117)

for a positive integer s, where O+ =
∑

i∈A S+
i −

∑
i∈B S+

i and the norm of a state |Ψ〉 is
defined by ‖ |Ψ〉‖ = 〈Ψ|Ψ〉1/2.

Theorem 2.4.5. (Koma and Tasaki): When µ > 0, the state |Ψs〉 is well-defined
and the expectation value of the energy of each |Ψs〉 is bounded as

1

N
(〈Ψs|H|Ψs〉 − 〈ΦGS|H|ΦGS〉) ≤ cJS2

µ2

(
s

N

)2

(2.118)

for s < (µ
√

N/8
√

6), where c is a finite constant.

This theorem gives the following necessary condition for the symmetry breaking: If
the symmetry breaking occurs in the infinite-volume limit, the expectation values of the
excitation energy of a number of low-lying states decay faster than 1/N . Convergence of
more low-lying states was also shown in the following form.

Theorem 2.4.6. (Koma and Tasaki): When µ > 0 and N is large enough such that
N ≥ (8/µ)2, the expectation value of the energy of each |Ψs〉 is bounded as

1

N
(〈Ψs|H|Ψs〉 − 〈ΦGS|H|ΦGS〉) ≤ c′JS2

µ2

(
s

N

)
(2.119)

for s ≤ (µ2N/16), where c′ is a finite constant.

This theorem covers a wider range of low-lying states than Theorem 2.4.5: Theorem 2.4.6
states that, when the ground state has the long-range order, the number of low-lying states
whose energy per site converges to the ground-state energy is at least o(N), i.e., a number
that is lower order than N . (For the definition of ground states, see Refs. [19] and [72].)
The size dependence is, however, estimated more precisely in Theorem 2.4.5.

Furthermore Koma and Tasaki [74] proved that the symmetry breaking occurs by form-
ing linear combinations of these low-lying states. Taking linear combinations, they con-
structed multiple ground states in which continuous symmetry is broken.

From now, we restrict the model to the spin-S Heisenberg model (λ = 1) and discuss
the excitation energy of |s,m〉, where |s,m〉 denotes the lowest eigenstate in the subspace
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with Stotal = s and Sz
total = m. These states have been repeatedly discussed in numerical

studies, since they are easily distinguishable from other states and they are easily obtained.
Using Theorems 2.4.1 and 2.4.5, we can obtain upper bounds for the eigenvalues of the
energy of |s,m〉 as follows:

Proposition 2.4.7. When µ > 0, the excitation energy of the states |s, m〉 are bounded
as

1

N
(〈s,m|HΛ|s,m〉 − 〈ΦGS|HΛ|ΦGS〉) ≤ cJS2

µ2

(
s

N

)2

(2.120)

for s < (µ
√

N/8
√

6) and m in the range −s ≤ m ≤ s, where c is a finite constant.

Proof of Proposition 2.4.7. The state |Ψs〉 defined by (2.117) has the eigenvalue Sz
total =

s, but does not have a definite value of Stotal. From Theorem 2.4.1, however, we know that
the state |s, s〉 is the lowest eigenstate in the Sz

total = s subspace. We thus find that the
energy of |s, s〉 is bounded in the form

〈s, s|HΛ|s, s〉 ≤ 〈Ψs|HΛ|Ψs〉. (2.121)

Using (2.118), we obtain (2.120) with m = s. Since the states |s,m〉 with the fixed s and m
in the range −s ≤ m ≤ s have the same energy because of the SU(2) symmetry, we obtain
the desired relation (2.120).

In the same way, using Theorem 2.4.6, we obtain the following theorem.

Proposition 2.4.8. When µ > 0 and N is large such that N ≥ (8/µ)2, the excitation
energy of the states |s,m〉 are bounded as

1

N
(〈s,m|HΛ|s,m〉 − 〈ΦGS|HΛ|ΦGS〉) ≤ c′JS2

µ2

(
s

N

)
(2.122)

for s ≤ (µ2N/16) and m in the range −s ≤ m ≤ s, where c′ is a finite constant.

Proof of Proposition 2.4.8. This is derived in the same way as the proof of Proposi-
tion 2.4.8 using Theorem 2.4.6 instead of Theorem 2.4.5.

This proposition states that, when the ground state |0, 0〉 has the long-range order,
the states |s,m〉 with s ∼ o(N) have the same energy per site as the ground state in
the thermodynamic limit. Note that the allowed values of m are −s, . . . , s and that the
total number of such low-lying states is

∑o(N)
s=0 (2s + 1) ∼ (o(N))2 ∼ o(N2). Thus taking

into account the SU(2) symmetry, we find that the number of the low-lying states which
converge to the ground state grows faster than any number that is of a lower order than
N2.

All the states |s,m〉 with s ∼ o(N) become the ground states in the thermodynamic
limit. Remember that these states |s,m〉 have the same spatial symmetry as the Néel-
ordered states, as shown in the Proposition 2.4.2. Infinite-volume ground states with the
Néel order may be constructed by forming linear combinations of these low-lying states.



Chapter 3

Ground states of quantum
antiferromagnets on the triangular
lattice

In this chapter, we discuss ground-state properties of quantum antiferromagnets on a tri-
angular lattice. The Heisenberg and XXZ antiferromagnets are considered.

In Section 3.2, we study ground states of the spin-S XXZ antiferromagnets. We show
exact ground states of an anisotropic XXZ antiferromagnet (λ = −0.5). These states have
perfect orders and most of them have the so-called 120◦ structure. Ground-state properties
in the region −0.5 < λ ≤ 1 are discussed using the spin-wave expansion. Thereby it is
found that quantum fluctuations in the ground states are enhanced as λ increases from
−0.5 to 1. The phase diagram of the relevant system at low temperatures is also discussed
using the spin-wave theory.

In Section 3.3, we study low-lying states of the XY and Heisenberg antiferromagnets
on finite-volume lattices to clarify whether spontaneous symmetry breaking occurs in the
thermodynamic limit. We propose approximate forms of low-lying states, modifying the
exact ground states at λ = −0.5. These approximate states have a long-range order. It
is shown that the present approximation accurately describes true low-lying states. With
the help of this approximation, we discuss the contribution of low-lying states to symmetry
breaking of two types, namely creation of the spontaneous sublattice magnetization and
the spontaneous chirality. Furthermore, we numerically study the low-lying states of finite
systems. It is found that the necessary conditions for the symmetry breaking to occur are
satisfied in the XY and Heisenberg antiferromagnets.

3.1 Introduction

It has been expected that ground-state properties of the Heisenberg antiferromagnet on
a triangular lattice are quite different from the properties on bipartite lattices. Ander-
son [7] first pointed out that quantum fluctuations may appear strongly in quantum anti-
ferromagnets on a triangular lattice. Since these systems have frustration caused by the
antiferromagnetic interactions, the quantum fluctuations may be much stronger than in the
quantum antiferromagnets on the square lattice [32, 91].

29
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After Anderson’s seminal discussions, many authors have been interested in ground-state
properties of the spin-S Heisenberg and XXZ antiferromagnets on the triangular lattice and
especially in the spin-1/2 models. The Hamiltonian of the XXZ antiferromagnet is given
by

H = J
∑

〈i,j〉
(Sx

i Sx
j + Sy

i Sy
j + λSz

i S
z
j ), (3.1)

where the summation runs over all the nearest-neighbor pairs.
Very few exact results are, however, known for the quantum antiferromagnets on the

triangular lattice. Rigorous proofs given in Section 2.3 cannot be extended to the present
model for technical reasons. Furthermore, we cannot apply the Marshall–Lieb–Mattis con-
dition given in Section 2.4.1 to the antiferromagnets on the triangular lattice. Studies from
other methods are hence needed.

In the classical limit, ground states have the so-called 120◦ structure, as shown in Fig-
ure 3.1. These ground states have two kinds of orders: One is the sublattice order, whose
order parameter is

Ms =
∑

i∈A

Sx
i +

∑

i∈B

(
−1

2
Sx

i +

√
3

2
Sy

i

)
+

∑

i∈C

(
−1

2
Sx

i −
√

3

2
Sy

i

)
, (3.2)

and the other is the chiral order,

χ =
∑

〈i→j〉
(Si × Sj)

z. (3.3)

Here A, B and C denote the sublattices of the triangular lattice and the symbol i → j goes
from the sublattice A to B, B to C and C to A. In the classical Heisenberg model (λ = 1),
every state that is obtained from the global SU(2) transformation of spins in Figure 3.1
belongs to the ground states. In the classical XY model, the ground states are obtained
by the global U(1) transformation, i.e., global spin rotation along the z-axis, of Figure 3.1,
and by the global Z2 transformation, i.e., global 180◦ rotation of spins along the x-axis of
Figure 3.1. Furthermore, the ground-state manifold of the classical XXZ antiferromagnet
in the region −0.5 < λ < 1 is exactly the same as that of the classical XY model [98].

For the quantum models, many authors have been interested in the problem how quan-
tum effects change ground-state properties. There are two viewpoints in the studies of the
ground states of the quantum antiferromagnets. The first one is that the quantum fluctu-
ations are so strong and hence the ground state has no long-range order: Anderson first
pointed out possibilities of the resonating-valence-bond state as the ground state [7, 32].
Kalmeyer and Laughlin also discussed a spin-liquid state [61] from this aspect. The second
viewpoint is that the ground state has a long-range order with the so-called 120◦ struc-
ture, though the quantum fluctuations reduce the sublattice magnetization. Trial wave
functions which have the 120◦ structure are discussed by Miyashita [97] and by Huse and
Elser [53]. Furthermore, the spin-wave expansions [120, 96, 110, 82, 80] and the series
expansion [132] suggested the existence of a long-range order. Since the estimates of the
ground-state energy from these studies are almost equal to each other in the Heisenberg
model, it is difficult to judge which picture is correct.

Apart from the above arguments, several authors [37, 118, 55, 12, 82] studied the
ground states of the Heisenberg model in finite-volume lattices using the exact-diagonalization
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Figure 3.1: 120◦ structure. A ground-state configuration of the classical antiferromagnets
on a triangular lattice.

method. Two papers [12, 82] reported the calculations up to N = 36, but the conclusions
do not coincide with each other; Bernu et al. [12] reported that the sublattice order is
almost equal to the value obtained by the spin-wave expansion, but in contrast Leung and
Runge’s result [82] is contradictory to the existence of the sublattice order. Thus this issue
concerning the existence of the long-range order is not yet settled down.

Furthermore, for the spin-1/2 XY model, several authors have studied ground-state
properties. Results from studies of finite-volume lattices with different size using the exact
diagonalization method are not consistent with each other [37, 118, 82]. (This is partially
because the size of calculated clusters is not large enough to predict properties of infinite-
volume systems, and partially because they have not used proper finite-size fitting-forms.
See Section 3.3.3.) The chiral-order phase-transition at finite temperatures has been also
studied in the XY model. Studies from the Monte-Carlo method [93] and from a cluster
mean-field approximation [136] reported that the chiral order exists at finite temperatures.
On the other hand, the study using high-temperature series-expansions found no critical
point [38].

To clarify this confusing understanding, we give a new reliable viewpoint in Section 3.2.
In Section 3.2.1, we present exact ground states of anisotropic XXZ models with λ ≤ −0.5.
These ground states at λ = −0.5 have long-range orders with the 120◦ structure and have
the perfect sublattice magnetization. In Section 3.2.2, we study ground-state properties of
the model with −0.5 < λ ≤ 1 using the spin-wave expansion [5, 77], and thereby we find
that the quantum fluctuations are enhanced as λ increases from −0.5 to 1. In this study
we discuss the ground states, changing λ from −0.5 to 1. Our approach to the study of
frustrated quantum spin systems is contrary to the approach of Fazekas and Anderson [32].
They studied the ground states changing λ from infinity to 1. In Section 3.2.3, we also
study thermal properties of these models using the spin-wave expansion and thereby obtain
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a phase diagram at low temperatures.
We present another study to confirm the existence of the long-range order in the XY and

Heisenberg models at T = 0. As we have commented before, the study of the ground states
of finite-volume lattices is not enough to obtain a reliable conclusion for lack of system size.
Then we study low-lying excited states of finite systems. As discussed in Section 2.4.2,
low-lying excited states play important roles in symmetry breaking in the thermodynamic
limit; symmetry is broken by making a linear combination of the finite-volume ground state
and low-lying excited states.

It has been discussed that, when symmetry breaking occurs, growing numbers of low-
lying states converge to the ground states faster than the softest magnon excitation [5,
12, 10]. Several numerical calculations showed the existence of the low-lying excited states
whose values of the excitation energy decay in a form faster than 1/N in the spin-1/2
Heisenberg antiferromagnet on a triangular lattice [12, 82]. Bernu et al. [12] discussed
the spatial quantum numbers of the low-lying states that construct the ordered infinite-
volume ground states. They found the existence of a whole set of low-lying states in finite
systems. Azaria et al. [10] studied the finite-size dependence of these low-lying states. They
found that low-lying states satisfy the scaling property which indicates the existence of a
long-range order.

In quantum antiferromagnets on the triangular lattice, the mechanism of symmetry
breaking is complicated, since there are two types of symmetry breaking. In the Heisenberg
antiferromagnet both the sublattice magnetization and the chirality relate to the breakdown
of the O(3) symmetry. In the XY antiferromagnet the U(1)×Z2 symmetry can be broken.
These symmetry breakings are related to each other.

In Section 3.3, we discuss low-lying states, to understand mechanism of each symmetry
breaking independently and to clarify whether spontaneous symmetry breaking occurs at
T = 0 in the thermodynamic limit. We give approximate forms of the low-lying states, in
which the degrees of freedom of the sublattice magnetization and the chirality are sepa-
rated. These approximate states accurately describe the true low-lying states. Using our
approximation, we can understand how rearrangements of the low-lying states bring on
each symmetry breaking. Furthermore, numerically studying the low-lying states of finite
systems, we discuss the occurrence of symmetry breaking.

In Section 3.4, we argue the relation between the long-range order parameter σ and
the spontaneous sublattice magnetization m. It has been discussed [73] that, for bipartite
systems, the relation is given by m =

√
3σ in the Heisenberg antiferromagnet and by

m =
√

2σ in the XY antiferromagnet. In the antiferromagnets on the triangular lattice,
however, the factor of the relation becomes

√
2 times as large as the above. We obtain

m =
√

6σ for the Heisenberg model and m = 2σ for the XY model.

3.2 Ground-state properties of the Heisenberg and

XXZ antiferromagnets1

In Section 3.2.1, we show exact ground states of the quantum XXZ antiferromagnets with
λ = −0.5 and λ < −0.5. These ground states have perfect orders. In Section 3.2.2, we

1The contents of this section were published in [110].
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study ground-state properties of the XXZ antiferromagnet with −0.5 < λ ≤ 1, using the
spin-wave expansion. In Section 3.2.3, the phase diagram at finite temperatures is also
studied using the spin-wave approximation.

3.2.1 Exact ground states of anisotropic XXZ models

Here we show the exact ground states of the spin-1/2 XXZ antiferromagnet on the tri-
angular lattice in the region λ ≤ −0.5. We briefly derive them and discuss properties of
them.

Case of λ = −0.5

First we consider the ground states in the spin-1/2 XXZ antiferromagnet with λ = −0.5.
We choose the quantize axes of the Hamiltonian as follows

H = J
∑

〈i,j〉

(
Sz

i S
z
j + Sx

i Sx
j −

1

2
Sy

i Sy
j

)
, (3.4)

where the summation runs over all nearest-neighbor pairs of sites and Sα (α = x, y, z) are
the spin operators. Let us consider the following two states

|Φ1〉 = U
(⊗

i

| ↑〉i
)
, (3.5)

|Φ2〉 = U †
(⊗

i

| ↑〉i
)
, (3.6)

where 2Sz
i | ↑〉i = | ↑〉i and 2Sz

i | ↓〉i = −| ↓〉i, and U denotes the unitary operator

U = exp
(
i
2π

3

∑

i∈B

Sy
i − i

2π

3

∑

i∈C

Sy
i

)
. (3.7)

As shown later, these states belong to the ground states of the Hamiltonian (3.4). The
operator U rotates all the spins on the sublattice B through the angle 2π/3 and on the
sublattice C through the angle −2π/3 about the y axis. Transformed with this operator,
states (3.5) and (3.6) have the 120◦ structure.

These states have a form similar to the trial wavefunction proposed by Miyashita [97]
and by Betts and Miyashita [15] as the ground state of the XY antiferromagnet.

From now we show that the states |Φ1〉 and |Φ2〉 belong to the ground states. Let us di-
vide the triangular lattice into triangular cells, as shown in Figure 3.2, and the Hamiltonian
into cell Hamiltonians defined on triangular cells in the form

H =
∑

4(i,j,k)∈Λ

H4(i,j,k), (3.8)

where the summation runs over all the upward triangular cells and H4(i,j,k) denotes the
local Hamiltonian on the triangular cell labeled with the sites i, j and k. Transforming
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Figure 3.2: A triangular lattice is divided into shaded triangular cells. The cell-
Hamiltonians are defined on each shaded cell.

H4(1,2,3) with the operator U , we obtain

U †H4(1,2,3)U = − J

2

∑

〈i,j〉∈4(1,2,3)

(Sz
i S

z
j + Sx

i Sx
j + Sy

i Sy
j )

+

√
3J

2

∑

(i→j)∈4(1,2,3)

(Sz
i S

x
j − Sx

i Sz
j ). (3.9)

Exactly diagonalizing (3.9), we can easily evaluate all eigenstates and eigenvalues, and
thereby we find that the state | ↑〉1 ⊗ | ↑〉2 ⊗ | ↑〉3 is one of eigenstates of U †H4(1,2,3)U and
it takes the lowest eigenvalue −1.5J . (It should be remarked that the second term of the
right-hand-side of (3.9) has no effect on the state | ↑〉1 ⊗ | ↑〉2 ⊗ | ↑〉3.) Since U is unitary,
the state U(| ↑〉1 ⊗ | ↑〉2 ⊗ | ↑〉3) belongs to the ground states of H4(1,2,3). In the same
way, we can show that the state U(⊗i| ↑〉i) is one of the lowest eigenstates of every local
Hamiltonians H4(i,j,k) and it has the same eigenvalue −1.5J . We hence find that U(⊗i| ↑〉i)
belongs to the ground states of the total Hamiltonian (3.4).

In the same way, we can show that the state U(
⊗

i | ↑〉i) is one of the eigenstates
of the Hamiltonian H and it takes the minimum energy −1.5JN , where N denotes the
number of sites. We hence find that the state |Φ2〉 is also one of the ground states of the
Hamiltonian (3.4).

