

First principles simulation for photoexcitation and carrier splitting in condensed maters

Yoshiyuki Miyamoto

National Institute of Advanced Industrial Science and Technology (AIST)

Acknowledgements

Mina Yoon

Oak Ridge National Laboratory

Matthias Scheffler

Fritz-Haber Institut der Max-Planck-Gesellschaft

Harpreet Singh Arora

Indiana Institute of Technology (IIT), Bombay

Requirements on simulations (designing photovoltaic material)→Photo-absorption vs. carrier splitting

- 2.Theoretical approach(real-time propagation TDDFT)
- 3.Photo-induced increase of dipole moment in Polar crystal and TTF/TCNQ dimer (DA pair)
- 4. One technical note on effect of UV light
- 5.Summary

Equilibrium cases:

Electrons running around immediately follow ion motion and remain their ground states!

$$H\psi_n = \varepsilon_n \psi_n$$

Electrons running around are excited and does not follow ion motion and remain their excited states for a while!

$$H\psi_n = i\hbar \frac{d}{dt}\psi_n$$

Equilibrium vs non-equilibrium Phenomena in different time-scale

Wet: using electrolyte

 \rightarrow Redox dynamics and recombination rate govern the efficiency

(Electron transport from dye to $TiO_2 \rightarrow fast$) Requirements

Theoretical approach must be the thermodynamical approach

Solid (NW, Q-dot): using p-n junction

Carrier dynamics govern the photovoltaic process: Photo-absorption rate vs. e-h splitting rate \rightarrow What is required for theoretical approach?

Necessity of solving electron dynamics in fast-process

 Electrons and holes are no-longer steady states

Need of direct simulation for electron dynamics by solving time-dependent Schrödinger equation

Thought from simple 1D model Collaboration with Mr. Arora (IIT)

National Institute of Advanced Industrial Science and Technology

AIST

For real materials Many ions and electrons

≈100fs

Advanced industrial Science

and Technology

Applying the time-dependent density functional theory and Ehrenfest dynamics

$$H_{KS}\psi_n^{KS} = i\hbar \frac{d}{dt}\psi_n^{KS}$$

$$F_I = M_I \frac{d^2 R_I}{dt^2}$$

Computational methods(1) Advanced Industrial Science

Pioneering works by time-dependent density functional theory (TDDFT): Prof. Yabana's group

National Institute of

and Technology AIST

> Castro et al., Eur. Phys. J. D 28, 211 (2004). 技術を社会へ-Integration for Innovation

 $i\hbar \frac{d\psi_{n,k}(\mathbf{r},t)}{dt} = H_{KS}\left[\rho(\mathbf{r},t)\right]\psi_{n,k}(\mathbf{r},t)$

 $H_{KS}\left[\rho(\mathbf{r},t)\right] \Rightarrow H_{KS}\left[\rho(\mathbf{r},t),\mathbf{A}(t)\right]$

 $i\hbar \frac{d\psi_{n,k}(\mathbf{r},t)}{dt} = H_{KS}\left[\rho(\mathbf{r},t)\right]\psi_{n,k}(\mathbf{r},t)$

 $H_{KS}[\rho(\mathbf{r},t)] \Rightarrow H_{KS}[\rho(\mathbf{r},t), V_{ext}(\mathbf{r},t)]$

 $V_{HXC}[\rho(\mathbf{r},t)] \Rightarrow V_{HXC}[\rho(\mathbf{r},t)] + V_{ext}(\mathbf{r},t)$

Bertsch, et al., PRB62 7998, (2000).

 $\frac{1}{2m}\left(\mathbf{P}-\frac{1}{c}\mathbf{A}(t)\right)^2$

Computational methods(2) Advanced Industrial Science

Energy conservation rule in TDDFT-MD

National Institute of

and Technology AIST

Computational methods(3) Advanced Industrial Science

Energy conservation rule in TDDFT-MD (continued)

