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Dirac electrons, which have been found in the single-component molecular conductor [Pd(dddt)2] under pressure, are
examined by calculating the conductivity and resistivity for several pressures of PGPa, which give a nodal line
semimetal or insulator. The temperature (T ) dependence of the conductivity is studied using a tight-binding model with
P-dependent transfer energies, where the damping energy by the impurity scattering Γ is introduced. It is shown that the
conductivity increases linearly under pressure at low T due to the Dirac cone but stays almost constant at high T. Further,
at lower pressures, the conductivity is suppressed due to an unconventional gap, which is examined by calculating the
resistivity. The resistivity exhibits a pseudogap-like behavior even in the case described by the Dirac cone. Such
behavior originates from a novel role of the nodal line semimetal followed by a pseudogap that is different from a band
gap. The present result reasonably explains the resistivity observed in the experiment.

1. Introduction

Massless Dirac fermions have recently been extensively
studied due to their exotic energy band with a Dirac cone.1)

Among them, Dirac electrons in molecular conductors have
been found in bulk systems2,3) for the following two cases.
One is the organic conductor α-(BEDT-TTF)2I3 [BEDT-
TTF = bis(ethylenedithio)tetrathiafulvalene], in which a zero
gap is obtained in the two-dimensional Dirac electron4) using
the tight-binding model with the transfer energy estimated by
the extended Hückel method.5,6) The other is the single-
component molecular conductor [Pd(dddt)2] (dddt = 5,6-
dihydro-1,4-dithiin-2,3-dithiolate) under a high pressure, in
which the unconventional Dirac electron was found by
resistivity measurement7) and first-principles calculation.8) In
fact, the latter material is a three-dimensional Dirac electron
system consisting of highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO)
functions, and exhibits a nodal line semimetal.9)

Although there have been many studies on nodal line
semimetals,10–12) the transport property has not been studied
much except for that of the molecular conductors since the
behavior relevant to Dirac electrons can be obtained when the
chemical potential is located close to the Dirac point. One
of the remarkable characteristics of these molecular Dirac
electrons is the anisotropy of the conductivity as shown for
both the two-dimensional case13) and three-dimensional
case.14) Although the conductivity at absolute zero temper-
ature displays a universal value including the Planck
constant, the theory predicts an increase in the conductivity
when the temperature becomes larger than Γ associated with
the energy by the impurity scattering. However, the almost
constant resistivity with varying temperature is regarded as
experimental evidence of Dirac electrons.3,15)

Since Γ is much smaller than the energy of the Dirac cone,
it is not yet theoretically clear how to comprehend the
relevance between the Dirac electrons and the constant
resistivity as a function of temperature. Thus, in the present
paper, we examine the temperature dependence of both the
conductivity and resistivity of the Dirac electrons of the
single-component molecular conductor [Pd(dddt)2] under

pressure by taking into account the property of the actual
band through the transfer energy of the tight-binding model.3)

Further, the characteristics of the pressure dependence of the
nodal line semimetal are examined using an interpolation
formula for the transfer energy between the ambient pressure
and a pressure corresponding to the observed Dirac electrons.

In Sect. 2, the model is given with the formulation for
the conductivity. In Sect. 3, the nodal line semimetal under
pressure is explained. The temperature dependence of the
anisotropic conductivity is examined using the temperature
dependence of the chemical potential, which is determined
self-consistently. Further, the resistivity is calculated reveal-
ing a pseudogap close to the insulating state, and compared
with the experimental result. Section 4 is devoted to a
summary and discussion.

2. Model and Formulation

The single component molecular conductor [Pd(dddt)2]3)

has a three-dimensional crystal structure with a unit cell
which consists of four molecules (1, 2, 3, and 4) with HOMO
and LUMO orbitals. The molecules are located on two kinds
of layers, where layer 1 includes molecules 1 and 3 and
layer 2 includes molecules 2 and 4. The transfer energies
between nearest-neighbor molecules are given as follows.
The interlayer energies in the z-direction are given by a
(molecules 1 and 2 and molecules 3 and 4), and c (molecules
1 and 4 and molecules 2 and 3). The intralayer energies in the
x–y plane are given by p (molecules 1 and 3), q (molecules
2 and 4), and b (perpendicular to the x–z plane). Further,
these energies are classified by three kinds of transfer
energies given by HOMO–HOMO (H), LUMO–LUMO (L),
and HOMO–LUMO (HL).

