Cu NMR Study of Organic Conductor DCNQI-Cu System

K. Ishida,1 Y. Kitaoka,1 H. Masuda,1 K. Asayama,1 T. Takahashi,2 A. Kobayashi,3 R. Kato4 and H. Kobayashi5

1 Department of Material Physics, Faculty of Engineering Science, Osaka University, Osaka 560, Japan
2 Department of Physics, Faculty of Science, Gakushuin University, Tokyo, Japan
3 Department of Chemistry, University of Tokyo, Japan
4 ISSP, University of Tokyo, Japan
5 Department of Chemistry, Toho University, Funabashi, Chiba, Japan

Abstract

The Cu NMR was performed to investigate an electronic property of a counterion site in (DMe-DCNQI)2Cu, (DMeO-DCNQI)2Cu, (DBr-DCNQI)2Cu, and partially deuterated (DMe-DCNQI-d2[1,1,0])2Cu. In these compounds, it is microscopically demonstrated that each metallic and insulating state possesses a similar electronic and magnetic properties and near the metal-insulator (M-I) boundary, any specific effect of electron correlation of d-electrons is not identified from a systematic measurements of the spin-lattice relaxation rate, (1/T1), of 63Cu.

1. INTRODUCTION

A new type of organic conductors (R1, R2-DCNQI)2Cu (R1, R2=CH3, CH3O, Cl, etc.) was synthesized. R1, R2-DCNQI are organic π-acceptor molecules which are uniformed stacked along the crystallographic c-axis in one dimensional column and Cu sites are coordinated by four DCNQI molecules. Among the DCNQI-Cu systems, it is well known that there are three groups despite of the close resemblance of the structure. Group-I compounds, to which (DMe-DCNQI)2Cu and (DMeO-DCNQI)2Cu belong, stay in the metallic state down to low-T. Group-II compounds such as (DBr-DCNQI)2 Cu show the sharp metal-insulator (M-I) transition accompanied by the structure changes. In the group-I compounds, whereas, the M-I transition is induced by pressure. Under the specific pressure, the group-I compound show M-I-M reentrant transition with decreasing T. Recently, Hüning et al. reported that the chemical pressure was produced by the substitution of 2D for 1H.[2] Partially deuterated (DMe-DCNQI-d2[1,1,0])2Cu shows the M-I-M transition under the ambient pressure.[3] The compounds showing M-I-M transition, such as (DMe-DCNQI-d2[1,1,0])2Cu and the group-I compounds under the specific pressure, are considered to be in Group-III.

In the previous paper,[4] we reported the Cu NMR measurements in (DMe-DCNQI)2Cu belonging to the group-I. We here deal with the T-dependence of 1/T1 in the group-II and III.

2. EXPERIMENTAL RESULTS AND DISCUSSION

The process of synthesis was described elsewhere.[1] The sample of (DBr-DCNQI)2Cu was crushed into powder for NMR measurements. In (DMe-DCNQI-d2[1,1,0])2Cu, single crystals were used to avoid crystal distortion and stress. 1/T1 was measured at Cu site by saturation-recovery method on (1/2 ↔ −1/2) transition of the quadrupole split spectrum in a magnetic field of 11T.

Figure 1: T-dependence of 1/T1 in (DBr-DCNQI)2Cu.

2.1 Group-II

Fig. 1 shows the T-dependence of 1/T1 in (DBr-DCNQI)2 Cu. In the metallic state, T1 obeys T1T=const. law roughly. The value of 1/T1T in (DBr-DCNQI)2Cu is twice larger than that in (DMe-DCNQI)2Cu, associated with a stronger electron correlation effect. At the temperature, (Tm) where the M-I transition occurs, the peak of NMR spectrum shifts discontinuously and the signal intensity decreases significantly. The NMR intensity in the insulating phase are decreased to two-third of that in the metallic one accompanied by a smaller shift. One third of Cu NMR signal is wiped
out because of much short relaxation time. Below T_M, the homogeneous mixed valence state with an average valence of $Cu^{1.33}$ is differentiated into two Cu^{1+} and Cu^{2+} ionic states with a concentration ratio of two to one as pointed out by XPS experiments. [5] Consistently to this result, the NMR for the Cu^{2+} sites carrying local moments are out of observation, whereas that from nonmagnetic Cu^{1+} with closed d-shell has been observed. Remarkably, the relaxation process for Cu^{1+} nuclei is dominated by fluctuating Cu^{2+} local moments in the paramagnetic state and below 15K, $1/T_1$ decreases and at the same time, the full-width at half maxium of Cu NMR spectrum starts to increase, which provide evidences of the antiferromagnetic ordering of Cu^{2+} moments below 15K.

2.2 Group-III

Fig. 2 shows the Cu NMR spectrum for $(1/2 \leftrightarrow -1/2)$ transition. Fig. 3 shows the T-dependence of $1/T_1$ in (DMe-DNCQI-d$_2$(1,1:0))$_2$Cu. The NMR spectrum in the low-T metallic state is the same as that in the high-T metallic phase, and $1/T_1$ in the high- and low-T metallic phases are on the same line showing a $T_1T=const$.law. This means that the electronic state in the metallic phases is the same. It is, furthermore, remarkable that the value of $1/T_1T$ is also the same as that in (DMe-DNCQI)$_2$Cu. In the insulating state, there present two Cu NMR signals as shown in Fig.2. One is the same as that in the metallic phase. Another signal appears only in the insulating phase where $1/T_1$ is nearly T-independent with almost the same value as in the insulating phase for (DBr-DNCQI)$_2$Cu. Thus the insulating state in (DMe-DNCQI-d$_2$(1,1:0))$_2$Cu is shown to be almost the same as that in (DBr-DNCQI)$_2$Cu. In the former case, the metallic phase remains partially even in the insulating state below T_M from a microscopic point of view.

3. SUMMARY

From the NMR measurements, the metallic and insulating phase in both (DBr-DNCQI)$_2$Cu and (DMe-DNCQI-d$_2$(1,1:0))$_2$Cu, which exhibit the M-I and M-I-M reentrant transition, possesses a same density of states at the Fermi level and magnetic nature, respectively. The M-I transition in these compounds occurs as first order transition and hence the electronic state changes discontinuously. Since the mass enhancement in the vicinity of the M-I transition, which was pointed out by the specific heat measurements, [6] has not been evidenced from the measurement of T_1, the usual Fermi liquid description is considered to be valid in these organic conductors.

References