These ground states are not fluctuated by quantum effects and they have fully-ordered
sublattice-magnetization and chirality; We have

〈Φ1|UMU †|Φ1〉 = 〈Φ2|U †MU |Φ2〉 =
1

2
N, (3.10)

where
M =

∑

i

Sz
i , (3.11)
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and UMU † and U †MU are hence order-parameter operators of the sublattice magnetiza-
tion. The signs of the chirality are opposite to each other as follows:

〈Φ1|χ|Φ1〉 = −〈Φ2|χ|Φ2〉 = −3

4
N, (3.12)

where χ denotes the order parameter of the chiral order

χ =
2√
3

∑

(i→j)

(Sz
i S

x
j − Sx

i Sz
j ). (3.13)

Next we show other ground states. Let us consider the following states

|Φ1(θ, φ)〉 = UR3(θ, φ)
(⊗

i

| ↑〉i
)

= UR3(θ, φ)U †|Φ1〉, (3.14)

|Φ2(θ, φ)〉 = U †R3(θ, φ)
(⊗

i

| ↑〉i
)

= U †R3(θ, φ)U |Φ2〉 (3.15)

with various values of θ and φ, where R3 denotes the global O(3)-rotation operator

R3(θ, φ) = exp
(
iθ

∑

i

Sy
i

)
exp

(
iφ

∑

i

Sx
i

)
. (3.16)

These states also belong to the ground states. This can be shown using the fact that the
state | ↑〉1 ⊗ | ↑〉2 ⊗ | ↑〉3 is one of the ground states of the transformed Hamiltonian

R†
3(θ, φ)U †H4(1,2,3)UR3(θ, φ) = −J

2

∑
〈i,j〉∈
4(1,2,3)

(Sz
i S

z
j + Sx

i Sx
j + Sy

i Sy
j )

+

√
3J

2

∑
(i→j)∈
4(1,2,3)

{cos φ(Sz
i S

x
j − Sx

i Sz
j )− sin φ(Sx

i Sy
j − Sy

i Sx
j )} (3.17)

and it is also one of the ground states of R†
3UH4(1,2,3)U

†R3.
The transformation UR3U

† corresponds to closing the umbrella of spins which has the
120◦ structure. It should be remarked that the Hamiltonian (3.4) is not invariant under
the transformation UR3U

†,
(UR3U

†)†H(UR3U
†) 6= H. (3.18)

Only the ground-state energy is invariant under the irregular O(3) transformation UR3U
†,

i.e.,
〈Φi|(UR3U

†)†H(UR3U
†)|Φi〉 = 〈Φi|H|Φi〉 (3.19)

for i = 1 and 2.
The states |Φ1(θ, φ)〉 with various values of θ and φ have negative values of the chirality

in the form

〈Φ1(θ, φ)|χ|Φ1(θ, φ)〉 = −3

4
N cos2 φ (3.20)
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and in contrast |Φ2(θ, φ)〉 has the positive chirality. The transformation UR3U
† changes

the absolute value of the chirality between 3/4 and 0, but never changes the sign. Thus
the ground states have degeneracy of the chirality and the irregular O(3) symmetry. This
degeneracy of the ground states is the same as that of the corresponding classical model [98].

Most of |Φ1(θ, φ)〉 and |Φ2(θ, φ)〉 have a scalar chiral order,

〈Φ1(θ, φ)|E123|Φ1(θ, φ)〉 = −3
√

3

16
sin φ cos2 φ, (3.21)

where E123 denotes the order-parameter operator of the scalar chiral order [145]

E123 = S1 · (S2 × S3). (3.22)

Ferromagnetic Ising-like model (λ < −0.5)

Next we consider the XXZ model in the region λ < −0.5, in which the z-component
spin-interactions, i.e., ferromagnetic Ising interactions, are dominant. Here we choose the
quantized axes of the Hamiltonian as follows

H = J
∑

〈i,j〉
(Sx

i Sx
j + Sy

i Sy
j + λSz

i S
z
j ). (3.23)

The ground states are given by

|Φ3〉 =
⊗

i

| ↑〉i, (3.24)

|Φ4〉 =
⊗

i

| ↓〉i, (3.25)

where the states | ↑〉 and | ↓〉 are the eigenstates of the operator Sz. These states have
a perfect ferromagnetic order and they are exactly the same as the ground states of the
classical model [98].

From now we prove that these two states belong to the ground states. Clearly, |Φ3〉 and
|Φ4〉 are the eigenstates of the Hamiltonian (3.23) and the eigenvalues of both states are
3λJN . To show that the states (3.24) and (3.25) have the lowest energy, we again divide
the Hamiltonian (3.23) into the cell-Hamiltonians

H4(i,j,k) = J
∑

〈l,m〉∈4(i,j,k)

(Sx
l Sx

m + Sy
l Sy

m + λSz
l S

z
m). (3.26)

Clearly the states (3.24) and (3.25) are also the eigenstates of these cell-Hamiltonians.
Exactly diagonalizing the cell-Hamiltonian H4(i,j,k), we easily find that the states | ↑〉i ⊗
| ↑〉j ⊗ | ↑〉k and | ↓〉i ⊗ | ↓〉j ⊗ | ↓〉k are the ground states of H4(i,j,k) in λ ≤ −0.5
and the eigenvalue is 3λJ . Thereby we find that the operator H4(i,j,k) − 3λJ is positive
semidefinite in the spin-space on the total lattice. This result shows that any eigenvalue of
the Hamiltonian H is larger than 3λJN or just equals to it. Thus the eigenvalues of |Φ3〉
and |Φ4〉 are the minimum energy of H. We hence find that the states |Φ3〉 and |Φ4〉 belong
to the ground states of the total Hamiltonian (3.23).

As shown in the above proof, the states |Φ3〉 and |Φ4〉 also belong to the ground states of
the XXZ model with λ = −0.5. In this case, |Φ3〉 and |Φ4〉 correspond to |Φ1(θ, φ = π/2)〉
and |Φ1(θ, φ = −π/2)〉, respectively.
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3.2.2 Spin-wave expansion

Here we study ground-state properties of the spin-S XXZ antiferromagnets in the region
−0.5 < λ ≤ 1 using the spin-wave approximation [5, 77, 120]. As shown in the previous
section, the ground states of the spin-1/2 XXZ antiferromagnet with λ = −0.5 have perfect
long-range orders. Increasing λ from −0.5, we discuss how quantum effects are introduced
into the ground states and how their physical values become different from those of the
corresponding classical model. We calculate various physical values using the spin-wave
expansion up to the first order of 1/S.

In the ground states of the classical XXZ model with −0.5 < λ < 1, spins have the
120◦ structure in the xy plane. We define the quantized axes so that they have the 120◦

structure and we expand the quantum Hamiltonian from one of the ground states of the
classical model. Oguchi [120] first applied this method to the Heisenberg model on the
triangular lattice.

We choose the quantized axes in the xy plane and thereby we have

H = J
∑

〈i,j〉
(Sz

i S
z
j + Sx

i Sx
j + λSy

i Sy
j ), (3.27)

where Sα
i (α = x, y, z) denote spin operators. In this case, the order-parameter operator of

the sublattice magnetization is given by

Ms =
∑

i∈A

Sz
i +

∑

i∈B

(
−1

2
Sz

i +

√
3

2
Sx

i

)
+

∑

i∈C

(
−1

2
Sz

i −
√

3

2
Sx

i

)
(3.28)

and that of the chirality is

χ =
1

2
√

3S2

∑

(i→j)

(Si × Sj)
y. (3.29)

To change the quantized axes so that they have the 120◦ structure, we transform the
Hamiltonian with the operator

U = exp
(
i
2π

3

∑

i∈B

Sy
i − i

2π

3

∑

i∈C

Sy
i

)
. (3.30)

Thereby we obtain

U †HU = −J

2

∑

〈i,j〉
(Sz

i S
z
j + Sx

i Sx
j − 2λSy

i Sy
j ) +

√
3J

2

∑

(i→j)

(Sz
i S

x
j − Sx

i Sz
j ). (3.31)

In this case, the thermal average of an observable A is given by

〈A〉T =
Tr[U †AU exp(−βU †HU)]

Tr exp(−βU †HU)
. (3.32)

We transform the order-parameter operators with the operator U as follows

U †MsU =
∑

i

Sz
i (3.33)
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and

U †χU =
1

4S2

∑

〈i,j〉
(Sz

i S
z
j + Sx

i Sx
j )− 1

4
√

3S2

∑

(i→j)

(Sz
i S

x
j − Sx

i Sz
j ). (3.34)

To expand spin operators, we use the Holstein-Primakoff transformation [49]

S+
i =

√
2S − a†iai ai,

S−i = a†i
√

2S − a†iai, (3.35)

Sz
i = S − a†iai.

where a†i denotes the creation operator of a boson at the site i. Fluctuations around the
state |Φ1〉 are included as bosons. Thus we can obtain an expansion from one of the ground
states of the model at λ = −0.5.

Using the Holstein-Primakoff transformation (3.36) and expanding the Hamiltonian (3.31)
with respect to 1/S up to the first order, we obtain

U †HU = − 3NJS(S + 1)

2
+

3JS

4

∑

k

{2− (1− 2λ)γk}(a†kak + aka
†
k)

− 3J(1 + 2λ)S

4

∑

k

γk(a−kak + a†ka
†
−k), (3.36)

where {k} denote wave vectors in the first Brillouin zone of the triangular lattice and

γk =
1

3

{
cos k1 + cos

(
−1

2
k1 +

√
3

2
k2

)
+ cos

(
−1

2
k1 −

√
3

2
k2

)}
. (3.37)

Using the Bogoliubov transformation

ak = bk cosh θ−k − b†−k sinh θk,

a†k = −b−k sinh θk + b†k cosh θ−k (3.38)

and setting

exp(2θk) =

√
1− γk

1 + 2λγk

, (3.39)

we can diagonalize the Hamiltonian (3.36) in the form

U †HU = − 3NJS(S + 1)

2
(3.40)

+
3JS

2

∑

k

√
(1 + 2λγk)(1− γk)(2b

†
kbk + 1).

In the ground state of the Hamiltonian (3.40), the number of bosons with any nonva-
nishing momentum is zero in the region −0.5 ≤ λ ≤ 1, since the energy spectrum of the
boson is always positive. Hence the ground-state energy per bond is given by

Eg = 〈H〉T=0/3N = −S(S + 1)J

2
+

SJ

2N

∑

k

√
(1− γk)(1 + 2λγk), (3.41)
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Table 3.1: Estimates of the ground-state energy per bond Eg/S
2J of the spin-1/2 XY

antiferromagnet on the triangular lattice.

Method Ground-state energy Eg/S
2J

Classical limit −0.5

Variational method [97] −0.523

Finite-lattice method [37, 118] −0.545

Spin-wave theory O(1/S2) [95] −0.536

Spin-wave theory O(1/S) −0.532

in the region −0.5 ≤ λ ≤ 1. Evaluated values are shown in Figure 3.3 (a), and in Tables 3.1
and 3.2. The order-parameter operator of the sublattice magnetization (3.33) is transformed
as

U †MsU = N
(
S +

1

2

)
− 1

2

∑

k

cosh 2θk(2b
†
kbk + 1) +

1

2

∑

k

sinh 2θk(b
†
kb
†
−k + b−kbk) (3.42)

and the expectation value of the sublattice magnetization per site in the ground state is
given by

ms = 〈Ms〉T=0/N =
(
S +

1

2

)
− 1

4N

∑

k

{√
1− γk

1 + 2λγk

+

√
1 + 2λγk

1− γk

}
. (3.43)

Calculated values are shown in Figure 3.3 (b). The chiral-order parameter (3.34) is written
as

U †χU =
3N

4
+

3N

4S
− 3

8S

∑

k

{2 cosh 2θk − γk exp(−2θk)}(2b†kbk + 1)

+
3

8S

∑

k

{2 sinh 2θk + γk exp(−2θk)}(b†−kb
†
k + bkb−k). (3.44)

Then the expectation value of the chiral-order parameter per site in the ground state is
given by

q = 〈χ〉T=0/N =
3

4
+

3

4S
− 3

4SN

∑

k

(1 + λγk)
√

1− γk√
1 + 2λγk

(3.45)

and estimates are shown in Figure 3.3 (c).
At λ = −0.5, the evaluated values of the ground-state energy, chirality and sublattice

magnetization are exactly equal to the exact values given by state (3.6), though we have
expanded them only up to the first order of 1/S. The remaining higher-order terms in 1/S
do not contribute to these physical quantities at λ = −0.5.

As λ is increased from −0.5 and the antiferromagnetic Ising interactions are introduced
into the Hamiltonian, the values of the ground-state energy become lower than the classical
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Figure 3.3: Evaluated values of (a) the energy per bond Eg/JS2, (b) the sublattice magne-
tization per site ms/S, and (c) the chirality per site q in the ground state of the spin-1/2
AFT XXZ model using the spin-wave expansion up to 1/S order. The parameter λ means
the anisotropy of the z-component interactions. The symbols ∗ denote the exact results of
the state |Φ2〉 and dashed lines denote values in the classical limit (S →∞).
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Table 3.2: Estimates of the ground-state energy per bond Eg/S
2J of the spin-1/2 Heisenberg

antiferromagnet on the triangular lattice.

Method Ground-state energy Eg/S
2J

Classical limit −0.5

Variational method (RVB state) [32] −0.613

Variational method (120◦ structure) [53] −0.715

Finite-lattice method [37, 118] −0.729

Spin-wave theory O(1/S2) [95] −0.729

Spin-wave theory O(1/S) [120] −0.718

values and the values of the sublattice magnetization decrease. Thus quantum fluctuations
appear and become strong as λ increases. Near λ = 1, the sublattice magnetization is
reduced fast depending on the parameter λ. On the other hand, the calculated values of
the chirality change in a little different way. As λ is increased from −0.5, the values of
the chirality become larger than the classical one. In the spin-1/2 XY model (λ = 0),
the value is given by q = 0.798, where the corresponding classical value is 0.75. Since the
eigenvalues of the chiral order parameter on a triangle-cell are ±1 and 0 in the S = 1/2
case, it is possible that the value of chirality is enhanced by quantum effects. As the system
approaches the Heisenberg model, the value of chirality quickly decreases in the same way
as the sublattice magnetization does.

The values of the ground-state energy obtained by various methods are shown in Ta-
bles 3.1 and 3.2. In spite of our simple approximation, our results agree well with other
results. In the spin-1/2 XY model, the evaluated value of the sublattice magnetization is
given by ms = 0.448 and the chirality is given by q = 0.798. In the Heisenberg model, we
have ms = 0.238 and q = 0.405. Estimates of the sublattice magnetization and the chirality
by various methods are listed in Tables 3.4 and 3.5 (on page 59).

What we learnt from this study is as follows: As λ is enlarged from −0.5 to 1, quan-
tum fluctuations are gradually introduced into the ground states and hence ground states
smoothly change from the perfectly ordered state |Φ2〉. In the XY model, quantum fluc-
tuations are not yet strong and values of the order parameters are fairly large. In the
Heisenberg model, quantum fluctuations become strong, however the order parameters
have non-vanishing values in the present approximation. We give further discussions about
symmetry breaking in Section 3.3.

3.2.3 Phase diagram at low temperatures

In this section we discuss a phase diagram at finite temperatures in the spin-1/2 XXZ
antiferromagnet. We study the chiral-ordered phase and the ferromagnetic phase, using
the spin-wave approximation.
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Villain [142] first pointed out that, in the frustrated classical XY model on two-
dimensional lattices, the ground-state degeneracy of chirality causes an Ising-type phase
transition at finite temperatures. After that, various authors studied the phase transition
in the classical XY model [100, 81, 67]. Miyashita [98] studied the classical antiferromag-
netic XXZ model on the triangular lattice using the Monte Carlo simulation and found
that the chirality is ordered at sufficiently low temperatures in the region −0.5 < λ < 1
and a ferromagnetic order exists in the region λ < −0.5. At λ = −0.5, the ground states
have a non-trivial degeneracy. Miyashita discussed that ferromagnetically ordered states
are stable at finite temperatures in the classical model. In the classical XY model, the KT
transition also occurs near the critical point of the chiral-order phase-transition [100].

In this section we only discuss orders defined by nonvanishing values of order parameters,
namely the chiral order and ferromagnetic order. We study the phase diagram of the
quantum XXZ antiferromagnets using the linear spin-wave approximation.

As shown in Section 3.2.2, the Hamiltonian is approximated in the form

U †HU = 3NEg +
∑

k

εkb
†
kbk (3.46)

in the region −0.5 ≤ λ ≤ 1, where Eg denotes the ground-state energy defined in (3.41)
and

εk = 3JS
√

(1 + 2λγk)(1− γk). (3.47)

The thermal average is defined by (3.32). The expectation value of the chirality at finite
temperatures is given by

〈χ〉T /N = q − 3

2SN

∑

k

(1 + λγk)
√

1− γk√
1 + 2λγk

〈b†kbk〉

= q − 3

2SN

∑

k

(1 + λγk)
√

1− γk√
1 + 2λγk

1

exp(βεk)− 1
, (3.48)

where q denotes the expectation value of the chirality per site at T = 0 given by (3.45).
In the region −0.5 < λ < 1, the dispersion relation behaves as εk ∼ |k| for small k.

The numerator of the integrand of (3.48) also has a zero-point at k = 0. The existence
of this zero-point comes from the stability of the chirality against (long-range) spin-wave
excitations. The momentum summation in the second term of the right-hand-side of (3.48)
is finite and hence the deviation of the chirality from ground-state values is small at low
temperatures. This indicates that the chiral order remains even at finite temperatures.

At λ = −0.5, we have

〈χ〉T /N =
3

4
− 3

4SN

∑

k

2− γk

exp(βεk)− 1
(3.49)

and
εk = 3JS(1− γk). (3.50)

Since the dispersion relation is εk ∼ k2 for small k, the second term (i.e., the deviation of
the chirality ∆q) diverges as

∆q =
3

4SN

∑

k

2− γk

exp(βεk)− 1
∼ 1

βN

∑

k

1

k2
→∞. (3.51)
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This divergence means that the chirality is unstable at λ = −0.5 against spin-wave excita-
tions and that the chirality is destroyed at finite temperatures. The phase boundary of the
chiral order thus comes to an end at λ = −0.5, as shown in Figure 3.5.