Based on the crystal structure,3) the tight-binding model
Hamiltonian per spin is given by

H ¼
XN
i; j¼1

X
�;�

ti; j;�;�ðPÞji; �ih j; �j; ð1Þ

where ti; j;�;� are transfer energies between nearest-neighbor
sites and ji; �i is a state vector. i and j are the lattice sites of
the unit cell with N being the total number of square lattices,
α and β denote the eight molecular orbitals given by the
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HOMO ðH1; H2; H3; H4Þ and LUMO ðL1; L2; L3; L4Þ. The
lattice constant is taken as unity. For simplicity, the transfer
energy at pressure P (GPa) is estimated by linear interpola-
tion between the two energies at P ¼ 8 and 0GPa. With
r ¼ P=P0 and P0 ¼ 8GPa, the energy is written as14)

ti; j;�;�ðPÞ ¼ rti; j;�;�ð0Þ þ ð1 � rÞti; j;�;�ðP0Þ: ð2Þ
The insulating state is obtained at P ¼ 0 while the Dirac cone
is found at P0 by first-principles calculation,3) corresponding
to the Dirac electron indicated by the experiment. We take eV
as the unit of energy. The transfer energies ti; j;�;� at P ¼ 83)

and 0GPa9), which are obtained by the extended Hückel
method, are listed in Table I. The gap between the energy of
the HOMO and that of the LUMO is taken as �E ¼ 0:696
eV to reproduce the energy band in the first-principles
calculation.

Using the Fourier transform j�ðkÞi ¼ N�1=2 P
j

exp½�ikrj�j j; �i with the wave vector k ¼ ðkx; ky; kzÞ,
Eq. (1) is rewritten as

H ¼
X
k

j�ðkÞiĤðkÞh�ðkÞj; ð3Þ

where h�ðkÞj ¼ ðhH1j; hH2j; hH3j; hH4j; hL1j; hL2j; hL3j;
hL4jÞ and is expressed as h�ðkÞj ¼ ðh1j; h2j; . . . ; h8jÞ. The
Hermite matrix Hamiltonian ĤðkÞ is given in Ref. 9, where
ĤðkÞ is expressed as UðkÞ�1HðkÞUðkÞ. The quantity HðkÞ
[UðkÞ] is the real matrix Hamiltonian (unitary matrix) shown
in the Appendix. The nodal line has been explained using
HðkÞ,9,16) where the Dirac point is supported by the existence
of an inversion center.17) Note that ĤðkÞ gives the same
conductivity as HðkÞ obtained from UðkÞ, which corresponds
to a choice of the gauge. For simplicity, the following
calculation of the conductivity is performed in terms of ĤðkÞ.

The energy band EjðkÞ and the wave function �jðkÞ, ( j ¼
1; 2; . . . ; 8) are calculated from

ĤðkÞ�jðkÞ ¼ EjðkÞ�jðkÞ; ð4Þ
where E1 > E2 > � � � > E8 and

�jðkÞ ¼
X
�

dj;�ðkÞj�i; ð5Þ

with � ¼ H1, H2, H3, H4, L1, L2, L3, and L4. The Dirac
point kD is obtained from E4ðkDÞ ¼ E5ðkDÞ � �ðkDÞ, which
gives a nodal line semimetal. The insulating state is obtained
for EG ≠ 0 due to a half-filled band, where EG �
min½E4ðkÞ � E5ðkÞ� for all k.

Using d�� in Eq. (5), the electric conductivity per spin and
per unit cell is calculated as13,14)

��ðTÞ ¼
Z 1

�1
d! � @fð!Þ

@!

