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topological insulators (3d and 2d)




Outline

* Introduction: band theory

« Example of topological insulators:
integer quantum Hall effect

 New members: Z, topological insulators

» Table of topological insulators



Insulator

« A material which resists the flow of
electric current.

insulating materials



Band theory of electrons In
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« Schroedinger equation

[-iv2+v<r>]w<r>=Ew<r>

2m

Bloch's theorem:
00)= () k<™, ra)=u, ()

E, (k) Energy band dispersion n: band index




Metal and insulator in the band

theory;

Electrons are fermions (spin=1/2).

Each state (n,k) can accommodate
up to two electrons (up, down spins).
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% Pauli principle
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Flow of electric current
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All the states in the lower band are completely filled.

(2 electrons per unit cell)

$§ Bandgap ‘17(/{ =Jr/a1
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Electric current does not flow under (weak) electric field.



Digression: other (named)

iInsulators
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Large Coulomb energy! Electrons cannot move.



« Anderson insulator (impurity scattering)
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Random scattering causes interference of electron’s wave function.
= Standing wave

Anderson localization




Is that all?

No !

Yet another type of insulators: Topological insulators |

A topological insulator is a band insulator
which is characterized by a topological number and

which has gapless excitations at its boundaries.



Prominent example: quantum Hall

effect
» Classical Hall effect

Classical
Hall Effect
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Integer quantum Hall effect (von kiitzing 1980)
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exact, robust against disorder etc.



Integer quantum Hall effect

 Electrons are confined in a two-dimensional plane.
(ex. AlGaAs/GaAs interface)

Strong magnetic field is applied /

* //
(perpendicular to the plane) A G GaAs
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TKNN number (Thouless-Kohmoto-Nightingale-

den Nijs)
o’ TKNN (1982); Kohmoto (1985)
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Topological distinction of ground states
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Edge states

« There is a gapless chiral edge mode along the sample
boundary.
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Robust against disorder (chiral fermions cannot be backscattered)
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Effective field theory
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domain wall fermion




Topological Insulators (definition 22)

* (band) insulator with a nonzero gap to excitated states
* topological number

stable against any (weak) perturbation
 gapless edge mode

« When the gapless mode appears/disappears, the bulk
(band) gap closes. Quantum Phase Transition

* Low-energy effective theory
= topological field theory (Chern-Simons)



Fractional quantum Hall effect at=§ M

+ 2" Landau level B

« Even denominator (cf.Laughlin states: odd denominator)
« Moore-Read (Pfaffian) state

Z; =X, +iyj
Yyr = Pf[ - iZ. ]E(Zl —Z; )e-E|Zl.|2 Pf(Al.j )= ,/det Al.j
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Pf( ) is equal to the BCS wave function of p,+ip, pairing state.

a

® @  Bound state of two spinless ferions:
\_ ) P-wave & angular momentum=1

Excitations above the Moore-Read state obey non-Abelian statistics.



Spinless p,+ip, superconductor in 2
dim.
* Order parameter A(k) o< (W, W_, )« A (k, +ik,)

 Chiral (Majorana) edge state E
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* Majorana bound state in a quantum vortex
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Bogoliubov-de Gennes equation
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zero mode ¢£,=0 Y =W (=y) Majorana (real) fermion!

interchanging vortices =) braid groups, non-Abelian statistics
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Quantum spin Hall effect (Z, top.

Insu Iator) Kane & Mele (2005, 2006); Bernevig & Zhang (2006)

 Time-reversal invariant band insulator
» Strong spin-orbit interaction AL -G
« Gapless helical edge mode (Kramers pair)

IE
/O /p-spin electrons
W down-spin electrons
/ A

No spin rotation symmetry




* Quantum spin Hall insulator is characterized by
Z, topological index v

v =1 an odd number of helical edge modes; Z, topological insulator

v =( aneven (0) number of helical edge modes

# of a pair of zeros of

el €)oo €)'

Kane-Mele model
graphene + SOI
[PRL 95, 146802 (2005)]
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Experiment

HgTe/(Hg,Cd)Te quantum wells

CdTe

14

HgCdTe CdTe

Konig et al. [Science 318, 766 (2007)]

Conductance
channel with
up-spin charge
carriers
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Conductance
channel with
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charge carriers

Fig. 4. The longitudinal four-
terminal resistance, Rqq 23, of
various normal (¢ = 5.5 nm)
{I) and inverted {d = 7.3 nm)
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{1, I, and I¥) QW structures
as a function of the gate volt-
age measured for B=0T at
T = 30 mK. The device sizes
are {20.0 x 13.3) um® for
devices | and Il, {1.0 x 1.0)
um2 for device Ill, and (1.0 x
0.5) um? for device IV. The
inset shows R14 23{/;) of two
samples from the same wafer,
having the same device size
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3-dimensional Z, topological insulator
Moore & Balents; Roy; Fu, Kane & Mele (2006, 2007)

(strong) topological insulator surface Dirac fermion

bulk: band insulator }

surface: an odd number of surface Dirac modes bulk

characterized by Z, topological numbers insulator

Ex: tight-binding model with SO int. on the diamond lattice
[Fu, Kane, & Mele; PRL 98, 106803 (2007)]

trivial band insulator:

0 or an even
number of

surface Dirac modes

trivial insulator |

Z, topological 4
insulator £ ol i




Surface Dirac fermions&

topological
insulator

* A "half” of graphene

« An odd number of Dirac fermions in 2 dimensions
cf. Nielsen-Ninomiya's no-go theorem
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Experiments

« Angle-resolved photoemission spectroscopy (ARPES)
Hsieh et al., Nature 452, 970 (2008)
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An odd () number of surface Dirac modes were observed.



