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Terahertz spectroscopic images of paraffin-embedded cancer tissues have been measured by a
terahertz time domain spectrometer. For the systematic identification of cancer tumors, the principal
component analysis and the clustering analysis were applied. In three of the four samples, the cancer
tissue was recognized as an aggregate of the data points in the principal component plots. By the
agglomerative hierarchical clustering, the data points were well categorized into cancer and the
other tissues. This method can be also applied to various kinds of automatic discrimination of plural
components by terahertz spectroscopic imaging. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2433035�

By virtue of the penetrative property and the ability to
identify chemicals by their spectra, terahertz radiation has
been spotlighted in various application fields,1 especially by
applying spectroscopic imaging.2 In many cases, however, it
is difficult to identify the unknown materials straightfor-
wardly, because the spectra can be easily affected by the
sample’s conditions, such as crystal structure, hydration, op-
tical interference, and scattering.3,4 A more sophisticated
analysis to reveal the underlying characteristics of the ob-
served information is required for the practical use of the
terahertz waves.

In the medical field, a pathologic diagnosis using the
difference in terahertz absorbance between cancer and nor-
mal tissues was reported.5–7 There are two major merits in
the cancer diagnosis: First, it covers a wider area compared
to the optical microscopy measurements, and second, once
the systematic analysis is established, it can provide an ob-
jective judgment which is independent of the skill of medical
doctors. However, there still remains an uncertainty in the
judgment because of the plain spectral features of the cancer
tissues with no remarkable absorption peak. Moreover, due
to the variety of the tissues, their characteristic information is
not clearly apparent by a simple comparison between the
obtained spectra and images.

In this letter, we have introduced the chemometrics8,9

technique �the principal component analysis �PCA� and the
hierarchical clustering analysis� for the systematic and auto-
matic analysis of the terahertz spectroscopic images and ap-
plied it to the pathologic diagnosis of the four tumor
samples. In three of them, the cancer tissues can be recog-
nized as aggregates of the data points in the principal com-
ponent plots. By the agglomerative hierarchical �AH� clus-
tering �Ward’s linkage�,9,10 the data points were well
categorized into cancer and the other tissues. Such a proce-
dure can be applied not only for various kinds of diagnosis of
pathological samples from various body parts but also for
other various kinds of diagnosis which require an automatic
component discrimination.

Four slices of paraffin-embedded liver cancer tissues
�samples A, B, C, and D� were prepared without staining.
The samples have been treated by standard procedures for
histopathological examination.11 Transmission multispectral
terahertz images of the samples were taken with an imaging
system based on terahertz time domain spectroscopy �made
in collaboration with Tochigi Nikon Co.�. During the mea-
surement, the spectrometer was purged with nitrogen gas to
avoid absorption of the water vapor in the air. The absor-
bance and refractive index spectra were measured from
0.5 to 2.25 THz with 25 GHz frequency resolution. At each
pixel with the size of 250 �m2, 40 spectra were averaged.
The obtained spectral images were analyzed by the PCA and
the hierarchical clustering by using commercial software,
MINITAB 14 �Minitab Inc.�.

Figure 1 shows the photographs and the terahertz images
of the four samples. The cancer tissue, identified by optical
microscope, is indicated on the photographs as hatched ar-
eas. The second and the third columns show the images of
the absorbance and the refractive index at 1.7 THz, respec-
tively, at the same scale as the photographs. In these results,
no remarkable spectral features were found either in absor-
bance or in the refractive index except for a small oscillation
due to the optical interference. Therefore, the images at the
other frequencies are similar to those in Fig. 1. The distinc-
tion between the cancer and the other tissues can be partly
recognized in the terahertz images. In sample A, the green
area with the weaker absorption is in good agreement with
the cancer tissue. However, the cancer tissues of sample C
show greater absorbance than the other tissues. The cancer
information is clearly seen on the refractive index plot of
sample B. No clear correlation was found in sample D. Thus,
the correlation between the cancer areas and the areas on the
terahertz images is different from sample to sample.

In this experiment, the spectra are influenced by a series
of factors such as the variety of diseases, the sample condi-
tion, interference, and scattering. To extract the cancer infor-
mation systematically out of the huge amount of multidimen-
sional spectra, PCA has been applied to the observed data.8

By applying the singular value decomposition, the original
data matrix can be projected into a low dimensional principala�Electronic mail: hoshina@riken.jp
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component �PC� space. Since PCs are set to make the largest
variance between data points, the information of the original
data can be accounted for a smaller number of variables.