At λ = 1, energy spectra have other zero-points at the corners of the Brillouin zone.
Owing to these modes, the deviation of the chirality ∆q becomes divergent as

∆q ∼ 1

βN

∑

k

1

(k − k′)2
→∞, (3.52)

where k′ denotes a momentum at one of the corners of the Brillouin zone, e.g. (4π/3, 0).
This result is consistent with the exact proof of the absence of the vector chiral order at
finite temperatures [66].

Next we discuss the ferromagnetic phase. As shown in Section 3.2.1, ground states are
ferromagnetically ordered in λ < −0.5. We use the Hamiltonian (3.23) and transform it
into

U †
zHUz = −J

2

∑

〈i,j〉
(Sx

i Sx
j + Sy

i Sy
j − 2λSz

i S
z
j )−

√
3J

2

∑

(i→j)

(Sx
i Sy

j − Sy
i Sx

j ), (3.53)

where

Uz = exp
(
i
2π

3

∑

i∈B

Sz
i − i

2π

3

∑

i∈C

Sz
i

)
. (3.54)

By the transformation Uz, spin fluctuations become space-translational invariant and spin
waves with k ∼ 0 become dominant. Expanding the Hamiltonian with the Holstein-
Primakoff transformation, we obtain

U †
zHUz = 3NS2Jλ +

∑

k

ε′ka
†
kak, (3.55)

where

ε′k = 3SJ(−2λ− γk)−
√

3SJ
{
sin k1 + sin

(
−1

2
k1 +

√
3

2
k2

)
+ sin

(
−1

2
k1 −

√
3

2
k2

)}
. (3.56)

The expectation value of the magnetization is given by

m =
〈∑

i

Sz
i

〉T

= S − 1

N

∑

k

〈a†kak〉 = S − 1

N

∑

k

1

exp(βε′k)− 1
. (3.57)

In the region λ < −0.5, the spectrum of the boson behaves as

ε′k ∼
3SJ

4
(−8λ− 4 + k2). (3.58)

A finite gap exists above the ground states, which comes from the fact that the ferromagnetic
Ising interaction is dominant in λ < −0.5. In this region, the ferromagnetic order is hence
stable against the spin-wave fluctuations and it can exist at sufficiently low temperatures.
As λ is increased, the energy gap decreases. At ∆ = −0.5 it vanishes and we have

ε′k ∼
3SJ

4
k2. (3.59)
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Then the deviation of the magnetization diverges as

∆m ∼ 1

βN

∑

k

1

k2
→∞. (3.60)

This divergence indicates that the magnetization is unstable and there is no magnetic
order at finite temperatures. This result is different from that of the classical model by
Miyashita [98].

Finally, we discuss possibilities of intermediate phases near λ = −0.5. As we have
shown in Section 3.2.1, the ground states are non-trivially degenerate at λ = −0.5. We
calculate the free energy at finite temperatures expanding from various ground states (3.15),
to determine which state is most stable. It may be possible that a scalar-chiral-order phase
appears at finite temperatures by quantum effects in an intermediate phase between the
ferromagnetic and vector-chiral-order phases, since a scalar chiral order appears in a part
of the degenerate ground-states.

We use the Hamiltonian (3.4) with λ = −0.5 and rotate the quantized axes with R3(θ, φ)
as

R†
3U

†HUR3 = − J

2

∑

〈i,j〉
(Sz

i S
z
j + Sx

i Sx
j + Sy

i Sy
j ) (3.61)

−
√

3J

2

∑

(i→j)

{cos φ(Sz
i S

x
j − Sx

i Sz
j )− sin φ(Sy

i Sx
j − Sx

i Sy
j )}.

When φ = 0, the quantized axes are in the xy plane and they have the 120◦ structure. As
φ is increased, these axes close as bones of umbrella do. We expand the Hamiltonian (3.61)
up to the first order of 1/S and thereby obtain

R†U †HUR = −3NJS2

2
+

∑

k

{3JS(1− γk) +
√

3JSgk sin φ}a†kak, (3.62)

where

gk = sin k1 + sin
(
−1

2
k1 +

√
3

2
k2

)
+ sin

(
−1

2
k1 −

√
3

2
k2

)
. (3.63)

This Hamiltonian is already diagonalized. The partition function of this system is given by

Z(φ) = Tr exp(−βR†U †HUR)

= exp
(

3βNJS2

2

) ∏

k

∞∑

nk=0

exp{−βεk(φ)nk}, (3.64)

where
εk(φ) = 3JS(1− γk) +

√
3JSgk sin φ. (3.65)

Hence the free energy per site is given by

F (φ) = − 1

βN
log Z(φ)

= −3JS2

2
+

1

βN

∑

k

log[1− exp{−βεk(φ)}]. (3.66)
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Figure 3.4: Values of the free energy F (φ) as a function of φ at various temperatures.
These values are calculated by expanding them from various ground states (3.15) which
have different values of φ. The ground state with φ = 0 has the 120◦ structure and the
state with φ = π/2 corresponds to the ferromagnetically ordered state. Temperatures are
written in the unit of JS2/kB.

Figure 3.5: Schematic phase diagram of the quantum XXZ antiferromagnets at finite tem-
peratures. The parameter λ denotes the z-component anisotropy of the Hamiltonian. Phase
boundaries are predicted without quantitative accuracy using the spin-wave expansions and
the exact ground states.
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We have evaluated F (φ) for various values of φ at finite temperatures. The results are
shown in Figure 3.4.

The free energy F (φ) has the minimum value at φ = π/2. This indicates that the
state fluctuating around the ferromagnetic-ordered ground state (3.15) is most favored at
each temperature and that the scalar chiral order can not appear at finite temperatures.
However, as we have discussed before, even the ferromagnetic order can not exist at finite
temperatures.

Taking into account all the above results, we obtain the phase diagram shown in Fig-
ure 3.5. We have drawn phase boundaries without quantitative accuracy on temperatures,
since we have only discussed whether orders are stable against spin-wave excitations or not.

3.3 Low-lying states of finite-volume systems2

In this section we study low-lying states in finite-volume triangular lattices to clarify
whether spontaneous symmetry breaking occurs at T = 0 in the thermodynamic limit.
In Section 3.3.1, we give approximate forms of low-lying states and discuss properties of
these states. In Section 3.3.2, with help of our approximation we discuss how rearrange-
ments of the low-lying states bring on symmetry breakings of two types. Furthermore, in
Section 3.3.3, we discuss the occurrence of symmetry breaking, studying the low-lying states
of finite systems with the numerical diagonalization method. Some rigorous results for the
low-lying states of ferromagnets, which are used in Section 3.3.1, are shown in Appendix.

3.3.1 An approximation for low-lying states

Here we give approximate forms of low-lying states of the quantum antiferromagnets on a
finite-volume triangular lattice and then discuss properties of them. The ground states of
antiferromagnets on finite systems are symmetric. Low-lying excited states play an impor-
tant role in symmetry breaking in an infinite-volume limit. Mechanism of the symmetry
breaking is discussed in the next section.

We consider the quantum XXZ antiferromagnets on the finite-volume lattice Λ with a
periodic boundary condition. The size of the system is N , where N = 3m with an integer
m. The Hamiltonian is given by

H = J
∑

〈i,j〉∈Λ

(Sx
i Sx

j + Sy
i Sy

j + λSz
i S

z
j ), (3.67)

where the summation runs over all the nearest-neighbor sites and the symbol λ denotes the
anisotropy of the z-component interactions. The models in the region −0.5 < λ ≤ 1 are
considered.

We concentrate on low-lying states that have sublattice-translational invariance and C3V

invariance. (The symbol C3V denotes the point group of the 120◦ rotation and reflection
of the lattice.) Bernu et al. [12, 13] reported that there are many low-lying states of this
type. Here we classify the states according to eigenvalues of the 60◦ rotation (C6). We call
the class of C6-symmetric states type α and the class of C6-antisymmetric states type β.

2The contents of this section were published in [101, 102].
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As an approximation for the lowest states of type α and of type β in the Sz
total = n (or

n + 1/2) subspace, we consider the following states:

|nα〉 =
(U + U †)|Fn〉
‖(U + U †)|Fn〉‖ , |nβ〉 =

(U − U †)|Fn〉
‖(U − U †)|Fn〉‖ (3.68)

for n = 0,±1,±2, . . ., where the symbol U denotes the unitary operator

U = exp
(
i
2π

3

∑

i∈B

Sz
i − i

2π

3

∑

i∈C

Sz
i

)
(3.69)

and ‖(U±U †)|Fn〉‖ = 〈Fn|(U±U †)2|Fn〉1/2. The state |Fn〉 denotes the lowest state in the
Sz

total = n (or n + 1/2) subspace of the “ferromagnetic” XXZ model on Λ which is defined
by the Hamiltonian

HF = −J
∑

〈i,j〉∈Λ

(Sx
i Sx

j + Sy
i Sy

j − 2λSz
i S

z
j ). (3.70)

Here the parameter λ is set equal to that in (3.67). We write the eigenvalue of HF for the
state |Fn〉 as Efn.

In the case of λ = −0.5, all states {|nα〉} and {|nβ〉} belong to the exact ground states
which we [110] presented in Section 3.2.1. Generalizing these exact ground states to the
region −0.5 < λ ≤ 1, we have proposed approximate forms (3.68). The approximate ground
state |0α〉 is also a generalization of the trial state of Betts and Miyashita [15] for the XY
antiferromagnet. We first discuss properties of the approximate states (3.68). After that
we verify that this approximation is good.

Here we discuss the meaning of the model (3.70). The states |nα〉 and |nβ〉 are linear
combinations of U |Fn〉 and U †|Fn〉. The unitary operator U transforms the Hamiltonian
(3.67) into the form

UHU † = −1

2
J

∑

〈i,j〉
(Sx

i Sx
j + Sy

i Sy
j − 2λSz

i S
z
j )−

√
3

2
J

∑

〈i→j〉
(Sx

i Sy
j − Sy

i Sx
j ), (3.71)

where the symbol i → j goes from the sublattice A to B, B to C, and C to A. The first
term in (3.71) gives the Hamiltonian (3.70). Thus the present approximation corresponds
to neglecting the second term in (3.71).

In the thermodynamic limit of the ferromagnet (3.70), only O(2) symmetry breaking
can take place, since it has no frustration. The classical limit of the ferromagnet (3.70) in
the region −0.5 < λ ≤ 1 has ferromagnetically ordered ground states, in which all spins are
lying in the XY plane [98]. The spin-1/2 ferromagnetic XY model (λ = 0) on the triangular
lattice has been studied by using the exact-diagonalization method [36, 118] and the spin-
wave theory [117, 144]. The results indicate the existence of the ferromagnetic long-range
order. As λ increases in the ferromagnet (3.70), quantum fluctuations are enhanced and
the magnetization is reduced.

Furthermore, as shown in Section 3.3.A, we can obtain several exact results for the
ferromagnet (3.70) on the finite-volume lattice Λ. The ground state is unique and it exists
in the Sz

total = 0 subspace. Then it has O(2)-rotational invariance. (When N is an odd
number, there exists trivial degeneracy; the states |F0〉 and |F − 1〉 are degenerate.) The
lowest state in the Sz

total = n subspace, which we write as |Fn〉, is unique. The coefficients
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of |Fn〉 in the bases which are eigenstates of { Sz
i } are nonnegative. All states { |Fn〉 } are

translationally invariant and C6V -invariant. (See Section 3.3.A.)

Using these rigorous results for the low-lying states of the ferromagnet, we can determine
the spatial quantum numbers of the approximate states. We have verified in the small
clusters that the spatial quantum numbers of the approximate states (3.68) are equal to
those of the true states. Bernu et al. [12] also investigated the spatial quantum numbers of
the low-lying states for the Heisenberg antiferromagnet and classified the low-lying states
into three classes: Γ1 (states with k = 0 and even under inversion), Γ2 (states with k = 0
and odd under inversion), and Γ3 [states with k = ±(4π/3, 0)]. When Sz

total(= n) =
3l or Sz

total(= n + 1/2) = 3l + 3/2 with an integer l, |nα〉 and |nβ〉 belong to Γ1 and
Γ2, respectively. Otherwise, both |nα〉 and |nβ〉 belong to Γ3. As we show in the next
section, our classification is useful in discussing the symmetry breaking about the sublattice
magnetization and the chirality separately.

An advantage of our approximation is that the degrees of freedom of the Z2(chiral)
symmetry and the O(2) symmetry are separated in it. Then we can discuss breakdown
of each symmetry independently. The parts of the unitary operator, namely (U ± U †),
can describe the chiral symmetry breaking and the parts of the low-lying states of the
ferromagnet, namely |Fn〉 (n = 0,±1,±2, . . .), can display the breakdown of the O(2)
symmetry.

We give a remark for the case of the Heisenberg antiferromagnet. Since the model is
isotropic, a slight modification is necessary for the approximate ground state, |0α(λ=1)〉. We
only give the form of an approximate ground state as follows:

|0α′〉 =
1

4π

∫
dΩR(Ω)|0α(λ=1)〉

/∥∥∥ 1

4π

∫
dΩR(Ω)|0α(λ=1)〉

∥∥∥, (3.72)

where Ω is the unit vector with the spherical coordinates (θ, ϕ) and

R(Ω) = exp
(
iϕ

∑

i

Sz
i

)
exp

(
iθ

∑

j

Sy
j

)
. (3.73)

We now discuss the accuracy of our approximation. We compare the approximate low-
lying states with the true ones, numerically diagonalizing finite systems. To compare with
the ground state of the Heisenberg model, we use the state |0α(λ=1)〉 instead of (3.72),
since it is not easy to treat (3.72) in numerical calculations. First we note that, as we
have already mentioned, the spatial quantum numbers of our approximate low-lying states
are equal to those of the true states: They are invariant under any sublattice translation
and any translation of C3V , and they have the same momentum as the true states. In
the true system there indeed exist low-lying states of two types corresponding to the types
α and β. Second, the approximate low-lying states have accurate expectation values of
physical quantities. (See Table 3.3.) The expectation values of the energy are at most 2%
higher than the exact values in the XY model and at most 7% higher in the Heisenberg
model. We have calculated correlation functions of the sublattice magnetization and the
chirality, excluding the autocorrelations. They are almost equal to the exact values in the
S = 1/2 XY model. In the S = 1/2 Heisenberg model, we multiply the evaluated values by
factor 1/3, since partial symmetry is broken in our approximate states (3.68), as mentioned
above. (The coefficient 1/3 is derived using the arguments given in Section 3.4.) Finally
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Figure 3.6: Two-fold structures in the spectrum of low-lying states.

we calculated overlaps between the exact low-lying states and the approximate ones. The
results are shown in Table 3.3. In the XY model the approximate states have more than
90% overlaps with the exact states and in the Heisenberg model more than 70%. These
situations are the same for the low-lying states in the Sz

total = 1 and Sz
total = 2 subspaces

as well. Thus we find that the exact low-lying spectrum has the two-fold structures, as
shown in Figure 3.6, and that the true low-lying states can be accurately described with
the present approximation.

Using this approximation, we can estimate the expectation values of the energy. The
ground-state energy is calculated as

〈0α|H|0α〉 =
Ef0 + 4Ef0〈F0|U |F0〉 − 6λJ〈F0|U(

∑
〈i,j〉 S

z
i S

z
j )|F0〉

2 + 2〈F0|U |F0〉 , (3.74)

where we have used the relations UHU † + U †HU = HF and UHU = HFU † + U †HF −
3λJU † ∑

〈i,j〉 S
z
i S

z
j . The terms 〈F0|U |F0〉 and 〈F0|U(

∑
〈i,j〉 S

z
i S

z
j )|F0〉 correspond to the

transition probabilities from the ferromagnetic ground state, |F0〉, to the antiferromagnetic
state, U |F0〉. In the thermodynamic limit, these values are vanishing. Thus the ground-
state energy is estimated as

〈0α|H|0α〉 ' Ef0

2
. (3.75)

Next we discuss the energy gaps. The energy gap between the ground state (type α) and
the lowest state of type β is almost vanishing as

〈0β|H|0β〉 − 〈0α|H|0α〉 =
−3Ef0〈F0|U |F0〉+ 6λJ〈F0|U(

∑
〈i,j〉 S

z
i S

z
j )|F0〉

1− 〈F0|U |F0〉2
' 0. (3.76)

The energy gap between the ground state of Sz
total = 0 and the lowest state of Sz

total = 1 is
estimated as

〈1α|H|1α〉 − 〈0α|H|0α〉 ' 1

2
(Ef1 − Ef0). (3.77)
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Table 3.3: Various physical values of approximate states |0α〉 and |0β〉 are compared with
those of the exact ground state |0〉 and the lowest excited state |1〉 in the spin-1/2 (a) XY
and (b) Heisenberg models. Expectation values of the energy, spin long-range order and
chiral long-range order are calculated and divided with those of exact states. (See text.)
Ratio of the expectation values to the true values are listed. Overlaps |〈0|0α〉|2 and |〈1|0β〉|2
are also listed.

(a) XY model

size type
ratio of ratio of spin ratio of chiral

overlapsenergy long-range order long-range order

N = 3 α 1.0 1.0 1.0 1.0

β 1.0 1.0 1.0 1.0

N = 9 α 0.992 1.037 0.999 0.979

β 0.992 1.037 1.049 0.979

N = 12 α 0.973 1.202 1.221 0.847

β 0.998 0.993 1.022 0.998

N = 21 α 0.986 1.079 1.037 0.918

β 0.986 1.079 1.037 0.918

(b) Heisenberg model

size type
ratio of ratio of spin ratio of chiral

overlapsenergy long-range order long-range order

N = 3 α 1.0 0.333 0.333 1.0

β 1.0 0.333 0.333 1.0

N = 9 α 0.932 0.665 0.437 0.788

β 0.932 0.665 0.517 0.788

N = 12 α 0.929 0.435 0.567 0.799

β 0.997 0.314 1.856 0.987

N = 21 α 0.936 0.582 0.777 0.464

β 0.936 0.582 0.777 0.464
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Relations between these energy gaps and the symmetry breaking of two types, namely
creation of the spontaneous chirality and of the spontaneous sublattice magnetization, are
discussed in the next section.

3.3.2 Contribution of low-lying states to symmetry breaking

As we have discussed in Section 2.4.2, many low-lying states converge to the ground states,
as the system size is enlarged, and then linear combinations of these states make the sym-
metry breaking occur. Several authors [50, 74, 139, 12, 13] have discussed the mechanism
of symmetry breaking in quantum Heisenberg antiferromagnets. In this section we study
roles played by low-lying states of two types in symmetry breaking. Here we assume that
the ground states of an infinite-volume system have a long-range order and that the sym-
metry breaks down. In Section 3.3.3 we study possibilities of the occurrence of symmetry
breaking.