� �
F�ð!Þ; ð6Þ

F�ð!Þ ¼ e2

�ħN

X
k

X
�;�0

v���0 ðkÞ�v��0�ðkÞ

� �

ð! � 	k�0 Þ2 þ �2
� �

ð! � 	k�Þ2 þ �2
; ð7Þ

v���0 ðkÞ ¼
X
��

d��ðkÞ� @
~H��

@k�
d��0 ðkÞ; ð8Þ

where � ¼ x, y, and z and h ¼ 2�ħ. h and e denote the
Planck constant and electric charge, respectively. 	k� ¼
E�ðkÞ � 
 and μ denotes the chemical potential. fð!Þ ¼ 1=
ðexp½!=T� þ 1Þ with T being the temperature in the unit of
eV and kB ¼ 1. The conductivity at absolute zero temperature
was examined previously by noting that ��ð0Þ ¼ F�ð0Þ.14)
The energy Γ due to the impurity scattering is introduced to
obtain a finite conductivity. The total number of lattice sites
is given by N ¼ NxNyNz, where NxNy is the number of
intralayer sites and Nz is the number of layers. Note that the
calculation of Eq. (6) with the summation of kz at the end,
i.e., the two-dimensional conductivity for a fixed kz, is useful
to comprehend the nodal line semimetal as shown pre-
viously.14)

The chemical potential 
 ¼ 
ðTÞ is determined self-
consistently in the clean limit from

1

N

X
k

X
�

fðE�ðkÞ � 
ðTÞÞ ¼
Z 1

�1
d!Dð!Þ fð!Þ ¼ 4; ð9Þ

which is the half-filled condition due to the HOMO and
LUMO bands. Dð!Þ denotes the density of states (DOS) per
spin and per unit cell, which is given by

Dð!Þ ¼ 1

N

X
k

X
�

�ð! � E�ðkÞ þ 
Þ; ð10Þ

where
R
d!Dð!Þ ¼ 8. Note that Eq. (6) can be understood

using the DOS when the intraband contribution (� ¼ � 0) is
dominant and the k dependence of v��0� is small.

3. Conductivity and Resistivity of Nodal Line Semimetal
in [Pd(dddt)2]

The electronic states of [Pd(dddt)2] obtained from the
tight-binding model show the following pressure (PGPa)
dependence. At ambient pressure (P ¼ 0), the insulating state
is found with a gap Eg ’ 0:41 (eV) at k ¼ ð0; 0; 0Þ, which
separates the LUMO bands (E1; . . . ; E4) from the HOMO
bands (E5; . . . ; E8). With increasing P, the gap decreases and

Table I. Transfer energies for P ¼ 8 and 0GPa in the unit of eV. b1, p1, and q1 (b2, p2, and q2) are the energies of layer 1 (layer 2), where p1H ¼ p2H ¼ pH,
q1H ¼ q2H ¼ qH, p1L ¼ p2L ¼ pL, and q1L ¼ q2L ¼ qL.

P ¼ 8 a b1 b2 c p1 p2 q1 q2

H −0.0345 0.2040 0.0762 0.0118 0.0398 0.0398 0.0247 0.0247
L 0 0.0648 −0.0413 −0.0167 0.0205 0.0205 0.0148 0.0148
HL 0.0260 0.0219 −0.0531 0.0218 −0.0275 −0.0293 −0.0186 −0.0191

P ¼ 0 a b1 b2 c p1 p2 q1 q2

H −0.0136 0.112 0.0647 0 0.0102 0.0102 0.0067 0.0067
L −0.0049 0.0198 0 −0.0031 0.0049 0.0049 0.0037 0.0037
HL 0.0104 0.0214 −0.0219 0.0040 −0.0067 −0.0074 −0.0048 −0.0051
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becomes zero at P ’ 7:58, where the Dirac point given by
E4ðkÞ ¼ E5ðkÞ emerges at k ¼ 0. For P > 7:58, the minimum
of the LUMO band at k ¼ 0 becomes smaller than the
maximum of the HOMO band at k ¼ 0, resulting in the
following state. As shown by the effective Hamiltonian on
the basis of the HOMO and LUMO orbitals,9) a loop of the
Dirac point between E4ðkÞ (conduction band) and E5ðkÞ
(valence band) emerges at the intersection of the plane
of E4ðkÞ ¼ E5ðkÞ and that of the vanishing of the H–L
interaction (the coupling between HOMO and LUMO
orbitals).3,9) This loop gives a semimetallic state since the
chemical potential is located on a Dirac point of the loop due
to a half-filled band. For 7:58 < P < 7:8, the loop exists
within the first Brillouin zone (as shown by the inner loop
of Fig. 1). In this case, a gap for the fixed kz exists at
k ¼ ð0; 0; �Þ but is absent at k ¼ ð0; 0; 0Þ. In fact, with
decreasing kz from π, the gap at k ¼ ð0; 0; kzÞ given by
E4ð0; 0; kzÞ � E5ð0; 0; kzÞ decreases and becomes zero at
kz=� ’ 0:55 in the case of P ¼ 7:7. Such a gap is character-
istic for the loop (i.e., nodal line) within the first Brillouin
zone. For P > 7:8, the loop exists in the extended zone (as
shown by the outer loop of Fig. 1), and the gap is absent for
arbitrary kz. Such a gap for 7:57 < P < 7:8 could give rise
to novel behavior in the temperature dependence of the
conductivity as shown below.