Figure 2 shows the score plot of the first PC versus the
second PC. In this figure, each point corresponds to a single
pixel of the image, with the red points representing the pixels
in the area marked in red in Fig. 1. Before applying PCA, the
data matrices of the spectra were normalized by their stan-
dard deviation for the entire images. In the first and the sec-

ond columns, PCA was applied to the observed absorbance
and refractive index images, respectively. On these plots,
more than 90% of the variance was explained within the first
and the second PCs. Since the similarity of the spectra ap-
pears as the nearness on the PC plots, the cancer tumor can
be recognized as an aggregate of points. A separate aggregate
of red points is seen in the absorbance plot of sample A and

FIG. 1. Photographs and terahertz images of samples A–D. The first column
shows photographs of the samples, with the cancer areas marked by red
lines. The second and the third columns show maps of the absorbance and
the refractive index at 1.7 THz, respectively, in the same scale as the pho-
tographs. The absorbance is shown in color, from 0 to 2.0 for samples A, B,
and D, and from 0 to 0.7 for sample C. The value of the refractive index is
shown in color from 1.0 to 1.7 for all samples.

FIG. 2. Score plots with the first �PC1� and the second �PC2� PCs. Each
column shows the result of PCA relative to the absorbance spectra, to the
refractive index spectra, and to both. The pixels of the cancer tumor are
shown in red.

FIG. 3. Results of the analysis by k-means clustering �with crosses marking the initial points� and by hierarchical clustering �Ward’s algorithm with the square
of Pearson’s distance�.
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in the refractive index plot of sample B. However, the red
and the black points are not clearly separated in the case of
sample C. This is probably because the difference of the
spectrum is too small. No separation has been found at
sample D.

On the third column of Fig. 2, PCA was simultaneously
applied to both the absorbance and the refractive index spec-
tra. In all four samples, more than 90% of the variance was
explained by the first and the second PCs. The first PC tends
to reflect the magnitude of the refractive index, and the sec-
ond PC reflects the magnitude of the absorbance. In plots
A–C, the aggregates of the red points can be seen. Note that
the cancer points of sample C appear separately only by this
procedure. Thus, the cancer tissue identification is much
easier on the score plots using the merged data of the absor-
bance and refractive index spectra.

In order to categorize the aggregates systematically into
cancer and the other tissues, the clustering was applied to the
score plot.9 Based on the assumption that the distances of
points reflect the similarity of their properties, the clustering
analysis categorizes the data points into several groups by
their distance.12 This analysis has been used for various im-
aging spectra in other frequencies.13,14 As discussed in these
studies, the result of the clustering analysis highly depends
on the algorithm.

Two kinds of general approach, AH clustering and
nonhierarchical cluster analysis �k-means12�, have been
tested. The former can be made without a priori assump-
tions, but the latter needs to give initial points by hand. Fig-
ure 3 shows the results of k-means clustering and the AH
clustering. Initial points of the k-means clustering are marked
by crosses. The left-side plots of each column show the re-
sult on the score plot, and the right-side figures depict them
on the spatial images. It was found that the k-means cluster-
ing simply separates the area with a straight line so that the
result does not reflect the cluster shape well �see the third
column of Fig. 2�; on the other hand, the AH clustering
shows a better correspondence with the actual cancer tumor
area in samples A–C.

In this study, various methods of the AH clustering have
been tried, such as average linkage, centroid linkage, com-
plete linkage, median linkage, and Ward’s linkage.10 Among
them, Ward’s linkage with the square of Pearson’s distance
shows the best agreement. Note that this method tends to be
affected by the points corresponding to the defects of the
samples. Therefore, in sample C, we classified the points into
three clusters, i.e., cancer tissues, the other tissues, and the
sample defects. Thus the preparation of defectless sample is
important for this method.

By applying the clustering analysis on PC plots, the sys-
tematic diagnosis of the disease area was realized. We em-
phasize that this method works complementally to the diag-
nosis done by medical doctors using the optical microscope
because the clustering does not specify which the cancer area
is. In addition, as seen in sample D, the cancer tumor cannot
always be distinguished by the terahertz spectra. By the op-
tical microscopic observation, it was found that viable cancer
cells were dominant in samples A–C, whereas considerable
amount of necrotic cells were found in sample D. Such dif-
ference of the organ condition may possibly be the reason for
the difficulty in sample D. More research for the particular
sample type is necessary.

In conclusion, terahertz spectroscopic images of cancer
tissues have been recorded by a terahertz time domain spec-
trometer and processed using the PCA and the clustering
technique for a potential systematic identification of cancer
tumors. In three of the four samples, the cancer tissue was
classified by the agglomerative hierarchical clustering on the
principal component plots. We showed that the chemomet-
rics could work effectively in terahertz applications for the
purpose of simplifying complicated spectral datasets.

The authors are grateful to K. Kawase for the valuable
discussion and encouragement.
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