In antiferromagnets on a triangular lattice, there are two types of symmetry breaking.
In the XY model, or in the XXZ model for −0.5 < λ < 1, the O(2) symmetry and the
Z2(chiral) symmetry can break independently. In the Heisenberg model, both the sponta-
neous sublattice magnetization and the spontaneous chirality correspond to the breakdown
of the O(3) symmetry.

As shown in Section 3.3.1, the low-lying states on a finite-volume triangular lattice have
twofold structures. The purpose of this section is to clarify the relations between the sym-
metry breaking of two types and the low-lying states of types α and β. Our approximation
(3.68) helps us to understand the symmetry breaking of two types independently, since the
degrees of freedom of the sublattice magnetization and of the chirality are separated in it.

In an infinite-volume system we can define four types of ground states, which are clas-
sified by existence of the spontaneous sublattice magnetization or the spontaneous chiral
order. Here we show the definitions of four types.

1. Symmetric states (mixed states ),

〈· · ·〉1 = lim
N↑∞

lim
β↑∞

Tr[· · · exp(−βH)]

Tr[exp(−βH)]
= ω(· · ·). (3.78)

2. States in which only the spontaneous chirality exists,

〈· · ·〉2 = lim
B↓0

lim
N↑∞

lim
β↑∞

Tr[· · · exp{−β(H −BQz)}]
Tr[exp{−β(H −BQz)}] (3.79)

where Qz denotes the z component of the chirality order-parameter operator

Q =
2√
3

∑

〈i→j〉
(Si × Sj). (3.80)

The summation is defined in the same way as in (3.71).

3. States in which only the spontaneous magnetization exists,

〈· · ·〉3 = lim
B↓0

lim
N↑∞

lim
β↑∞

Tr[· · · exp{−β(H −B(U
∑

i S
x
i U † + U † ∑

i S
x
i U))}]

Tr[exp{−β(H −B(U
∑

i S
x
i U † + U † ∑

i S
x
i U))}] . (3.81)
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4. Pure states,

〈· · ·〉4 = lim
B↓0

lim
N↑∞

lim
β↑∞

Tr[· · · exp{−β(H −BU † ∑
i S

x
i U)}]

Tr[exp{−β(H −BU † ∑
i S

x
i U)}] = ω̃(· · ·). (3.82)

Here the equilibrium states are defined as functionals of expectation values on an operator
space. (This is familiar in studies of infinite-volume systems.) In the following, we show,
using the approximate states (3.68), how each ground state is constructed of low-lying
states.

1. Symmetric states (mixed states). By taking the thermodynamic limit of the finite-
volume ground state, we get the symmetric ground state (3.78). No symmetry is broken in
it.

2. States in which only the spontaneous chirality exists. We obtain the state 〈· · ·〉2 by
taking the thermodynamic limit under an infinitesimal effective field which is conjugate to
the chiral order parameter.

An approximation of this state is given by |2〉 = U |F0〉. There remains the O(2)
invariance in it. Both Miyashita’s trial function [97] and the variational function by Huse
and Elser [53] belong to this type of ground state.

In the XY -like model, the state U |F0〉 is constructed by making a linear combination
of |0α〉 and |0β〉,

{|0α〉, |0β〉}−−−→{U |F0〉, U †|F0〉}. (3.83)

Thus with help of our approximation we find that, if the ground state (type α) and the lowest
state of type β become degenerate in the infinite-volume limit and if they are rearranged
between themselves, the Z2 symmetry of the chirality is broken.

In the Heisenberg model, the degree of freedom of the chirality is continuous and the
ground state is isotropic, as mentioned in (3.72). Then two states are not enough to break
entirely the symmetry of the chirality. Koma and Tasaki [74] proposed an approximate
state which describes breakdown of continuous symmetry and they argued that the ther-
modynamic limit of this approximate state is a pure state, in which continuous symmetry
is broken. By applying their argument to the present case, an approximate state which has
fully-ordered spontaneous chirality can be constructed in the form

1

(2k + 1)1/2

{
|ΦGS〉+

k∑

n=1

(
(Q+)n|ΦGS〉
‖(Q+)n|ΦGS〉‖ +

(Q−)n|ΦGS〉
‖(Q−)n|ΦGS〉‖

)}
. (3.84)

where Q± = Qx ± iQy and |ΦGS〉 denotes the ground state. The number k is of o(N).
This state has a nonvanishing expectation value of the operator Qx. By rotating all the
spins through the angle π/2 about the y axis, we obtain an approximation for the state
〈· · ·〉2. According to the arguments by Koma and Tasaki [74], the infinite-volume limit
of this approximate state become 〈· · ·〉2. The states (Q±)2m|ΦGS〉 belong to type α and
(Q±)2m+1|ΦGS〉 to β. Thus the state 〈· · ·〉2 is constructed by a linear combination of low-
lying states of type α and of type β.

In our approximation the expectation value of the spontaneous chirality is calculated as

〈2|Qz|2〉 =
Ef0

J
+

Ef0

3J
〈F0|U |F0〉 − 2λ〈F0|∑

〈i,j〉
Sz

i S
z
j |F0〉

' Ef0

J
− 2λ〈F0|∑

〈i,j〉
Sz

i S
z
j |F0〉 (3.85)
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where the relations UHU † =
1

2
HF − 3

4
JQ and H = −HF + 3Jλ

∑
〈i,j〉 S

z
i S

z
j are used and

Ef0 denotes the ground-state energy of the ferromagnet. As λ is increased from −0.5,
the first term in (3.85) becomes large by quantum effects. The second term in (3.85),
〈F0|∑〈i,j〉 S

z
i S

z
j |F0〉, behaves as follows: At λ = −0.5 this term is vanishing, since there is

no correlation between up and down spins in the ground state |F0〉. As the parameter λ
increases, nearest-neighbor pairs of up and down spins are favored. Then the term becomes
large. Thus at λ = 0 the chirality is enhanced by the quantum effect of the first term and
near λ = 1 the value is reduced by the contribution of the second term.

3. States in which only the spontaneous magnetization exists. In the state 〈· · ·〉3 there
exists the spontaneous magnetization, though there exists no spontaneous chirality.

In the XY-like model, the O(2)-symmetry breaking occurs in the following way. First we
consider the case of the ferromagnetic XXZ model (3.70). As shown in Appendix A, the
finite-volume ground state of the ferromagnet is unique and it has O(2)-rotational invari-
ance. It was shown in Ref. [74] that the low-lying states |Fn〉 [n = ±1,±2, . . . ,±o(N)] con-
verge to the ground state and pure infinite-volume ground states are constructed by taking
linear combinations of the low-lying states. The state |F-order〉 denotes one of the ferromag-
netically ordered ground states, where 〈F-order|Sx

i |F-order〉 6= 0 and 〈F-order|Sy
i |F-order〉 =

0. In the case of the antiferromagnet, with help of the approximate low-lying states, we
can understand the mechanism of the O(2)-symmetry breaking on the analogy of the ferro-
magnet. Under the effective field B in (3.81), the low-lying states of type α have an energy
lower than those of β have. An approximate state for 〈· · ·〉3 is given by (U + U †)|F-order〉,
which is constructed by making a linear combination of (U + U †)|Fn〉 (n = 0,±1,±2, . . .).
In the same way, by using low-lying states of type β, another state in which only the spon-
taneous magnetization exists is constructed as (U − U †)|F-order〉. Thus we find that, if
the low-lying states of the same type become degenerate in the infinite-volume limit and if
rearrangements occur between them, the breakdown of the O(2) symmetry occurs.

For the Heisenberg model, by applying the approximation of Koma and Tasaki [74] to
this model, an approximate state of 〈· · ·〉3 is written as

1√
2k + 1

{
|ΦGS〉+

k∑

n=1

(
(O+)n|ΦGS〉
‖(O+)n|ΦGS〉‖ +

(O−)n|ΦGS〉
‖(O−)n|ΦGS〉‖

)}
(3.86)

where O+ = U
∑

i S
+
i U †+U † ∑

i S
+
i U . All the low-lying states, (O+)n|ΦGS〉 and (O−)n|ΦGS〉,

belong to the type α. Thus we can obtain the state 〈· · ·〉3 by taking a linear combination
of the low-lying states of the same type.

4. Pure states. The pure infinite-volume ground states have the same structure as the
ground states of the classical model. The O(2) symmetry and Z2 symmetry are broken in
the XY model, and the O(3) symmetry of the sublattice magnetization and that of the
chirality are broken in the Heisenberg model.

To construct the pure infinite-volume ground states, the symmetry breaking of two types
discussed in the above should occur. A number of low-lying states of both types, α and β,
become degenerate to the ground state and rearrangements occur between them. This is
consistent with the previous arguments by Bernu et al. [12] and Koma and Tasaki [74].

By discussing the symmetry breaking of two types separately, we find that the sponta-
neous sublattice magnetization is created by rearrangements of the low-lying states of the
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same type and that the spontaneous chirality is by rearrangements of pairs of low-lying
states of types α and β.

It is possible that, if long-range order of one type exists in the true system, only one
type of symmetry breaking occurs in the thermodynamic limit. Though the result from
the renormalization group [9] indicates existence of one critical point (critical spin Sc), our
arguments suggest that symmetry breaking can occur separately and that an intermediate
phase can appear in which symmetry breaking of only one type occurs.

An approximation for this state is given by

|4〉 = U |F-order〉 (3.87)

and the expectation values are related to the quantities of the ferromagnet in the forms

〈4|U ∑

i

Sx
i U †|4〉 = 〈F-order|∑

i

Sx
i |F-order〉 (3.88)

and
〈4|Qz|4〉 = 〈2|Qz|2〉. (3.89)

3.3.3 Numerical results of finite-size systems

In this section we numerically study low-lying states of finite systems to verify the occur-
rence of symmetry breaking discussed in Section 3.3.2. We discuss the XY and Heisenberg
antiferromagnets.

First we discuss the necessary conditions for symmetry breaking to occur. Bernu et
al. [12] have also discussed these matters. We discuss the conditions of the creation of the
spontaneous sublattice magnetization and of the spontaneous chirality separately.

As discussed in Refs. [12] and [74], when the symmetry breaking occurs in the ther-
modynamic limit, there should exist growing numbers of low-lying states which satisfy the
following two conditions.

1. The excitation energy decays in the 1/N form.

2. The spatial symmetry is the same as that of the ground state of the classical model,
i.e., the state has sublattice-translational invariance and C3V invariance.

In the thermodynamic limit, these low-lying states become ground states. In general, all
the pure ground states give the same physical quantities. The sublattice magnetization
and the chirality per site should be the same throughout the ground states. From this
consideration and the discussions in Section 3.3.2, we obtain the necessary condition of the
creation of the spontaneous sublattice magnetization as follows:

3. A number of low-lying states of type α satisfy condition 1 and they have the same
macroscopic value of long-range order of the sublattice magnetization.

The necessary condition of the creation of the spontaneous chirality is as follows:

4. Pairs of low-lying states of types α and β satisfy the condition 1 and they have the
same macroscopic value of long-range order of the chirality.
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Figure 3.7: Size dependence of the energy gap between the lowest state (type α) and the
lowest excited state (type β) in the same Sz

total subspace for the Heisenberg model.

Bernu et al. [12] studied the low-lying states of the Heisenberg model on the triangular
lattice. They found many low-lying states which satisfy the conditions 1 and 2, and found
that these states have similar macroscopic values for the sublattice magnetization. They
estimated the sublattice magnetization of the ground state in the infinite-volume limit for
the Heisenberg model. Leung and Runge [82] estimated the sublattice magnetization and
chirality of the ground state for the XY and Heisenberg models.

To examine these conditions explicitly, we study the energy gaps, the sublattice mag-
netization and the chirality of the low-lying states in the S = 1/2 XY and Heisenberg
models, and estimate the physical values of the low-lying states in the infinite-volume limit.
The systems of the size N = 9, 12, 21, and 27 with periodic boundary conditions are stud-
ied, using the exact-diagonalization method. We study the low-lying states which belong
to the subspaces of Sz

total = 0 (or 0.5) and of Sz
total = 1 (or 1.5), and which satisfy the

condition 2. (The ground state and some low-lying excited states really belong to these
subspaces.) As we have indicated in Section 3.3.1, there exist the C6-symmetric (type α)
and C6-antisymmetric (type β) states. In many cases, we studied the lowest state of each
subspace. There are exceptions: In the space of Sz

total = 0 for N = 12 and Sz
total = 1.5

for N = 21 of the Heisenberg model, we chose the first excited state of type β, since the
first-excited state of type α and the lowest state of type β are degenerate and form a paired
doublet, and the ground state (type α) and the first excited state of type β are in pairs.

The lowest state in the Sz
total = 0 and C6-symmetric (type α) subspace, which is the

ground state, has been already calculated up to N = 36 in Refs. [12] and [82]. We used the
data for N = 36 in Ref. [82].

First we discuss the energy gap. Here the energy gap is defined as the difference between
the total energies of two states. The energy gap between the lowest state of type α and that
of β is shown in Figure 3.7. In many cases the states of types α and β are degenerate. The
energy gap between the ground state (type α) and the lowest state (type α) of the Sz

total = 1
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Figure 3.8: Size dependence of the energy gap between the ground state (type α) and the
lowest state (type α) in Sz

total=1.

subspace is plotted in Figure 3.8. It decreases proportionally to N−1. As we discussed in
Section 3.3.2, the former energy gap is relevant to the symmetry breaking of the chirality
and the latter to the breakdown of the rotational symmetry which creates the spontaneous
sublattice magnetization. The latter energy gap corresponds to the singlet-triplet gap in
the Heisenberg model, which was reported in Ref. [82].

It was proved that, if there is a long-range order, the energy gap decreases in the N−1

form or faster [50, 74]. Thus the above results are consistent with the existence of long-range
order in the XY and Heisenberg antiferromagnets.

Next we consider the sublattice magnetization which is observed with the operator

M =
∑

i∈A

Sx
i +

∑

i∈B

(
−1

2
Sx

i +

√
3

2
Sy

i

)
+

∑

i∈C

(
−1

2
Sx

i −
√

3

2
Sy

i

)
. (3.90)

We calculated the long-range order of the sublattice magnetization 〈M2〉/N2. The val-
ues of the spontaneous sublattice magnetization m are estimated, using the relation m =

limN↑∞
√

6〈M2〉/N for the Heisenberg model and m = limN↑∞ 2
√
〈M2〉/N for the XY

model. We show a derivation of these relations in Section 3.4. We fit the data of the sub-
lattice magnetization m to the N−1/2 form. This finite-size correction was derived from the
spin-wave theory [52] and using the effective Hamiltonian for a large spin [10]. [We also fit
the long-range correlation 〈M2〉/N2 to the N−1/2 form, using the data for N = 3, 9, 12, 21,
and 27, and found that the correction term of O(N−1) in the fitting of 〈M2〉/N2 is larger
than that in the fitting of m. Therefore we adopted the fitting of m.] The results for the
XY model are shown in Figure 3.9. We extrapolated in the N−1/2 form, using the data for
N = 9, 12, 21, and 27. For the ground state we also used the data for N = 36 which was
reported in Ref. [82]. The values in the infinite-volume limit are shown in Table 3.4. They
coincide with each other. Thus the condition 3 is satisfied in the XY model. The data for
the Heisenberg model are shown in Figure 3.10. The values in the infinite-size limit are
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Figure 3.9: Size dependence of the sublattice magnetization of the lowest state in each

subspace of the XY model, which is estimated through 2
√
〈M2〉/N . The result for N=36

is also listed [82]. SW denotes the result from the spin-wave expansion [110].

Figure 3.10: Size dependence of the sublattice magnetization of the lowest state in each

subspace of the Heisenberg model, which is estimated through
√

6〈M2〉/N . The result for
N = 36 is also listed [82]. SW denotes the result from the spin-wave expansion [96].
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Figure 3.11: Size dependence of the chirality of the lowest state in each subspace of the XY

model which is estimated through
√
〈(Qz)2〉/N . The result for N = 36 is also listed [82].

SW denotes the result from the spin-wave expansion [110].

shown in Table 3.5. They are almost equal. Thus the condition 3 is also satisfied in the
Heisenberg model. All the values are nonvanishing and close to the result by the spin-wave
theory. On the other hand, as reported in Ref. [82], if we fit the data 〈M2〉/N2 to N−1/2,
we obtain the estimate m ' 0. The values seriously depend on the fitting form. Hence it
may be still hard to conclude the existence of the long-range order in the Heisenberg model.

Finally we consider the chiral order, which is observed with the operator

Q =
2√
3

∑

<i→j>

Si × Sj, (3.91)

where the symbol i → j goes from the sublattice A to B, B to C, and C to A. We calculated
the long-range order of the chirality 〈(Qz)2〉/N2. The values of the spontaneous chirality q

are estimated using the relations q = limN↑∞
√

3〈(Qz)2〉/N for the Heisenberg model and

q = limN↑∞
√
〈(Qz)2〉/N for the XY model. (See Section 3.4.) We show the results for

the XY model in Figure 3.11 and for the Heisenberg model in Figure 3.12. For the XY
model we extrapolated the expectation values of the chirality in the N−3/2 form, which we
derive from the finite-size correction of the spin-wave theory [110]. On the other hand, in
the Heisenberg model the finite-size correction behaves in the N−1/2 form, as discussed by
Azaria et al. [10] This difference of the correction terms comes from the fact that in the
Heisenberg model the chirality is sensitive to spin-wave fluctuations of long wavelength,
while in the XY model the chiral order is stable against them. The extrapolated values are
shown in Tables 3.4 and 3.5. In the the XY model the values are consistent with each other
and nonvanishing, which suggests the existence of the chiral order. Thus the condition 4 is
satisfied. In the Heisenberg model the values do not agree with each other. It is necessary
to calculate larger systems to conclude that these low-lying states have the same chirality.
We cannot fit the data to a form including higher-order terms, since the system sizes are
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Figure 3.12: Size dependence of the chirality of the lowest state in each subspace of the

Heisenberg model which is estimated through
√

3〈(Qz)2〉/N . The result for N = 36 is also
listed [82]. SW denotes the result from the spin-wave expansion [110].

too small. Thus we cannot conclude the existence of the long-range order of the chirality
in the Heisenberg model.

