Prospects of Protein Calculations by the Density Functional Theory

Hiroshi Kashiwagi, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan

We have developed ProteinDF program with the Density Functional Theory to calculate the electronic structure of proteins \(^1\text{-}^3\). By using this program, an all-electron calculation on the non-symmetric insulin hexamer (see figure) was successfully carried out \(^4\text{-}^5\) with a precise initial guess of the combined quasi-canonical localized orbitals \(^6\). The numbers of residues, atoms, and orbitals were 306, 4728, and 26790, respectively. To our knowledge, insulin hexamer is the largest system calculated using the full-scale canonical density functional molecular orbital method.

On the base of such experience, the future of protein calculations by the density functional theory will be discussed.

References