National Institute of

and Technology AIST

$$\begin{split} \sum_{i} \left(\int \psi_{i}^{*}(\mathbf{r},t) \frac{-\hbar^{2}}{2m} \Delta \psi_{i}(\mathbf{r},t) d\mathbf{r} + \int \int \psi_{i}^{*}(\mathbf{r}',t) v_{nl}(\mathbf{r}',\mathbf{r}) \psi_{i}(\mathbf{r},t) d\mathbf{r}' d\mathbf{r} \right) + \frac{1}{2} \int \int \frac{\rho(\mathbf{r}',t)\rho(\mathbf{r},t)}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r}' d\mathbf{r} \\ + \int E_{XC}[\rho(\mathbf{r},t)] d\mathbf{r} + \sum_{I} Z_{I} \left(\int \frac{\rho(\mathbf{r},t)}{|\mathbf{R}_{I}(t)-\mathbf{r}|} d\mathbf{r} + \sum_{J\neq I} \frac{Z_{J}}{|\mathbf{R}_{I}(t)-\mathbf{R}_{J}(t)|} \right) \equiv E_{tot}^{DFT}(\mathbf{r},t) \\ \begin{aligned} \mathbf{With time-varying external field} \\ V_{ext}(\mathbf{r},t) = \int \frac{\rho_{ext}(\mathbf{r}',t)}{|\mathbf{r}'-\mathbf{r}|} d\mathbf{r}' \\ = \sum_{i} \left(\int \psi_{i}^{*}(\mathbf{r},t) \frac{-\hbar^{2}}{2m} \Delta \psi_{i}(\mathbf{r},t) d\mathbf{r} + \int \int \psi_{i}^{*}(\mathbf{r}',t) v_{nl}(\mathbf{r}',\mathbf{r}) \psi_{i}(\mathbf{r},t) d\mathbf{r}' d\mathbf{r} \right) + \int E_{XC}[\rho(\mathbf{r},t)] d\mathbf{r} \\ + \frac{1}{2} \int \int \frac{(\rho(\mathbf{r}',t) + \rho_{ext}(\mathbf{r}',t))}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r}' \\ + \sum_{I} Z_{I} \left(\int \frac{(\rho(\mathbf{r},t) + \rho_{ext}(\mathbf{r},t))}{|\mathbf{R}_{I}(t)-\mathbf{r}|} d\mathbf{r} + \sum_{J\neq I} \frac{Z_{J}}{|\mathbf{R}_{I}(t)-\mathbf{R}_{J}(t)|} \right) \end{aligned}$$

National Institute of Advanced Industrial Science and Technology AIST

$$\begin{split} E_{tot}^{DFT}(\mathbf{r},t) & \text{Miyamoto, Zhang, Phys. Rev. } \mathbf{B}\underline{T}\mathbf{Z}, 165123 (2008) \\ &= \sum_{i} \left(\int \psi_{i}^{*}(\mathbf{r},t) \frac{-\hbar^{2}}{2m} \Delta \psi_{i}(\mathbf{r},t) d\mathbf{r} + \int \int \psi_{i}^{*}(\mathbf{r}',t) v_{nl}(\mathbf{r}',\mathbf{r}) \psi_{i}(\mathbf{r},t) d\mathbf{r}' d\mathbf{r} \right) + \int E_{XC}[\rho(\mathbf{r},t)] d\mathbf{r} \\ &\quad + \frac{1}{2} \int \int \frac{(\rho(\mathbf{r}',t) + \rho_{ext}(\mathbf{r}',t)) (\rho(\mathbf{r},t) + \rho_{ext}(\mathbf{r},t))}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' d\mathbf{r} \\ &\quad + \sum_{I} Z_{I} \left(\int \frac{(\rho(\mathbf{r},t) + \rho_{ext}(\mathbf{r},t))}{|\mathbf{R}_{I}(t) - \mathbf{r}|} d\mathbf{r} + \sum_{J \neq I} \frac{Z_{J}}{|\mathbf{R}_{I}(t) - \mathbf{R}_{J}(t)|} \right) \\ U(t) &= \sum_{I} \frac{M_{I}}{2} \left(\frac{d\mathbf{R}_{I}}{dt} \right)^{2} + E_{tot}^{DFT}(\mathbf{r},t) & \textbf{Goes to zero!} \\ \frac{dU(t)}{dt} &= \sum_{I} \frac{d\mathbf{R}_{I}(t)}{dt} \cdot \left(M_{I} \frac{d^{2}\mathbf{R}_{I}(t)}{dt^{2}} + \frac{dE_{tot}^{KS}(\mathbf{r},t)}{d\mathbf{R}_{I}(t)} \right) + \sum_{i} \left(\frac{d\psi_{i}^{*}(\mathbf{r},t)}{\delta t} \frac{\delta E_{tot}^{DFT}(\mathbf{r},t)}{\delta \psi_{i}^{*}(\mathbf{r},t)} + C.C. \right) \\ &+ \int \frac{d\rho_{ext}(\mathbf{r},t)}{dt} \left(\int \frac{(\rho(\mathbf{r}',t) + \rho_{ext}(\mathbf{r}',t))}{|\mathbf{r}' - \mathbf{r}|} d\mathbf{r}' + \sum_{I} Z_{I} \frac{1}{|\mathbf{R}_{I}(t) - \mathbf{r}|} \right) d\mathbf{r} \\ & \text{Time integral=W, so U-W=Conserved quantity} \end{aligned}$$