Table 3.4: Estimates of the sublattice magnetization m and the chirality q for the S = 1/2
XY antiferromagnet on the triangular lattice.

m q

Sz
total=0, type α 0.41 0.76

Sz
total=0, type β 0.39 0.76

Sz
total=1, type α 0.42 0.77

Sz
total=1, type β 0.41 0.78

Spin-wave expansion O(1/S) [110] 0.448 0.798

Spin-wave expansion O(1/S2) [82] 0.437

To test the mechanism of symmetry breaking of the chirality which we have discussed
in Section 3.3.2, we construct the state

|φ〉 =
1√
2
(|α〉+ i|β〉), (3.92)

where |α〉 (|β〉) denotes the lowest state of type α (β) in each Sz
total subspace. We observe

the spontaneous chirality of this state. The expectation value of the chirality is calculated
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Figure 3.13: Spontaneous symmetry breaking of the chirality of the XY model which is
created by a linear combination (|α〉+ i|β〉)/√2 of the low-lying states of types α and β.

Figure 3.14: Spontaneous symmetry breaking of the chirality of the Heisenberg model which
is created by a linear combination (|α〉+ i|β〉)/√2 of the low-lying states of types α and β.
The values are multiplied by the factor

√
3.
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Table 3.5: Estimates of the sublattice magnetization m and the chirality q for the S = 1/2
Heisenberg antiferromagnet on the triangular lattice.

m q

Sz
total = 0, type α 0.24 0.21

Sz
total = 0, type β 0.22 0.16

Sz
total = 1, type α 0.24 0.54

Sz
total = 1, type β 0.38 0.73

Spin-wave expansion O(1/S) [120, 110] 0.238 0.405

Spin-wave expansion O(1/S2) [96] 0.250

through the relation
〈φ|Qz|φ〉 = i〈α|Qz|β〉. (3.93)

The estimates in the XY model are shown in Figure 3.13. They are almost equal to the
values shown in Figure 3.11. This coincidence suggests the correctness of the mechanism
of the chiral symmetry breaking discussed in Section 3.3.2. In the Heisenberg model we
multiply the calculated values by the factor

√
3, since the symmetry is not fully broken in

the state (3.92); the state (3.84) should be properly used instead of (3.92). The estimates
are shown in Figure 3.14. Thus we can break the chiral symmetry by making a linear
combination of low-lying states of type α and of type β.

From the above results we summarize that the necessary conditions 3 and 4 are satisfied
in the XY model. In the Heisenberg model the necessary conditions are almost satisfied,
though there remains ambiguity about whether the low-lying states have the same proper-
ties. In any case, in the above results there is no evidence which contradicts the occurrence
of symmetry breaking.

3.3.A Low-lying states of the ferromagnetic XXZ model

In this Appendix, we show the uniqueness of the ground state and give spatial quantum
numbers of the low-lying states of the spin-S XXZ ferromagnet on finite systems. We
discuss the model on the finite-volume triangular lattice Λ with a periodic boundary con-
dition. For simplicity, we restrict the number of sites to an even integer. The Hamiltonian
is given by

HF = −J
∑

〈i,j〉∈Λ

(Sx
i Sx

j + Sy
i Sy

j + ηSz
i S

z
j ), (3.94)

where J > 0 and η < 1. The summation runs over all the nearest-neighbor sites.
The Hamiltonian (3.94) has nonpositive off-diagonal elements. The bases which have the

same Sz
total are connected by the elements of the Hamiltonian. From the Perron-Frobenius

theorem, the lowest eigenstate in each Sz
total subspace is unique and it has nonnegative

coefficients.
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Here we show that the ground state exists uniquely in the Sz
total = 0 subspace. We

consider the following Hamiltonian

H ′
F = − ∑

i,j∈Λ

Jij(S
x
i Sx

j + Sy
i Sy

j + ηSz
i S

z
j ), (3.95)

where Jij ≥ 0 for all i and j. Affleck and Lieb [3] showed that, in the antiferromagnetic
XXZ chain, the ground state exists uniquely in the Sz

total = 0 subspace. As they did, we
transform the Hamiltonian (3.95) using the unitary operator

W = exp
(
i
π

2

∑

i

Sx
i

)
(3.96)

into the form

W †H ′
FW = − ∑

i,j∈Λ

Jij

{1

4
(1+η)(S+

i S−j +S−i S+
j )+

1

4
(1−η)(S+

i S+
j +S−i S−j )+Sz

i S
z
j

}
. (3.97)

In the region −1 < η < 1, this transformed Hamiltonian has nonpositive off-diagonal
elements. It has two connected blocks, i.e., all bases in the subspaces with even Sz

total are
connected by the elements of the Hamiltonian and those with odd Sz

total are connected.
From the Perron-Frobenius theorem, the lowest eigenstate in each connected subspace is
unique. Thus we find that the number of the ground states is at most two in the original
model (3.95). The lowest states in the Sz

total = n and Sz
total = −n subspaces are degenerate.

When level crossing of the ground state occurs, more than two ground states must exist,
which contradicts the above result. Thus in the whole region of various parameters { Jij },
the ground state should exist in the same Sz

total subspace.
For the region η < −1, as Affleck and Lieb did, we can show the above results using the

unitary operator

W = exp
(
i
π

2

∑

i

Sy
i

)
. (3.98)

To obtain the eigenvalue Sz
total of the ground state, we consider the case Jij = J for all

i and j. The Hamiltonian can be written in the form

H ′
F = −J{(S)2 − (1− η)(Sz)2}, (3.99)

where S= (Sx, Sy, Sz) and Sα =
∑

i∈Λ Sα
i (α = x, y, z). The ground state of this model

is unique and it has the eigenvalues Stotal = SN and Sz
total = 0. [137] From the above

results, we find that the ground state of the original model (3.94) in the regions η < −1
and −1 < η < 1 exists uniquely in the Sz

total = 0 subspace.
This argument can be extended to the ferromagnetic XXZ model on any lattice. The

ferromagnet on a bipartite lattice is equivalent to the XXZ antiferromagnet with the z-
component anisotropy −η. In this case the above results are consistent with what were
proved by Lieb and Mattis [85], and Affleck and Lieb [3].

Lastly, we give the spatial quantum numbers of the lowest state in each Sz
total subspace.

The Hamiltonian (3.94) is invariant under any translation, rotation, and reflection. As
we have shown in the above, the lowest state is nondegenerate and it has nonnegative
coefficients. From this fact, we find that the lowest state has the eigenvalue 1 for any
translation, rotation, and reflection, i.e., it is translationally invariant and C6V -invariant.
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3.4 Relations between long-range order and symme-

try breaking3

Here we discuss the relation between spontaneous symmetry breaking m and the long-range
order parameter σ. It has been discussed[99, 73] that the relation is given by m =

√
3σ for

the Heisenberg antiferromagnet and by m =
√

2σ for the XY antiferromagnet on bipartite
lattices. But these relations are not valid in the antiferromagnets on the triangular lattice.
Here we show that, in the antiferromagnets on the triangular lattice, the factor becomes√

2 times as large as the above.

Our arguments are based on the assumption that the symmetric infinite-volume ground
state (3.78) is decomposed into the pure ground states. Koma and Tasaki[73] used this
decomposition to explain the factor

√
3 for the Heisenberg antiferromagnets on bipartite

systems.

The spontaneous sublattice magnetization m is defined as

m ≡ lim
B↓0

lim
N↑∞

lim
β↑∞

1

N

Tr[M exp{−β(H −BM)}]
Tr[exp{−β(H −BM)}] . (3.100)

Using the sublattice-translational invariance and equivalence of the sublattice magnetiza-
tion, we have

m = ω̃(Sx
0 ), (3.101)

where the state ω̃(· · ·) is defined by (3.82). The long-range order parameter of the sublattice
magnetization σm is defined by

σm
2 ≡ lim

N↑∞
lim
β↑∞

1

N2

Tr[M2 exp(−βH)]

Tr[exp(−βH)]
. (3.102)

Using the rotational and translational invariance, we obtain

σm
2 = lim

|r|↑∞
1

3
{ ω(Sx

0 Sx
r ) + ω(−1

2
Sx

0 Sx
r+e1

+

√
3

2
Sx

0 Sy
r+e1

)

+ω(−1

2
Sx

0 Sx
r+e2

−
√

3

2
Sx

0 Sy
r+e2

)}, (3.103)

where the state ω is defined by (3.78). The sites 0 and r belong to the sublattice A and e1

(e2) denotes the unit lattice vector which belongs to the sublattice B (C).

We also define the spontaneous chirality q as

q ≡ lim
B↓0

lim
N↑∞

lim
β↑∞

1

N

Tr[Qz exp{−β(H −BM)}]
Tr[exp{−β(H −BM)}] = ω̃(Qz(0)) (3.104)

and the long-range order parameter of the chirality σq as

σq
2 ≡ lim

N↑∞
lim
β↑∞

1

N2

Tr[(Qz)2 exp(−βH)]

Tr[exp(−βH)]
= lim

|r|↑∞
ω(Qz(0)Qz(r)), (3.105)

3The contents of this section were published in [101].
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where the operator Qz(r) is the z component of the chiral order-parameter operator on the
unit triangular cell,

Q(r) =
2√
3
(Sr × Sr+e1 + Sr+e1 × Sr+e2 + Sr+e2 × Sr). (3.106)

Now we derive the relations between m and σm, and between q and σq. Our results are
as follows: For the XY model

m = 2σm and q = σq, (3.107)

and for the Heisenberg model

m =
√

6σm and q =
√

3σq. (3.108)

The relation m =
√

6σm for the Heisenberg model has been already used by Bernu et al.[12].

To derive these relations, we use the following standard arguments. It is widely believed
that the mixed state ω can be naturally decomposed into pure equilibrium states,[19]

ω(· · ·) =
∫

dαωα(· · ·), (3.109)

where {ωα} denote the pure states and the parameter α describes their properties. The
state ω̃, which is defined in eq. (3.82), is one of ωα. The pure states have the cluster
property,[19]

ωα(A0Br)−−−−−→|r|↑∞
ωα(A0)ωα(Br) (3.110)

for any local operators A and B.

XY-Like Model

In the XXZ model with −0.5 < ∆ < 1, it is expected that the decomposition (3.109) is of
the form

ω(· · ·) =
1

4π

∫ 2π

0
dθ{ωθ,+(· · ·) + ωθ,−(· · ·)}, (3.111)

where ωθ,+ (ωθ,−) denote the states which have positive (negative) chirality and in which
vectors of spins on the sublattice A form the angle θ with the x axis. The state ω̃ corresponds
to ωθ=0,+. The pure states have following expectation values of the sublattice magnetization:

ωθ,+

(
Sx

0

)
= m cos θ, ωθ,−

(
Sx

0

)
= m cos θ, (3.112)

ωθ,+

(
−1

2
Sx

e1
+

√
3

2
Sy

e1

)
= m cos θ, ωθ,−

(
−1

2
Sx

e1
+

√
3

2
Sy

e1

)
= m cos(θ − 2π

3
),

ωθ,+

(
−1

2
Sx

e2
−
√

3

2
Sy

e2

)
= m cos θ, ωθ,−

(
−1

2
Sx

e2
−
√

3

2
Sy

e2

)
= m cos(θ +

2π

3
),

and the chirality

ωθ,±(Qz(0)) = ±q. (3.113)
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Using the decomposition (3.111) and the property (3.110), we find that the long-range
order parameter of the sublattice magnetization (3.103) is transformed as

σm
2 = lim

|r|↑∞
1

12π

∫ 2π

0
dθ

{
ωθ,+(Sx

0 Sx
r ) + ωθ,+(−1

2
Sx

0 Sx
r+e1

+

√
3

2
Sx

0 Sy
r+e1

)

+ ωθ,+(−1

2
Sx

0 Sx
r+e2

−
√

3

2
Sx

0 Sy
r+e2

) + ωθ,−(Sx
0 Sx

r )

+ ωθ,−(−1

2
Sx

0 Sx
r+e1

+

√
3

2
Sx

0 Sy
r+e1

) + ωθ,−(−1

2
Sx

0 Sx
r+e2

−
√

3

2
Sx

0 Sy
r+e2

)
}

=
1

12π

∫ 2π

0
dθ

×
[
ωθ,+(Sx

0 )
{
ωθ,+(Sx

0 ) + ωθ,+(−1

2
Sx

e1
+

√
3

2
Sy

e1
) + ωθ,+(−1

2
Sx

e2
−
√

3

2
Sy

e2
)
}

+ωθ,−(Sx
0 )

{
ωθ,−(Sx

0 ) + ωθ,−(−1

2
Sx

e1
+

√
3

2
Sy

e1
) + ωθ,−(−1

2
Sx

e2
−
√

3

2
Sy

e2
)
}]

=
m2

4π

∫ 2π

0
dθ cos2 θ =

m2

4
. (3.114)

Thus we obtain the relation m = 2σm.
In the same way, the long-range order parameter of the chirality, (3.105), is estimated

as

σq
2 = lim

|r|↑∞
1

4π

∫ 2π

0
dθ

{
ωθ,+(Qz(0)Qz(r)) + ωθ,−(Qz(0)Qz(r))

}

=
1

4π

∫ 2π

0
dθ{ωθ,+(Qz(0))2 + ωθ,−(Qz(0))2} = q2. (3.115)

Thus we get the relation q = σq.

Heisenberg Model

For the Heisenberg model it is expected that the mixed state ω(· · ·) is decomposed as

ω(· · ·) =
1

8π2

∫
dΩ

∫ 2π

0
dφωΩ,φ(· · ·), (3.116)

where the vector Ω is perpendicular to the plane to which all spins are parallel, and the
angle φ denotes rotation with respect to the vector Ω. The direction of the vector Ω
and that of the chirality are the same, which are described with the spherical coordinates
(θ, ϕ). The state ω̃ corresponds to the state ωϕ=0,φ=0. The pure states have the following
expectation values of the sublattice magnetization

ωΩ,φ

(
Sx

0

)
= m(cos ϕ cos θ cos φ− sin ϕ sin φ), (3.117)

ωΩ,φ
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+

√
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)
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)}
,
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and the chirality
ωΩ,φ(Q(0)) = qΩ. (3.118)

Using the decomposition (3.116) and the property (3.110), we find that the long-range
order parameter of the sublattice magnetization is transformed as

σm
2 =

1

24π2

∫
dΩ

∫ 2π

0
dφωΩ,φ(Sx

0 )

× {ωΩ,φ(S
x
0 ) + ωΩ,φ(−1

2
Sx

e1
+

√
3

2
Sy

e1
) + ωΩ,φ(−1

2
Sx

e2
−
√

3

2
Sy

e2
)}

=
m2

6
. (3.119)

Thus we obtain the relation m =
√

6σm.
Using the decomposition (3.116) and the property (3.110), we find that the long-range

order parameter of the chirality is transformed as

σq
2 =

1

3
lim
|r|↑∞

ω(Q(0)Q(r)) (3.120)

=
q2

24π2

∫
dΩ

∫ 2π

0
dφΩ2 =

q2

3
,

where the isotropy of the state is used. Thus we get the relation q =
√

3σq.

3.5 Summary and discussions

To summarize, we have studied ground-state properties of the quantum Heisenberg and
XXZ antiferromagnets on the triangular lattice.

In Section 3.2, we showed exact ground states of the XXZ antiferromagnets in the
region λ ≤ −0.5, and studied the ground-state and thermal properties in the region −0.5 <
λ ≤ 1 using the spin-wave theory. Most of the exact ground states at λ = −0.5 have the
long-range order with the 120◦ structure. These ground states have the perfect sublattice
magnetization. These exact ground states give a new reliable standpoint to understand
ground-state properties of the XXZ antiferromagnets. As λ increases from −0.5 to 1,
quantum effects smoothly appear in the ground states. Near λ = 0, values of the sublattice
magnetization decrease slightly, but on the other hand values of the chirality become larger
than the classical limit. Thus in the antiferromagnetic XY model the ground state is
not so fluctuating with quantum effects and it has the sublattice order. Furthermore,
the chirality is ordered even at finite temperatures. Near the antiferromagnetic Heisenberg
model, quantum effects become strong, and the values of the magnetization and the chirality
rapidly decay. Estimates of both the magnetization and the chirality are non-vanishing
in the Heisenberg model, though the λ dependence of these quantities suggests that the
Heisenberg model is near the critical point.

To clarify whether symmetry breaking occurs or not in the XY and Heisenberg antifer-
romagnets, we studied low-lying states of the quantum antiferromagnets on finite-volume
triangular lattices in Section 3.3. We gave approximate forms of low-lying states, which
have twofold structures. It was found that these approximate states resemble the true
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states in various properties. We classified the low-lying states by the eigenvalues of C6,
namely C6-symmetric and C6-antisymmetric. States of both types exist in pairs in the
true low-lying spectrum. We discussed how rearrangements of the low-lying states of two
types bring on the symmetry breaking. The spontaneous chirality is created by taking a
linear combination of pairs of low-lying states of types α and β. The spontaneous sublattice
magnetization is obtained by making a linear combination of low-lying states of the same
type.

Numerically studying low-lying states of finite systems, we discussed whether the neces-
sary conditions of the symmetry breaking are satisfied or not. We found that the conditions
are satisfied in the XY antiferromagnet. The estimate of the sublattice magnetization is
m = 0.41 and that of the chirality is q = 0.77. These values are less than the spin-wave
results by 7% and 4%, respectively. In the Heisenberg antiferromagnet the conditions are
almost satisfied, although the estimates of the sublattice magnetization and the chirality
do not converge well for lack of system size. The sublattice magnetization is estimated as
m = 0.22–0.38 and the chirality as q = 0.16–0.73, where the results from the spin-wave
expansion are m = 0.25 and q = 0.45. Since the extrapolated results seriously depend on
fitting forms, it is still hard in the present study to conclude definitely the existence of
long-range order in the Heisenberg model. However, it should be remarked that there are
plenty of low-lying states that converge to the ground state faster than the softest magnon
excitation and these states have twofold structures that are needed to create the 120◦ struc-
ture in ground states. Furthermore, Bernu et al. also found existence of towers of low-lying
states that create the Néel order in the infinite-volume limit [13]. We believe that these
results support the existence of symmetry breaking.

We also studied the phase diagram at low temperatures using the spin-wave theory and
found that the chiral order is stable against spin-wave excitations in the region −0.5 <
λ < 1. The results given by the spin-wave expansion indicate that the system of λ = −0.5
has no order at finite temperatures. For λ < −0.5, the ferromagnetic Ising interaction is
dominant and then the ferromagnetic order exists at sufficiently low temperatures.

We give a remark that the real system of the XXZ model with λ = −0.5 may have some
order at finite temperatures. Indeed, as shown in Section 3.2.1, the Hamiltonian itself is not
invariant with any continuous transformation that changes the sign of the magnetization
or the chirality. If any order appears at finite temperatures, it may be the ferromagnetic
order, since the free energy of the ferromagnetic phase is lower than that of the chiral phase.
To test this possibility, a more delicate study is needed.