Figure 1 depicts the nodal line of the loop of the Dirac
point in the three-dimensional momentum space k ¼ ðkx;
ky; kzÞ for P ¼ 7:7 and 8, where P ¼ 8 corresponds to the
pressure in the experiment displaying almost constant
resistivity.3) In the previous work for P ¼ 8,14) it was shown
that the Dirac cone is anisotropic, the ratio of the velocity was
estimated as vx : vy : vz ’ 1 : 5 : 0:2, and that the conduc-
tivity �x is always relevant to a two-dimensional Dirac cone
rotating along the loop. Thus, we mainly study �x as a typical
conductivity in the nodal line system. Note that the
semimetallic state is obtained since the chemical potential
exists on the loop due to a half-filled band, for example, μ
(¼ 0:5561) is located on the loop with jkz=�j ¼ 0:65 for
P ¼ 8. In fact, �D depends slightly on kz to form an energy
dispersion �DðkzÞ with a width of ’0:003. Further, we note
that the loop is not coplanar, which is characteristic of the
nodal line of the present system. We take e ¼ ħ ¼ 1 in the
following calculation.

The conductivity is determined by F�ð!Þ (� ¼ x, y, and z)
of Eq. (7), which is shown in Fig. 2 for P ¼ 8 and � ¼
0:001. There are two peaks in Fx, where the difference in

magnitudes of F� originates from the factor v���0 ðkÞ in Eq. (8).
These peaks correspond to the top of the HOMO band for
! > 0 and the bottom of the LUMO band for ! < 0. This
can be seen from the DOS given by Eq. (10), shown in the
inset for P ¼ 8 and 7.7, where the two peaks for ! > 0 and
! < 0 come from the properties of the band edges of the
HOMO and LUMO, respectively. Since the band around the
edge is strongly quasi-one-dimensional along the ky direc-
tion, the peak is associated with the van Hove singularities
of the quasi-one-dimensional band. The linear dependence
around ! ¼ 0 in the DOS is due to the Dirac cone, and
Dð0Þ ≠ 0 originates from the semimetallic state of the nodal
line. The behavior of the Dirac electron is found for
j!j < 0:005 eV, implying that the T dependence of the
conductivity for the Dirac electron is also expected for
T < 0:005. The DOS outside of the peak becomes small due
to the energy of the conventional band. The present
calculation is performed by choosing � ¼ 0:001, which
gives the following T dependence. The region 0 < T < 0:001
corresponds to the semimetallic state. The Dirac electron
gives constant behavior of �x as a function of T for
T < � ¼ 0:001, while T-linear dependence is expected in
the region of 0:001 < T < 0:005. For 0:005 < T, the
conductivity is determined by the effect of the energy band
outside of the Dirac cone.