AIST

Computational methods(5)

- Time-dependent density functional theory for <u>real-</u> <u>time propagation</u> of electron wave functions [Sugino, Miyamoto, PRB<u>59</u>, 2579 (1999).]
- Adding scalar potential $V_{ext}(r,t)$ to $H_{KS}(r,t)$ for optical E-field satisfying the energy conservation rule [Miyamoto, Zhang, PRB<u>77</u>, 165123 (2008).] $i\hbar \frac{d\psi_n(\mathbf{r},t)}{dt} = \{ H_{KS}(\mathbf{r},t) + V_{ext}(\mathbf{r},t) \} \psi_n(\mathbf{r},t)$
- Plane wave basis (60 Ry), norm-conserving pseudopotential, LDA

Computational methods(6)

Periodic boundary conditions

Advanced Industrial Science e-h splitting as dipole moment

With circuit

→Induction of current

National Institute of

and Technology AIST

Without circuit →Increase of dipole moment n

n

Advanced Industrial Science and Technology

SiC(001) polar surface

Case study 1: polar crystal

Procedure of calculations

 Compute time-propagation of electrons under the light (direct solution of timedependent Schrödinger equation.)

$$\rho(\mathbf{r},t) = \sum_{n=occ} \psi_n(\mathbf{r},t)^* \psi_n(\mathbf{r},t) \stackrel{)}{} \psi_1(\mathbf{r},t)$$
$$\psi_1(\mathbf{r},t) \stackrel{)}{} \psi_2(\mathbf{r},t)$$
$$P(t) = \int (\mathbf{r} - r_0) \rho(\mathbf{r},t) d\mathbf{r} \stackrel{\iota(\mathbf{r},t)}{} \psi_3(\mathbf{r},t)$$
$$i\hbar \frac{\omega \psi_n(\mathbf{r},t)}{dt} = \{ H_{KS}(\mathbf{r},t) + V_{ext}(\mathbf{r},t) \} \psi_n(\mathbf{r},t)$$

In this case, the optical E-field and dipole moment are parallel. YM, APEX **3**, 047202 (2010).

How could we find the optical frequency?: Advanced Industrial Science and Technology AIST How could we find the optical frequency?:

Advanced Industrial Science Snap shot of charge density

Organic dimer (TTF/TCNQ) as analogy of *pn*-junction

National Institute of Advanced Industrial Science

and Technology

技術を社会へ-Integration for Innovation

4

3.5 eV

Advanced Industrial Science Advanced Industrial Science Anst AIST ACCUMULATION of energy with resonant frequencies of lights

Following the energy-conservation rule by Miyamoto, Zhang, Phys. Rev. B**77**, 165123 (2008).

Increase of dipole moment

National Institute of

Advanced Industrial Science and Technology

Analysis of molecular orbitals (intra- and inter-molecular CT)

Snapshot at t = 12.7 fs with hv= 2 eV

Side view

TCNQ

Possible photovoltaic devices

One technical note (effect of UV)

Absorption peak on organic molecules: visible + UV

UV absorption is useless for photovoltaic unless you create multi-excitons

One of possibilities: make mixture with wide HOMO-LUMO gap molecules

National Institute of

and Technology AIST

One hypothetical model

National Institute of Advanced Industrial Science and Technology **AIST**

Mixture with borazine (B₃N₃H₆)

National Institute of Advanced Industrial Science and Technology

One hypothetical model

National Institute of Advanced Industrial Science and Technology AIST

Other required simulations

1. Time-constant data extracted from fast dynamics plugged in in master-equation 2.Combined with carrier transport simulation 3. Structural change of photovoltaic material during photo-electro conversion →Longer time TDDFT-MD simulation for aging

Summary

- Theoretical method to explore photovoltaic material (monitoring time-dependence of dipole moment that mimics photo-excited *e-h* separation)
- A TTF/TCNQ dimer shows increase of dipole moment upon illumination of light at 2.00 eV and 3.50 eV.
- Practical simulation for photovoltaic devices (multi-scale theory for fast and slow dynamics is needed)