We did not argue the KT transition in this chapter. Ding and Makivic [25, 26] found
KT transition in spin-1/2 ferromagnetic XY model. Hence it is expected that KT-type
transition may occur accompanied with or independently on the chiral-order phase transi-
tion. The relation between the KT transition and the chiral order phase-transition is also
an interesting problem. To reveal this relation, further studies from other approaches are
needed.



68 Chapter 3 Quantum antiferromagnets on the triangular lattice



Part II

Elementary excitations
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Chapter 4

Spin-wave excitations of
the Heisenberg and XXZ
antiferromagnets

In this chapter, we discuss properties of elementary excitations in the Heisenberg antiferro-
magnets on hypercubic lattices. Section 4.1 contains a brief review about properties of the
spin-wave excitations in one-dimensional antiferromagnets. In Section 4.2, we show an up-
per bound for the lowest threshold of the spin-wave spectrum in two- and three-dimensional
quantum antiferromagnets. The spin-wave spectrum is bounded as ε(k) ≤ c|k|, where c
gives an upper bound for the spin-wave velocity. In the large-S limit, our upper bound
coincides with the spin-wave spectrum given by the spin-wave theory. In Appendix, we
show various upper bounds of the excitation spectrum. Some of them will be used in the
next chapter.

4.1 One-dimensional system

It is instructive to discuss elementary excitations in the S = 1/2 Heisenberg chain first,
because there are exact solutions.

S = 1/2 Heisenberg model

Spin-wave excitations of the one-dimensional Heisenberg antiferromagnet were evaluated
by des Cloizeaux and Pearson [22], using the Bethe-ansatz solution. They showed that the
lowest one-particle excitation has the dispersion law

ε(k) =
πJ

2
| sin k| − π ≤ k ≤ π. (4.1)

After that, Faddeev and Takhtajan [30] argued that the natural one-particle excitation
is a doublet of spin-1/2 spin waves, i.e., kinks, and it satisfies the dispersion law shown
in Figure 4.1. Roughly speaking, elementary excitations are created by spin flips in local
domains and each local region has two domain walls, i.e., kinks, at both ends, since we
are considering the one-dimensional system. Thus in the one-dimensional system natural
excitations are pairs of kinks.

71
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Figure 4.1: Dispersion law of the one-particle excitation. The lower threshold behaves as
ω = πJ | sin k|/2 and the upper one ω = πJ | sin k/2|.

S ≥ 1 Heisenberg model

For general spin models, Haldane [43, 44] first argued that excitation spectra of the one-
dimensional Heisenberg antiferromagnets differ according to whether the spin is an integer
or a half-odd-integer; spin-integer models have a unique ground state with a finite excitation
gap on it, but on the other hand spin-half-integer models have no gap. After that, excita-
tions in S ≥ 1 models were studied extensively in literature [71, 18, 116, 3, 2, 45]. Various
approximate and numerical results indicate that Haldane’s conjecture is correct. Later his
conjecture to spin-half-integer models was rigorously proved by Affleck and Lieb [3].

Spectral properties of S(k, ω)

In experiments, excitation spectra are observed through the dynamical structure factor

S(k, ω) =
∑
n

|〈0|Sz
k |n〉|2δ(ω − En + E0), (4.2)

where |0〉 (|n〉) denotes the ground state (an eigenstate) of the Hamiltonian. This spectral
function has information about excited states created by the operation of Sz

k . To com-
pare results from theoretical and experimental studies on the excitation spectrum, many
authors have been interested in properties of S(k, ω). Neutron scattering experiments at
low temperatures showed existence of sharp excitations with the dispersion law (4.1) for all
momenta [29, 54] and also found the broad continuum around k = π [114].

However, in theoretical studies, it is hard to calculate S(k, ω) from the Bethe-ansatz
solution exactly. The S = 1/2 XY model is an exception: The function S(k, ω) of the
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spin-1/2 XY model was evaluated and the results show that S(k, ω) only contains the
one-particle excitations [115, 112]. On the other hand, it is expected for the Heisenberg
model that S(k, ω) contains both the one-particle and multi-particle excitations, and hence
S(k, ω) has a continuum spectrum above the one-particle excitation spectrum. Hohenberg
and Brinkman [48] studied S(k, ω) of the S = 1/2 Heisenberg antiferromagnet using sum
rules and showed that most of spectral weight of S(k, ω) concentrates near lowest frequency
ε(k) at small k. (We will give related discussions on the Hubbard model in Section 5.1. See
also Section 4.A.)

4.2 Two and three dimensional systems1

In this section we discuss the spin-wave spectrum in the two and three dimensional Heisen-
berg antiferromagnets. We show upper bounds for the spin-wave spectrum on Néel-ordered
ground states.

4.2.1 Introduction

As we have discussed in Chapter 2, quantum Heisenberg and XXZ antiferromagnets on
the square and cubic lattices have Néel-ordered ground states. For these systems, the
Nambu-Goldstone theorem for quantum spin systems [79, 148] states that there are gapless
elementary excitations. The spin-wave theory [5, 77] succeeded in giving a precise descrip-
tion of the Goldstone bosons, i.e., magnons, in the Heisenberg antiferromagnet. The linear
spin-wave theory predicts that spin-wave excitations have the gapless k-linear dispersion
relation ε(k) ' 2

√
dSJ |k| for small k. Recently neutron-scattering experiments [1, 46] in

La2CuO4 reported that magnon excitations follow the dispersion given by the spin-wave
theory.

4.2.2 Upper bounds of the spin-wave spectrum

The purpose of this section is to estimate the excitation spectrum of the spin-S Heisenberg
and XXZ antiferromagnets on the d-dimensional L×· · ·×L hypercubic lattice Λ ⊂ Zd for
d ≥ 2. We prove an upper bound for the lowest threshold of the spectrum of elementary
excitations on ground states with broken symmetries. Our upper bound has the same
momentum dependence as the dispersion relation given by the spin-wave theory. For S À 1,
the upper bound coincides with the result of the spin-wave approximation.

The Hamiltonian is given by

HΛ = J
∑

〈i,j〉∈Λ

(Sx
i Sx

j + Sy
i Sy

j + λSz
i S

z
j ), (4.3)

where 0 ≤ λ ≤ 1 and the summation runs over all the nearest-neighbor sites. Let us
consider the system under the small staggered magnetic field,

HΛ(B) = HΛ −BMΛ, (4.4)

1The contents of this section were published in [104].
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where
MΛ =

∑

i∈A

Sx
i −

∑

i∈B

Sx
i . (4.5)

We define the normalized ground state of HΛ(B) as |ΦGS,B〉. We take a thermodynamic
limit applying an infinitesimally small field B.

As an excited state, we consider the following standard trial state

|ΨB(k)〉 = Sz
k |ΦGS,B〉/‖Sz

k |ΦGS,B〉‖, (4.6)

where Sz
k = L−d/2 ∑

j Sz
j exp(ik·rj), k = (k1, k2, . . . , kd) and ‖Sz

k |ΦGS,B〉‖ = 〈ΦGS,B|Sz
−kS

z
k |ΦGS,B〉1/2.

When spins lie in the xy plane, the operation of Sz
i flips the spin at the site i. The excitation

energy of |ΨB(k)〉 is given by

ε(k) = lim
B↘0

lim
Λ↗Zd

{〈ΨB(k)|HΛ(B)|ΨB(k)〉 − 〈ΦGS,B|HΛ(B)|ΦGS,B〉} (4.7)

and the staggered magnetization is

ms = lim
B↘0

lim
Λ↗Zd

1

Ld
〈ΦGS,B|MΛ|ΦGS,B〉. (4.8)

We take the momentum k as k 6= 0, k 6= (π, . . . , π) and km = 2πlm/L (0 ≤ lm ≤ L − 1),
so that |ΦGS,B〉 and |ΨB(k)〉 are orthogonal. This trial state is called the Bijl-Feynman
single-mode approximation [16, 33]. A similar trial state was studied by Horsch and von
der Linden in the two-dimensional system with no magnetic field [50]. Using the state (4.6),
we show an upper bound of the spin-wave spectrum as follows.

Theorem 4.2.1 (Momoi): If the ground state has a Néel order, i.e., if ms > 0, the
energy spectrum ε(k) is bounded as

ε(k) ≤ 2dJ(ρx + ρy)

ms
2

√
ρx(1 + λγk) + ρz(λ + γk)

√
1− γk, (4.9)

where

ρα = − lim
B↘0

lim
Λ↗Zd

1

Ldd

∑

〈i,j〉∈Λ

〈ΦGS,B|Sα
i Sα

j |ΦGS,B〉 (4.10)

for α = x, y and z, and

γk =
1

d

d∑

i=1

cos ki. (4.11)

Proof of Theorem 4.2.1. As in ref. [50], the excitation energy of |ΨB(k)〉 is calculated
as

〈ΨB(k)|HΛ(B)|ΨB(k)〉 − 〈ΦGS,B|HΛ(B)|ΦGS,B〉
=
〈ΦGS,B|[[Sz

−k,HΛ(B)], Sz
k ]|ΦGS,B〉

2〈ΦGS,B|Sz
−kS

z
k |ΦGS,B〉 (4.12)

=
2J(1− γk)〈ΦGS,B|∑〈i,j〉∈Λ(−Sx

i Sx
j − Sy

i Sy
j )|ΦGS,B〉+ B〈ΦGS,B|MΛ|ΦGS,B〉

2Ld〈ΦGS,B|Sz
−kS

z
k |ΦGS,B〉 .
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The excitation energy in the thermodynamic limit is given by

ε(k) =
2Jd(ρx + ρy)(1− γk)

2Sz
⊥(k)

, (4.13)

where Sz
⊥(k) denotes the structure factor of the Néel-ordered ground state,

Sz
⊥(k) = lim

B↘0
lim

Λ↗Zd
〈ΦGS,B|Sz

−kS
z
k |ΦGS,B〉. (4.14)

To bound the structure factor from below, we use (2.76) of Theorem 2.1.10,

2Sz
⊥(k) ≥ ms

2
√

1− γk√
ρx(1 + λγk) + ρz(λ + γk)

. (4.15)

Combining (4.13) and (4.15), we obtain (4.9).

We thus find that the lowest spin-wave spectrum is bounded from above by a gapless
k-linear dispersion relation. When λ = 1, our upper bound (4.9) has the same momentum
dependence as the spin-wave spectrum given by the linear spin-wave theory. This theorem
also shows the upper bound of the spin-wave velocity vs in the form

vs ≤
√

2d(1 + λ)(ρx + ρz)(ρx + ρy)J/ms
2. (4.16)

The expectation value ε(k) can be bounded from below as well. In Theorem 2.1.10, the
transverse structure factor Sz

⊥(k) is bounded from above in the form

2Sz
⊥(k) ≤

[
(ρx + ρy)(1− γk)

λ(1 + γk)

]1/2

. (4.17)

Using this inequality, we obtain

ε(k) ≥ 2dJ
√

λ(ρx + ρy)(1− γk
2). (4.18)

(We remark that this gives only a lower bound for the expectation value of the single-mode
approximation and not for the spin-wave spectrum.) Both the upper and lower bounds
have the k-linear dispersion relation for small k and hence ε(k) has the gapless k-linear
dispersion relation.

Finally, we discuss the large-S limit of the spectrum. For the Heisenberg antiferromag-
net, we have Proposition 2.3.1,

lim
S↗∞

ms/S = 1, (4.19)

lim
S↗∞

ρx/S
2 = 1, (4.20)

lim
S↗∞

ρy/S
2 = lim

S↗∞
ρz/S

2 = 0. (4.21)

From these rigorous results, we find that the upper bound coincides with the lower bound
in the large-S Heisenberg model and hence we obtain

ε(k) = 2dSJ
√

1− γk
2. (4.22)
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This spectrum has the same dispersion relation as that given by the spin-wave theory [5, 77].
This shows that the single-mode approximation gives a precise spin-wave spectrum in the
large-S limit. For the large-S XXZ model (0 ≤ λ < 1), it is expected that the ground state
becomes the Néel state and we have ρx ' S2, ρy ' O(S), ρz ' O(S) and ms ' S, though
we have not proved it. Then we expect that the upper bound for the spectrum behaves as

2dJS
√

(1 + λγk)(1− γk). This spectrum coincides with that given by the linear spin-wave
theory for the XXZ model [117].

Recently, Stringari obtained a better upper bound of the spin-wave spectrum [135]. He
discussed the lowest threshold ω(k) of the dynamical structure factor S(k, ω) using sum
rules. (See also Appendix.) His upper bound is as follows.

Theorem 4.2.2 (Stringari): If the ground state has a Néel order, the lowest frequency
ω(k) is bounded as

ω(k) ≤ 2dJ
√

ρx + ρy

ms

√
ρx(1 + λγk) + ρz(λ + γk)

√
1− γk. (4.23)

This upper bound has the same momentum dependence as our upper bound, but the
coefficient is smaller by the multiplicative factor ms/

√
ρx + ρy. We discuss the relation be-

tween (4.9) and (4.23) in Appendix. The difference between two bounds partly comes from
multi-magnon states included in the Feynman state (4.6). In the large-S limit, both upper
bounds become equal to the excitation spectrum given by the spin-wave approximation.
This indicates that state (4.6) in the large-S limit only contains one-magnon excitations.
(See Appendix.)

4.A Various upper bounds for the excitation spectrum

In this Appendix, we show various upper bounds for the excitation spectrum at T = 0.
These upper bounds relate to Theorems 4.2.1 and 4.2.2, and to the study by Hohenberg
and Brinkman [48], which we referred to on page 73. Furthermore, we use these bounds in
Chapter 5.

Let us write the ground state in the thermodynamic limit as 〈· · ·〉. We consider only an
ergodic (or a pure) state. Then in two- and three-dimensional systems, the state 〈· · ·〉 may
have broken symmetries. Sometimes we also write the state as |0〉.

We discuss the excitation spectrum of the dynamical structure factor at T = 0

S(k, ω) =
1

π

∫
dt〈AkA

†
−k(t)〉 exp(iωt), (4.24)

where Ak = |Ω|−1/2 ∑
j∈Ω Aj exp(ikrj) and A†

−k(t) denotes the time evolution of the operator

A†
−k. (Later, we take the infinite limit Ω ↗ Zd to avoid influence from the boundary of Ω.

In this limit, boundary effects decay rapidly.) Inserting intermediate states, we can rewrite
S(k, ω) in the form

S(k, ω) = 2
∑
n

|〈0|A†
−k|n〉|2δ(ω − En + E0)

=
∑
n

{|〈0|Ak|n〉|2 + |〈0|A†
−k|n〉|2}δ(ω − En + E0), (4.25)
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where {|n〉} denote the eigenstates of the Hamiltonian with the eigenvalues {En}. The last
equality holds when the Hamiltonian is real. The spectral function S(k, ω) has information
about excitations created by the operator Ak.

Let ω(k) be the lowest threshold of positive regions in S(k, ω) with fixed k. We expect
that ω(k) corresponds to the lowest frequency of the excitation spectrum. To obtain upper
bounds of ω(k), we use frequency average of ω2 with spectral weight ω−1S(k, ω), which
was discussed first by Wagner [143]. Using this frequency average, we can obtain an upper
bound of ω(k) in the following form [48, 135, 105].

Theorem 4.A.1: The lowest frequency ω(k) is bounded as

[ω(k)]2 ≤

∫ ∞

−∞
dωωS(k, ω)

∫ ∞

−∞
dωω−1S(k, ω)

=
〈[[Ak, H], A†

−k]〉
χA(k)

, (4.26)

where χA(k) denotes the Duhamel two-point function (or Kubo’s canonical correlation) of
Ak at T = 0

χA(k) =
∑
n

{ |〈0|Ak|n〉|2
En − E0

+
|〈0|A†

−k|n〉|2
En − E0

}
. (4.27)

Proof of Theorem 4.A.1. The spectral function S(k, ω) has the following property

S(k, ω) = S0(k)δ(ω − ω(k)) + Sc(k, ω), (4.28)

where Sc(k, ω) comes from the continuum spectrum above ω(k) and Sc(k, ω) = 0 for ω ≤
ω(k). Since coefficients of the delta functions in S(k, ω) are nonnegative, we have

∫ ∞

−∞
dωωS(k, ω) = ω(k)S0(k) +

∫ ∞

ω(k)
dωωSc(k, ω)

≥ [ω(k)]2
{
ω(k)−1S0(k) +

∫ ∞

ω(k)
dωω−1Sc(k, ω)

}

= [ω(k)]2
∫ ∞

−∞
dωω−1S(k, ω). (4.29)

The function S(k, ω) is equivalent to (2.40) if A = Ak and C = A†
−k. Hence S(k, ω) satisfies

sum rules (2.41)–(2.43). Using frequency-sum rules (2.42) and (2.43), we obtain (4.26).

In the one-dimensional Heisenberg model, Hohenberg and Brinkman exactly evaluated
the frequency average at small k, and then showed that the average is almost equal to the
lowest frequency [48]. For two- and three-dimensional systems, however, there is no exact
solution and hence we cannot directly estimate the average. To bound χA(k) from below,
we use the Bogoliubov inequality (Theorem 2.1.1) and thereby we obtain

ω(k) ≤ 〈[Ak, [H,A†
−k]]〉1/2〈[Bk, [H, B†

−k]]〉1/2

|〈[Ak, Bk]〉| , (4.30)

which is satisfied by any operator Bk. Wagner first discussed this inequality and later
Stringari [135] used it to obtain Theorem 4.2.2. Recently we also studied this spectral
average in the Hubbard models [105, 107], which is shown in Chapter 5.
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The inequality (4.26) can be extended to the following forms

[ω(k)]m−l ≤

∫ ∞

−∞
dωωmS(k, ω)

∫ ∞

−∞
dωωlS(k, ω)

(4.31)

for integers l and m such that l < m. Here we define the right-hand side of (4.31) as
F (l,m). From the Schwarz inequality, we have

F (l,m) ≤ F (m, 2m− l). (4.32)

Repeatedly using (4.32), we obtain a sequence of upper bounds in the form

ω(k) ≤ F (−1, 0) ≤ [F (−1, 1)]1/2 ≤ F (0, 1) ≤ [F (0, 2)]1/2 ≤ F (1, 2) ≤ · · · . (4.33)

Finally we discuss the relation between our bound (4.9) and Stringari’s bound (4.23).
From the second and third inequalities of (4.33), we obtain

ω(k) ≤
[〈[[Ak, H], A†

−k]〉
χA(k)

]1/2

≤ 〈[[Ak, H], A†
−k]〉

〈{Ak, A
†
−k}〉

, (4.34)

where we have used sum rules (2.41)–(2.43). Note that the last equation is nothing but the
excitation energy of Feynman’s trial state [16, 33]

|Ψ(k)〉 =
Ak|0〉
‖Ak|0〉‖ (4.35)

and we also used this trial state in Theorem 4.2.1. Thus, our bound (4.9) comes from the
third equation of (4.34). On the other hand, Stringari obtained the bound (4.23) from the
second equation of (4.34). Thus, the difference between the bounds (4.9) and (4.23) may
originate from the second inequality in (4.34). In F (0, 1), upper frequencies are added with
larger weight than in [F (−1, 1)]1/2. Then, if there are multi-magnon excitations in S(k, ω),
the frequency average F (0, 1) becomes larger than [F (−1, 1)]1/2. In contrast, if S(k, ω) only
contains one-particle excitations, both upper bounds in (4.34) become equal to the lowest
frequency at small k.