Experiments Il

Bi,Se,
“hydrogen atom” of top. ins.

Xia et al., arXiv:0812.2078

Energy (eV)
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Q: Are there other 3D topological insulators?

Yesl!

Let's make a table of all possible topological insulators.



Classification of topological insulators

Topological insulators are stable against (weak) perturbations.
ﬂ Random deformation of Hamiltonian

Natural framework: random matrix theory
(Wigner, Dyson, Altland & Zirnbauer)

Assume only basic discrete symmetries:

(1) time-reversal symmetry 0 noTRS
TRS =

*rr—1 +1 TRS With= +7 (integer spin)
THT =H Jer sp
-1 TRS with = —T (hal-odd integer spin

(2) particle-hole symmetry

T 1 0 noPHS
CH C  =-H PHS = +1 PHS with=+C (odd parity: p-wave)
-1 PHS with = —-C (even parity: s-wave

(3) TRS X PHS = chiral symmetry [sublattice symmetry (SLS)]
TCH(TC)' =-H 3x341=10



10 random matrix ensembles

TRS |PHS |SLS description
Wigner-Dyson |_A 0 0 0 unitary IQHE
(standard) Al +1 0 0 orthogonal
All -1 0 0 symplectic (spin-orbit) Z, TPI
chiral Alll 0 0 1 chiral unitary
(sublattice) BDI | +1 +1 1 chiral orthogonal
Cll -1 -1 1 chiral symplectic
D +1 0 singlet/triplet SC MR Pfaffiar
BdG C -1 0 singlet SC
DIII -1 +1 1 singlet/triplet SC with TRS
Cl +1 -1 1 singlet SC with TRS

Examples of topological insulators in 2 spatial dimensions

Integer quantum Hall Effect

Z, topological insulator (quantum spin Hall effect) also in 3D
Moore-Read Pfaffian state (spinless p+ip superconductor)



Table of topologocal insulators in 1, 2, 3

dlm ] Schnyder, Ryu, Furusaki & Ludwig, PRB (20C
random matrix ensemble | TRS | PHS | chS d=1|d=2 | d=3
Wigner-Dyson | A 0 0 0 | unitary 0 Z @ 0
(standard) Al +1 0 0 | orthogonal 0 0 0

ATl —1 0 0 | symplectic 0 Zo® 7y @
Chiral Alll 0 0 1 | chiral unitary Z 0 Z
(sublattice) BDI +1 +1 1 | chiral orthogonal Z 0 0

CII —1 —1 1 | chiral symplectic Z 0 Zo

D 0 +1 | 0 | (triplet) SC Zo | Z@ 0
BdG C 0 —1 0 | singlet SC 0 Z®© 0

DIII —1 +1 1 | triplet SC Zs 7. Z G

Cl +1 —1 1 | singlet SC 0 0 Z

Examples:

(a)Integer Quantum Hall Insulator, (b) Quantum Spin Hall Insulator,

(c) 3d Z, Topological Insulator, (d) Spinless chiral p-wave (p+ip) superconductor (Moor
(e)Chiral d-wave (d,z_,z + idyy)

(g) 3He B phase.

superconducto (p. + ipy )+ ® (P — ipy)y

superc



Reordered Table

Kitaev, arXiv:0901.2686

TRS | PHS | chS d=1|d=2 | d=3

A 0 0 0 | unitary 0 Z 0 complex
AIlI 0 0 1 | chiral unitary Z 0 Z | K-theory
Al +1 0 0 | orthogonal 0 0 0

BDI | +1 +1 1 chiral orthogonal Z 0 0

D 0 +1 0 | (triplet) SC 7o Z 0

DIII | —1 +1 1 | triplet SC Zo Zs Z real
All —1 0 0 | symplectic 0 7o Z5 | K-theory
CII —1 —1 1 | chiral symplectic Z 0 Zo

C 0 —1 0 | singlet SC 0 Z 0

ClI +1 —1 1 singlet SC 0 0 Z

Periodic table for topological insulators

Classification in any dimension

Bott periodicity:
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Summary

« Many topological insulators of non-interacting
fermions have been found.

interacting fermions??

 Gapless boundary modes (Dirac or Majorana)

stable against any (weak) perturbation disorder

* Majorana fermions
to be found experimentally in solid-state devices