Chapter 5

Spin and charge excitations of
the Hubbard model

Though this thesis is devoted to discussions of the quantum antiferromagnets, we would
like to mention excitations of the Hubbard model in this chapter. The Hubbard model
describes itinerant electron systems and on the other hand the Heisenberg antiferromagnet
is a model of localized electrons. Both models are equivalent in a certain limit and hence
they are closely related to each other. Furthermore, our discussions in this chapter are
based on the method which we have shown in Chapter 4. Thus the contents of this chapter
closely relate to the topics of this thesis.

We discuss only the short-range repulsive Hubbard model. The Hamiltonian is defined
by

H = −t
∑

〈i,j〉∈Λ

∑

σ=↑,↓
(c†iσcjσ + c†jσciσ) + U

∑

i∈Λ

ni↑ni↓ − µ
∑

i∈Λ

(ni↑ + ni↓), (5.1)

where c†iσ denotes the creation operator of an electron at the site i with spin σ, and niσ =
c†iσciσ. The first term gives the kinetic energy of electrons and the second term gives the
potential energy by the on-site electron-electron interactions.

In Section 5.1 we study spectral properties of dynamical structure factors of the one-
dimensional Hubbard model at T = 0, using sum rules and the Bethe-ansatz solution.
Sum rules help us to obtain information about dynamic quantities from static quantities.
We estimate the spectral weight on the lowest frequencies of spin and charge excitations
at small momentum. It is found that there exists a strong or broad continuum spectrum
above the lowest frequency at small momentum in the spin excitations of the dilute limit
and in the charge excitations near half-filling. The spectral weight on the lowest frequency
is negligible in these two regions. In other regions, most of the spectral weight concentrates
near the lowest frequency.

In Section 5.2 we study energy spectra of the Nambu-Goldstone modes in the Hubbard
model at T = 0, assuming breakdown of continuous symmetries. Using the frequency
average discussed in Section 4.A, we obtain rigorous upper bounds of the energy spectra
of the Nambu-Goldstone modes in magnetic order phases and in superconducting phases
of the two- and three-dimensional Hubbard models. Since rigorous results are rare for
interacting electron systems, the present results are useful to verify approximate theories.

79
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5.1 One-dimensional system1

5.1.1 Introduction

The Hubbard model has been attracting theoretical and experimental interests, because
it is the simplest model of interacting electrons. The one-dimensional repulsive Hubbard
model is defined by the following Hamiltonian

H = −t
L∑

i=1

∑

σ=↑,↓
(c†iσci+1σ + c†i+1σciσ) + U

L∑

i=1

ni↑ni↓ − µ
L∑

i=1

(ni↑ + ni↓), (5.2)

where c†iσ denotes the creation operator of an electron at the site i with spin σ and niσ =
c†iσciσ. We consider a system with the size L under the periodic boundary condition and
then take the infinite-volume limit.

Since Lieb and Wu [87] exactly solved the one-dimensional Hubbard model using the
nested Bethe-ansatz method [150], various static quantities were exactly calculated for
this model [121, 23, 138, 130, 141]. Ovchinnikov [121] calculated the spectrum of the
lowest spin-wave excitation at half-filling and Coll [23] studied it for arbitrary filling. Spin-
wave excitations have gapless k-linear modes in arbitrary filling. On the other hand the
charge-fluctuation spectrum has a gap at half-filling and consequently the ground state is
an insulator [87]. For doped cases, Coll [23] showed that charge-density excitations have
gapless k-linear modes. Later, Woynarovich [146] found charge excitations of another type,
which have optical modes. Spin and charge excitations have different velocities in doped
systems. Takahashi [138] evaluated the magnetic susceptibility at half-filling and Shiba [130]
evaluated for all filling. Usuki, Kawakami and Okiji [141] obtained the charge susceptibility.
Recently, asymptotic forms of the space and time correlation functions were obtained using
the conformal field theory [65, 128, 34].

On the other hand, it is difficult to calculate dynamical quantities directly from the
Bethe-ansatz solution. The main purpose of the present section is to study spectral prop-
erties of the dynamical structure factor at T = 0,

S(k, ω) = 2
∑
n

|〈0|Ak|n〉|2δ(ω − En + E0), (5.3)

where Ak is the Fourier transform of a local operator Ai, i.e., Ak = L−1/2 ∑L
i=1 Ai exp(ikri),

and |n〉 (|0〉) denotes an eigenstate (the ground state) of the Hamiltonian. We recall the
long standing question about strength of the spectral weight that is carried on by the lowest
k-linear mode. (See Section 4.1.) We use frequency-sum rules of S(k, ω), which relate the
dynamical structure factor to static quantities [143, 48]. Using this relation, we can obtain
information about S(k, ω) from static quantities [48].

5.1.2 Spectral properties of S (k, ω)

Here, we discuss the dynamical structure factor at small k in the one-dimensional repulsive
Hubbard model at T = 0, using the Bethe-ansatz solution and using sum rules. We

1The contents of this section were published in [105, 106].
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study excitations of spin and charge degrees of freedom, setting Ai as Sx
i and (ni↑ + ni↓)−

〈0|(ni↑ + ni↓)|0〉, respectively. Using the frequency average (4.26), we find that S(k, ω) has
singular behavior in two regions: There is a strong or broad continuum spectrum above
the lowest frequency in the dynamical spin-structure factor of the dilute limit and in the
dynamical charge-structure factor near half-filling. In other cases, the spectral weight of
S(k, ω) concentrates near the lowest frequency of the excitation spectrum.

Methods

Here we show methods including sum rules and the Bethe-ansatz solution.
First we discuss the frequency average (4.26),

[ωav(k)]2 =

∫ ∞

0
dωωS(k, ω)

∫ ∞

0
dωω−1S(k, ω)

=
〈0|[[Ak, H], A†

−k]|0〉
χ(k)

, (5.4)

where χ(k) denotes the Duhamel two-point function (or Kubo’s canonical correlation) of
Ak in the ground state,

χ(k) =
∑
n

{ |〈0|Ak|n〉|2
En − E0

+
|〈0|A†

−k|n〉|2
En − E0

}
. (5.5)

As shown in Theorem 4.A.1, the square root of this mean value gives an upper bound of
the lowest frequency of the excitation spectrum ω(k), i.e.,

ω(k) ≤ ωav(k). (5.6)

Comparing ωav(k) with ω(k), we discuss distribution of spectral weight in S(k, ω). If
the spectral weight in S(k, ω) is concentrated near ω(k) at small k, we have ω(k) ' ωav(k)
for small k and, if there is a strong continuum spectrum above ω(k), we have ω(k) ¿ ωav(k)
at small k. Using this relation, Hohenberg and Brinkman [48] studied S(k, ω) of the one-
dimensional XY and Heisenberg antiferromagnets.

Next we list exact results derived from the Bethe-ansatz solution, which are used in
exactly calculating the mean value. Lieb and Wu first reduced the ground-state wave
function to two integral equations of distribution functions of spins and charges [87]. We
write the distribution of charges with momentum k as ρ(k). In the zero magnetic field, one
obtains ρ(k) from the following integral equation

ρ(k) =
1

2π
+

cos k

2π

∫ Q

−Q
dk′K1(sin k − sin k′)ρ(k′), (5.7)

where

K1(x) =
∫ ∞

−∞
dω

exp(−|ω|u/4)

2 cosh(ωu/4)
exp(iωx) (5.8)

with u = U/t. The cutoff Q relates to the chemical potential µ and it satisfies

∫ Q

−Q
dkρ(k) = n, (5.9)
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where n denotes the density of electrons per site. It is convenient to use a dressed energy,
which was given in Refs. [141] and [147]. The dressed energy of a charge, εc(k), is given by

εc(k) = −2t cos k − µ (5.10)

+
1

2π

∫ Q

−Q
dk′ cos k′K1(sin k − sin k′)εc(k

′).

Using ρ(k) and εc(k), one obtains the ground-state energy per site in the form

ε0 =
∫ Q

−Q
dk (µ− 2 cos k) ρ(k) =

1

2π

∫ Q

−Q
dkεc(k). (5.11)

In the ground state, all the states that have εc(k) < 0 are filled. Then the parameter Q
satisfies εc(Q) = 0.

One can express various quantities, using ρ(k) and εc(k). Fermi velocities in the zero
magnetic field are obtained in the forms [147]

vc =
1

2πρ(Q)
ε′c(Q), (5.12)

vs =
1

2π

∫ Q

−Q
dk exp

(
2π

u
sin k

)
ε′c(k)

/ ∫ Q

−Q
dk exp

(
2π

u
sin k

)
ρ(k), (5.13)

where vc (vs) denotes the charge (spin-wave) velocity. The uniform magnetic susceptibility
χs relates to vs as [138, 23]

χs(k = 0) =
1

2πvs

(5.14)

and the uniform charge susceptibility χc is given by [34]

χc(k = 0) =
1

πvc

[f(Q)]2, (5.15)

where f(k) satisfies

f(k) = 1 +
1

2π

∫ Q

−Q
dk′K1(sin k − sin k′)f(k′) cos k′. (5.16)

One obtains the kinetic energy in the form [11]

K ≡ 1

L
t
∑

i,σ

〈0|(c†iσci+1σ + c†i+1σciσ)|0〉 (5.17)

= t
∂ε0

∂t
, (5.18)

which Baeriswyl et al. [11] and Carmelo and Baeriswyl [20] evaluated.
We numerically estimate these quantities, converting the integral equations into a set

of matrix equations and solving the matrix equations. In the matrix equations, unknown
functions are represented in terms of 1000 discrete values. We verified, changing the num-
ber of discrete elements, that a set of discrete values converge well to a certain function
and, furthermore, we checked that estimates of physical quantities are equal to previously
reported values and to asymptotic forms in various limits.
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Figure 5.1: The uniform magnetic susceptibility as a function of the electron concentration
n for various values of U . Note that we have divided the values by the susceptibility of free
electrons, to clarify the singularity in the low-density limit.

The uniform magnetic susceptibility has the following asymptotic forms [130]

χs(0) =





U

4π2t2

(
2πn

2πn− sin 2πn

)
(U/t À 1)

1

4πt sin(πn/2)
(U/tn ¿ 1).

(5.19)

Studying (5.14) in the dilute limit (n → 0), we obtain

χs(0) =
3U

8π4t2n2
+

1

t
O(n−1). (5.20)

Shiba derived this result in the large-U limit [130]. We find that (5.20) holds for arbitrary
non-zero U in the dilute limit. On the other hand, in free electrons (U = 0), χs(0) behaves
as χs(0) = (2π2tn)−1 in the low-density limit. Hence, if U > 0, χs(0) has a stronger
divergence, as shown in Figure 5.1, and this shows that the Coulomb interaction drastically
enhances spin fluctuations in the dilute limit. This singularity indicates that an effective
interaction of spins becomes large in the dilute limit.

The uniform charge susceptibility behaves as [141]

χc(0) =





1

2πt sin πn
(U/t À 1, n 6= 1)

α

t(1− n)
(n ∼ 1, n 6= 1),

(5.21)

where α changes from 0 to 1/2π2 as U increases.
The kinetic energy has the following asymptotic form for large U [20]

K =
2t

π
sin nπ +

4nt2 ln 2

πU
[2πn− sin(2πn)]. (5.22)
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For small U , we have

K =
4t

π
sin

nπ

2
. (5.23)

Numerically estimating the kinetic energy, we find that (5.23) holds for small U for arbitrary
filling.

Spin-wave spectrum

We discuss spin-wave excitations, setting the operator Ak of (5.3) as Sx
k . Here, S(k, ω)

is the dynamical spin-structure factor, which relates to the imaginary part of magnetic
susceptibility as

πS(k, ω) = −2Imχs(k, ω) (5.24)

for ω ≥ 0. The operation of Sx
k excites the spin degree of freedom. For quantum Heisenberg

antiferromagnets, it has been shown that the excitation spectrum given by the state Sx
k |0〉

agrees well with the lowest frequency of the spin-wave spectrum in one-dimensional [48]
and higher-dimensional [135, 104] systems.

The double commutator of (5.4) is transformed as

〈0|[[Sx
k , H], Sx

−k]|0〉 =
1

2
K · (1− cos k). (5.25)

The numerator of (5.4) becomes the static magnetic susceptibility χs(k). Assuming the
continuity property of χs(k) near k = 0, we obtain the mean value for small k in the form

ωav(k) =
1

2

[
K

χs(0)

]1/2

|k|. (5.26)

To compare this average with the lowest frequency of the spin-wave spectrum ωs(k), we
evaluate the ratio

Rs = lim
k→0

ωav(k)

ωs(k)
= π

√
K · χs(0), (5.27)

where we have used (5.14) and the relation ωs(k) = vs|k| for small k. We calculate the ratio
Rs for arbitrary U and for arbitrary filling, numerically solving the Bethe-ansatz solution.
The result is shown in Figure 5.2.

In case of small U/tn, the mean value agrees well with the lowest frequency ωs(k). Both
ωs(k) and ωav(k) have the following asymptotic form

ωs(k) = ωav(k) = 2t sin
nπ

2
· |k|. (5.28)

This result means that the spectral weight of the dynamical spin-structure factor [or
Imχs(k, ω)] concentrates near ω = ωs(k) at small k. In the free fermion model (U = 0),
Imχs(k, ω) has peaks only on ω = ωs(k) for small k. We find that the Coulomb repulsive
force does not change this behavior, if the parameter U/nt is small.

In the dilute limit (n → 0), the ratio Rs diverges in the form Rs ∝ (U/tn)1/2. The mean
value has the following asymptotic form

ωav(k) = 2π2tn

√
tn

3U
|k| (U/tn À 1), (5.29)
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Figure 5.2: Ratio of the mean value of the spin-wave spectrum to the lowest frequency of
spin excitations ωs(k) at small k.

whereas the lowest frequency behaves as

ωs(k) =
4π3n2t2

3U
|k| (U/tn À 1). (5.30)

This means that the spectral weight of the lowest frequency in the dynamical spin-structure
factor becomes weak and negligible in the dilute limit. There exists a broad or strong
continuum spectrum above ω = vs|k|. We thus find that, in the dilute limit, spectral
properties of the interacting model (U > 0) are completely different from the free model
(U = 0). This singularity may come from the spin fluctuations that we have shown in the
previous section. We will report further studies and discussions about the system in the
dilute limit in ref. [108].

In the large-U region, the mean value coincides well with the lowest frequency ωs(k)
only at half-filling. The ratio Rs at half-filling in the large-U limit is

√
2 ln 2 = 1.1774. This

value is slightly greater than the value
√

(8 ln 2− 2)/3 = 1.0871 of the one-dimensional
Heisenberg antiferromagnet by Hohenberg and Brinkman [48]. This discrepancy comes
from the difference of expectation values of the double commutator [[Sx

−k, H], Sx
k ]. For

doped cases, however, the average is much greater than ωs(k). The average becomes

ωav(k) =

[
2πt3

U
sin(nπ)

]1/2

|k| (U |1− n|/t À 1) (5.31)

at small k, though the lowest frequency behaves as

ωs(k) =
[2πn− sin(2πn)]t2

nU
|k| (U/t À 1). (5.32)

We hence find that, in the large-U limit of doped cases, there exists a strong or broad
continuum spin-wave spectrum for small k above the lowest frequency ω = vs|k|.
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Using the ratio Rs, we can observe differences between the excited state Sx
k |0〉 and the

lowest spin-wave excitation. Another implication of Rs is that the ratio shows how the
model is far from the free electron system. In the free model (U = 0), the state Sx

k |0〉
has a gapless k-linear dispersion relation with the velocity vs and hence we have Rs = 1.
As the system becomes away from the free model, the ratio Rs turns large. An example
is the one-dimensional spin 1/2 XXZ antiferromagnets. The ratio Rs equals to 1 in the
XY model, which is equivalent to the free fermion, and the value becomes 1.0871 in the
Heisenberg antiferromagnet [48]. (Note that the operator Ak should be Sz

k for the XY
model.)

Charge-fluctuation spectrum

We discuss spectral weight of charge excitations, setting the operator Ak as nk−〈0|nk|0〉,
where nk = L−1/2 ∑

j(nj↑ + nj↓) exp(ikrj). Here, S(k, ω) is the dynamical charge-structure
factor and it relates to the imaginary part of charge susceptibility, Imχc(k, ω). Bijl [16]
and Feynman [33] first proposed the state ρk|0〉 as a density fluctuation in the Bose liquid,
where ρk denotes the Fourier transform of the density operator. In the one-dimensional
Hubbard model, it has been discussed that the state nk|0〉 describes excitations created by
charge-density fluctuations [28].

The double commutator of (5.4) becomes

〈0|[[nk, H], n−k]|0〉 = 2K · (1− cos k) (5.33)

and the denominator of (5.4) becomes the static charge susceptibility χc(k). Assuming
the continuity property of χc(k) at small k, we obtain the mean value (5.4) of the charge-
fluctuation spectrum in the form

ωav(k) =

[
K

χc(0)

]1/2

|k| (5.34)

for small k.
To compare this average with the lowest frequency of the charge-fluctuation spectrum

ωc(k), we evaluate the ratio

Rc = lim
k→0

ωav(k)

ωc(k)
=

π

[f(Q)]2

√
K · χc(0), (5.35)

where we have used the relation ωc(k) = vc|k| for small k and (5.15). We calculate the
value Rc, numerically solving the Bethe-ansatz solution. The result is shown in Figure 5.3.

The ratio Rc has the divergent singularity Rc ∝ |1 − n|−1/2 in vicinity of half-filling
(n ∼ 1). The average (5.34) behaves as

ωav(k) ∝ √
1− n|k| (5.36)

for U |1− n|/t ¿ 1. On the other hand, the lowest frequency of charge fluctuations has

ωc(k) ∝ (1− n)|k| (5.37)
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Figure 5.3: Ratio of the mean value of the charge-fluctuation spectrum to the lowest fre-
quency of charge excitations ωc(k) at small k.

near half-filling. We thus find that the spectral weight of Imχc(k, ω) on ω = vc|k| is weak
and negligible at small k for n ∼ 1. A strong or broad continuum spectrum exists in the
region ω > ωc(k) near half-filling.

If the system is doped and away from half-filling, the ratio Rc is almost equal to 1.
Hence we find that, in fairly doped systems, the weight of the dynamical charge-structure
factor concentrates near the lowest frequency at small k.

Woynarovich [146] showed that there are optical modes in charge excitations. According
to his argument on the large U limit, optical modes come from excitations in which some
electron pairs occupy the same sites and gapless k-linear modes are, on the other hand, given
by charge fluctuations that do not create any doubly occupied site. Our results indicate the
following: In fairly doped systems, the spectral weight of Imχc(k, ω) concentrates near the k-
linear acoustic mode. This is consistent with the fact that, in the low-density system, charge
fluctuations having double occupancy of electrons are rare. As the electron filling becomes
near half-filling, the spectral weight moves from the acoustic mode to optical modes. Finally
at the half-filling, the acoustic mode disappears, and hence charge excitations have a finite
gap as shown in Refs. [87], [121] and [146].

In the vicinity of half-filling, the Coulomb interaction makes the state nk|0〉 extensively
different from the lowest charge excitation. As commented in the previous section, this
result means that the charge degree of freedom is far from free near the half-filling, even if
U is small.
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5.2 Two and three dimensional systems –energy spec-

tra of the Nambu-Goldstone modes–2

5.2.1 Introduction

The Hubbard model has been attracting wide theoretical and experimental interests,
since it is a simplified model of many materials, e.g. La2−xSrxCuO4, etc. (See [24], for
example.) Various phases are expected to appear in two- and three-dimensional systems at
low temperatures. There are, however, very few rigorous results that support the occurrence
of symmetry breaking in the ground state of the thermodynamic limit [84]. Furthermore,
approximate theories sometimes arrive at completely different conclusions. Thus our under-
standing of the low-temperature properties is still incomplete. In this situation, we expect
rigorous results to provide certain checks and standards to verify approximate theories.

The large-U limit of the Hubbard model at half filling is written as the spin-1/2 Heisen-
berg antiferromagnet. In this limit, as we have discussed in Section 2.3, rigorous arguments
and numerical studies arrive at the consistent conclusion that the ground state has the
antiferromagnetic long-range order in two- and higher-dimensional systems. In these sys-
tems, the spin-wave theory [5, 77] and rigorous results [135, 104] show that the spin-wave
excitations have gapless k-linear modes (see Section 4.2), and experimental results [46]
on La2CuO4 also insist that the magnon excitations have the same dispersion as given
by the conventional spin-wave theory. However the situations become quite complicated,
when holes (or electrons) are doped in the system. For doped systems, stability of the
antiferromagnetic order and the incommensurate order has been discussed in the litera-
ture [131, 151, 59, 39, 63]. Furthermore, many authors, motivated by Nagaoka’s theo-
rem [113, 140], expected ferromagnetism in the strong-coupling region. (It is not easy to
list all the relevant references. See, for example, Refs. [125, 123] and the references therein.)

Since high-Tc superconductivity was discovered in a material with the CuO2 planes, the
superconducting phases have also been expected to appear in the two- or three-dimensional
Hubbard model. According to numerical studies, there is no evidence for superconduc-
tivity in the ground state [57, 56, 111]. However, this issue is not settled yet. On the
other hand, several authors reported that superconductivity may appear in the t-J model,
which effectively describes the Hubbard model in the strong-coupling region. (For a review,
see [24].)

Here, we discuss the short-range repulsive Hubbard model. The Hamiltonian is given
by

HΛ = −t
∑

〈i,j〉∈Λ

∑

σ=↑,↓
(c†iσcjσ + c†jσciσ) + U

∑

i∈Λ

ni↑ni↓ − µ
∑

i∈Λ

(ni↑ + ni↓), (5.38)

where c†iσ is the creation operator of an electron at site i with spin σ and niσ = c†iσciσ. The
summation of the hopping term runs over all nearest-neighbor sites. For simplicity, we use
the hypercubic lattice Λ ⊂ Zd for d ≥ 2, but the following analyses can be generalized to
arbitrary lattices. Moreover, the arguments in the present section can be easily extended
to the t-J model.

The purpose of the present section is to obtain rigorous upper bounds of the excita-
tion spectra in various phases in which continuous symmetries are spontaneously broken.

2The contents of this section were published in [107].
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Assuming the breakdown of a continuous symmetry, we extend the arguments given in
Section 4.2 to the Hubbard model, and thereby estimate the excitation spectra of the Gold-
stone modes in the magnetically ordered phases and in the superconducting phases. We
concentrate on the density excitations created by operation of the Fourier transforms of
the density operators. We use Sx

k and (nk↑ + nk↓) to discuss spin and charge excitations,
respectively.

Let us introduce the system under an infinitesimally small field which is conjugate to
the order parameter. The Hamiltonian is written as

HΛ(B) = HΛ −BOΛ, (5.39)

where OΛ denotes the order-parameter operator. We define the equilibrium state using the
grand canonical ensemble. Taking the thermodynamic limit at T = 0, we obtain the ground
state with broken symmetry as

〈· · ·〉 = lim
B↘0

lim
Λ↗Zd

lim
β↗∞

Tr · · · exp{−βHΛ(B)}
Tr exp{−βHΛ(B)} . (5.40)

To bound the lowest frequency ω(k), we use the inequality (4.30),

ω(k) ≤ 〈[Ak, [H,A†
−k]]〉1/2〈[Bk, [H, B†

−k]]〉1/2

|〈[Ak, Bk]〉| . (5.41)

As shown in Section 4.A, the right-hand side of (5.41) gives an upper bound for the lowest
frequency of the excited states created by an operator Ak = |Ω|−1/2 ∑

j∈Ω Aj exp(ikrj). Set-
ting Ak as Sx

k −〈Sx
k 〉 and nk−〈nk〉, we discuss the spin and charge excitations, respectively.

Choosing Bk that satisfies [Ak, Bk] = OΩ, we can obtain an upper bound for the energy
spectrum from (5.41). This upper bound gives the Goldstone theorem. Note that (5.41) is
invariant under the exchange of Ak and Bk, and consequently (5.41) gives an upper bound
for the lowest frequency of the excited states Bk|0〉 as well.

The contents of this section is as follows: In Section 5.2.2, we obtain rigorous upper
bounds of the spin-wave excitations in the magnetically ordered phases. They show gapless
spectra. The antiferromagnetic, ferromagnetic and incommensurate orders are considered.
In Section 5.2.3, we discuss the charge excitations in the superconducting phase. It is shown
that the charge excitations have gapless modes, and furthermore the particle excitations of
the Cooper pairs become gapless. Finally, Section 5.2.4 contains summary and discussions.

5.2.2 Magnetic phases

Here, we discuss the spin-wave spectrum in magnetically ordered phases. To create the
spin-wave excitations, we set Ak as |Ω|−1/2 ∑

j∈Ω Sx
j exp(ikrj). As shown in Chapter 4, the

excited states created by Sx
k give a precise spin-wave spectrum in the Heisenberg antiferro-

magnets [48, 135, 104]. Moreover, for the one-dimensional Hubbard model, we know that
they are concentrated near the lowest frequency of the spin excitations in many parameter
regions, although some of them have much larger frequency in the low-density limit or in
the strong coupling limit of doped systems [106].
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First we consider the magnetically ordered state whose order-parameter operator is
given by

OΩ =
∑

j∈Ω

{Sz
j cos(q · rj) + Sx

j sin(q · rj)}. (5.42)

The ground state is defined by (5.40). We assume that the ground state has the magnetic
order,

m ≡ 1

|Ω|〈OΩ〉 > 0. (5.43)

Setting the operators as Ak = |Ω|−1/2 ∑
j∈Ω Sy

j exp(ik·rj) and Bk = |Ω|−1/2 ∑
j∈Ω Sx

j exp[i(q−
k) · rj], we have

|〈[Ak, Bk]〉| ≥ Im〈[Ak, Bk]〉 =
1

|Ω|
∑

j∈Ω

〈Sz
j cos(q · rj)〉

=
m

|Ω|
∑

j∈Ω

cos2(q · rj). (5.44)

In the infinite limit Ω ↗ Zd, we have

lim
Ω↗Zd

|〈[Ak, Bk]〉| ≥ m · fc(q), (5.45)

where

fc(q) = lim
Ω↗Zd

1

|Ω|
∑

j∈Ω

cos2(q · ri). (5.46)

Furthermore, the double commutator of (5.41) become

lim
Ω↗Zd

〈[A†
−k, [H, Ak]]〉 =

dtK

2
(1− γk), (5.47)

lim
Ω↗Zd

〈[B†
−k, [H,Bk]]〉 =

dtK

2
(1− γk−q), (5.48)

where

K = lim
Ω↗Zd

1

d|Ω|
∑

〈i,j〉∈Ω

∑
σ

〈c†i,σcj,σ + c†j,σci,σ〉, (5.49)

γk =
1

d

d∑

i=1

cos ki. (5.50)

Inserting (5.45), (5.47) and (5.48) into (5.41), we obtain an upper bound of the spin-wave
spectrum in the form

ωs(k) ≤ dtK

2mfc(q)

√
(1− γk)(1− γk−q). (5.51)

We discuss the excitation spectrum for various values of q. The order (5.43) corresponds
to the antiferromagnetic order when q = (π, · · · , π), and to the ferromagnetic order when
q = 0. Otherwise, the order (5.43) means the incommensurate order (or the spiral order).
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Antiferromagnetic order

In the antiferromagnetic phase, the order-parameter operator is given by (5.42) with q =
(π, · · · , π). We have fc(q) = 1 and hence we obtain the bound

ωs(k) ≤ dtK

2ms

√
(1− γk)(1 + γk), (5.52)

where ms denotes the staggered magnetization per site. Thus, in the Néel ordered phase,
the lowest frequency of the spin excitations is bounded from above by a gapless k-linear
dispersion relation. The momentum dependence of our bound is exactly equal to that of the
Heisenberg antiferromagnet [135, 104]. The spin-wave velocity is bounded from above by√

dtK/2ms. Note that this upper bound is applicable to arbitrary values of the parameter
U/t and the filling n, if and only if ms > 0.

In the large-U limit of the Hubbard model at half filling, it is expected that the kinetic
energy behaves as K ∝ t/U . In the one-dimensional system, the kinetic energy was exactly
evaluated and it indeed behaves as K ∝ t/U in the large U -limit at half filling [11]. In this
limit, hence the upper bound of the spin-wave velocity depends on parameters in the form
t2/U . This result is consistent with the fact that the large-U limit with the half filling is
described by the Heisenberg antiferromagnet with exchange coupling 4t2/U .

Ferromagnetic order

Next we discuss the ferromagnetic order, setting q = 0. In this case, we have fc(q) = 1 and
hence we obtain an upper bound of the spin-wave spectrum in the form

ωs(k) ≤ dtK

2mz

(1− γk), (5.53)

where mz denotes the uniform magnetization per site.
Thus the spin-wave spectrum is bounded from above by a gapless k-quadratic form. If

the ground state has the saturated (fully ordered) magnetization, one can easily obtain a
similar bound. It should be remarked that (5.53) holds in the imperfect-ferromagnetic-order
phase as well.

Incommensurate order

Finally we discuss the incommensurate order, in which q 6= 0, (π, · · · , π). In this case,
equation (5.51) again gives an upper bound of the spin-wave spectrum, but the value of
fc(q) depends on q. To determine the upper bound more explicitly, we consider other upper
bounds. Setting Ak = |Ω|−1/2 ∑

j∈Ω Sy
j exp(ik·rj) and Bk = |Ω|−1/2 ∑

j∈Ω Sz
j exp[i(q−k)·rj],

and then taking the infinite limit Ω ↗ Zd, we obtain another upper bound

ωs(k) ≤ dtK

2mfs(q)

√
(1− γk)(1− γk−q), (5.54)

where

fs(q) = lim
Ω↗Zd

1

|Ω|
∑

j∈Ω

sin2(q · ri). (5.55)
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Note that fc(q) + fs(q) = 1 and hence one of fc(q) and fs(q) is larger than 1/2. Then we
have

ωs(k) ≤ dtK

m

√
(1− γk)(1− γk−q). (5.56)

These bounds are not symmetric with k and hence they are still incomplete. To estimate
another bound, we use Bk = |Ω|−1/2 ∑

j∈Ω Sx
j exp[−i(q + k) · rj]. Then we obtain the

upper bound that is given from (5.51) by changing q to −q. In the same way, setting
Bk = |Ω|−1/2 ∑

j∈Ω Sz
j exp[−i(q +k) ·rj], we obtain another bound that is given from (5.54)

by changing q to −q. Using these bounds and the fact fc(q) + fs(q) = 1, we have

ωs(k) ≤ dtK

m

√
(1− γk)(1− γk+q), (5.57)

which is nothing but the momentum-reversed form of (5.56). In (5.57), the energy spectrum
is estimated better than in (5.56) in the region γk+q > γk−q.

To summarize, the lowest frequency of the spin-wave spectrum in the incommensurate-

order phase is bounded from above; ωs(k) ≤ (dtK/m)
√

(1− γk)(1− γk+q) for k satisfying

the inequality γk+q ≤ γk−q, and ωs(k) ≤ (dtK/m)
√

(1− γk)(1− γk−q) for k satisfying the
inequality γk+q ≥ γk−q. This upper bound has a finite gap at k = (π, · · · , π), while the
points k = 0 and k = ±q are gapless. The spin-wave spectrum ωs(k) is bounded from
above by a gapless k-linear form around k = 0 and ±q, which is consistent with the energy
spectrum derived by Shraiman and Siggia [131]. Upper bounds of the spin-wave velocities

are given by tK
√

d(1− γq)/
√

2m for both of the modes at k ' 0 and k ' ±q. Finally, we
remark that these bounds may not be the optimal ones, since there remain possibilities of
better choices of Bk, and moreover we have not estimated fc(q) properly.

5.2.3 Superconducting phase

Next, we discuss the charge-fluctuation spectrum above a superconducting ground state,
taking the operator Ak as (nk↑ + nk↓) − 〈(nk↑ + nk↓)〉. From the study of one-dimensional
Hubbard model [105], we found that the excited states given by the operator nk concentrate
near the lowest charge excitation in fairly doped systems, though these states contain a
number of higher excitations in the vicinity of half-filling.

Here we discuss the superconductivity of the on-site Cooper pairs, whose order-parameter
operator is defined by

OΩ =
∑

i∈Ω

(ci↑ci↓ + c†i↓c
†
i↑) (5.58)

and whose ground state is given by (5.40). We consider the phase in which the ground state
has the superconductivity

OCooper ≡ 1

|Ω|〈OΩ〉 > 0. (5.59)

We set the operators as

Ak = nk − 〈nk〉, (5.60)

Bk = |Ω|−1/2
∑

j∈Ω

(cj↑cj↓ + c†j↓c
†
j↑) exp(−ik · rj), (5.61)
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where nk = |Ω|−1/2 ∑
j∈Ω(nj↑ + nj↓) exp(ik · rj), and then we obtain

lim
Ω↗Zd

〈[A†
−k, [H,Ak]]〉 = 2dtK(1− γk), (5.62)

lim
Ω↗Zd

〈[B†
−k, [H,Bk]]〉 = 2dtK(1 + γk) + 2(2µ− U)(n− 1) (5.63)

and

lim
Ω↗Zd

|〈[Ak, Bk]〉| = lim
Ω↗Zd

2

|Ω| 〈OΩ〉 = 2OCooper, (5.64)

where K denotes the kinetic energy per bond defined by (5.49) and n denotes the electron
filling per site. Inserting (5.62)–(5.64) into (5.41), we obtain an upper bound for the lowest
frequency of the charge-excitation spectrum

ωc(k) ≤ dtK

OCooper

√
(1− γk)(1 + g + γk), (5.65)

where g = (2µ − U)(n − 1)/dtK ≥ 0. One can obtain similar bounds in superconducting
phases of other types, e.g. nearest-neighbor s-wave or p-wave.

Equation (5.65) shows that, in the superconducting phase, the lowest frequency of the
charge excitations is bounded from above by a gapless k-linear dispersion relation. Owing
to breakdown of the global U(1) gauge-symmetry of electrons, the charge excitations have
a gapless mode. These excitations correspond to the collective modes first discussed by
Anderson [6]. It should be remarked that (5.65) also gives an upper bound of the excitations
created by Bk, which are particle excitations of the Cooper pairs with a finite momentum.
Equation (5.65) thus shows that creation of the Cooper pairs does not require energy.
Similar relations between particle excitations and density excitations were discussed for the
Bose superfluids in [134] and references therein.

Finally we give a remark that these results hold for the negative-U Hubbard model
as well, in which superconductivity is widely believed to occur. They also can be easily
extended to a wide class of electron systems with short-range interactions. Furthermore,
the present result does not depend on the mechanism of symmetry breaking.

5.2.4 Summary and discussion

To summarize, we have estimated the energy spectra of the Hubbard model in the
magnetic-order phases and in the superconducting phase. The spin-wave spectrum in the
antiferromagnetic phase is bounded from above by a gapless k-linear form and in the ferro-
magnetic phase by a k-quadratic form. We have also discussed the magnetic phase with an
incommensurate wave number q and found that the energy spectra of the modes at k ' 0
and k ' ±q are bounded by gapless k-linear forms.

Moreover, it has been shown for the superconducting phase that the charge excitations
and the Cooper-pair excitations are gapless. It is known, however, that, if the interactions
of the charge are correctly included in a more realistic model, these gapless excitations
disappear by the Anderson-Higgs mechanism [6]. Hence these gapless modes will not exist
in real superconductors.

Concerning the two-dimensional Hubbard model, it has been proved [40, 72] that there
is no symmetry breaking at finite temperatures and on the other hand, ground states may
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have long-range orders. This phenomenon occurs as a result of the existence of these
gapless modes: Since the excitation spectrum has gapless modes, elementary excitations
of macroscopic numbers appear in the two-dimensional system at finite temperatures and
hence the order disappears.
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