Figure 3 shows �� (� ¼ x, y, and z) as a function of T for
P ¼ 8. The inset denotes the T dependence of 
ðTÞ, which
decreases monotonically, e.g., 
ð0Þ � 
ðTÞ � 0:003 at T ¼
0:01 for P ¼ 8. Although such a chemical potential is
replaced by an averaged one in the presence of a finite Γ, the
calculation of �� with a chemical potential in the clean limit
is reasonable for T much larger than Γ. Note that the T
dependence of �� originates from both fð!Þ in Eq. (6) and μ
in 	k� of Eq. (7). The anisotropy of �
 is large, where both �x
and �z exhibit a slight maximum but �y increases monoton-
ically with increasing T. Typical behavior of the Dirac cone is
seen for �x, which increases linearly at low temperatures. For
comparison, the intraband contribution � intra

x is shown by the
dot-dashed line, which is obtained for � ¼ � 0. The interband

Fig. 1. (Color online) Nodal line of Dirac point at P ¼ 7:7GPa (inner
loop) and 8.0GPa (outer loop). The former loop exists in the region of
jkz=�j < 0:55 while the latter loop extends for arbitrary jkz=�j. −0.02 −0.01 0 0.01

0

0.2

0.4

0.6

−0.02 −0.01 0 0.01
0

50

100

ω (eV)

D(ω)
(/eV) P=8

7.7

Γ=0.001

ω (eV)

Fα(ω)

Fx

Fy/10

10xFz

P=8

Fig. 2. Energy (ω) dependence of F� (� ¼ x, y, and z) for P ¼ 8 (GPa) and
� ¼ 0:001 (eV). The inset denotes the density of states (DOS) per spin for
P ¼ 8 (solid line) and 7.7 (dashed line). ! ¼ 0 corresponds to the chemical
potential at T ¼ 0, where 
ð0Þ ¼ 0:5560 and 0.5558 for P ¼ 8 and 7.7,
respectively.
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contribution is obtained by the difference between �x (solid
line) and � intra

x . The increase in �x as a function of T is
determined by the intraband contribution while �x close to
T ¼ 0 is determined by both intra- and interband contribu-
tions. Since the maximum of �x corresponds to that of Fxð!Þ
in Fig. 2, the maximum suggests a crossover from the Dirac
electron to the conventional electron. We also calculated �x
by fixing μ at T ¼ 0 to see the effect of the variation of μ on
the conductivity. Such �x is slightly smaller than that of the
solid line but is still located above the dot-dashed line in
Fig. 3. Thus, it turns out that the increase in �x at low
temperatures (0:005 > T > �) originates from a property of
the Dirac cone, and the almost T-independent �x at higher T
(> 0:005) is obtained due to the suppression of the effect of
the Dirac cone by the conventional band.

We note �xðTÞ at T ¼ 0 in the presence of both the Dirac
cone and the nodal line. Based on the previous calculation,18)

a simplified model of a Dirac cone with a chemical potential
~
 defined by an averaged j�ðkzÞj gives �xð0Þ ’ 1=ð2�2Þ þ
ð1=8�Þ ~
=�, where the first term corresponds to the universal
conductivity. Thus, the decrease in Γ gives the increase in
�xð0Þ, which is also verified numerically.

In Fig. 4, the T dependence of �x is examined for P ¼ 8,
7.7, 7.58, and 7.5. The inset shows the corresponding Fxð!Þ
at T ¼ 0. Compared with P ¼ 8, the nodal line for P ¼ 7:7 is
reduced as shown by the inner loop of Fig. 1, since a gap
exists on the kx–ky plane for a fixed kz with 0:55 <
jkz=�j 	 1. Thus, Fxð!Þ given by the dotted line in the inset
decreases for small j!j, leading to the suppression of �x
(dotted line) at low temperatures. This can also be seen from
the DOS (inset of Fig. 2). The linear increase in �x in the case
of P ¼ 8 diminishes and is replaced by pseudogap behavior.
For P ¼ 7:58, corresponding to the onset of the loop, the
pseudogap behavior is further enhanced, where the suppres-
sion becomes larger but �xð0Þ ≠ 0 still remains due to � ≠ 0.
For P ¼ 7:5, �x exhibits behavior expected in the insulating
state. The gap at k ¼ 0 is estimated as Eg ’ 0:004 from the
energy bands E4ðkÞ and E5ðkÞ. The effect of Γ still remains,
as seen from the inset, where Fxð!Þ ≠ 0 for 0:002 <
j!j < Eg and Fxð!Þ ’ 0 for j!j < 0:002. Note that �x of

the nodal line semimetal for P ¼ 7:7 and 7.58 is charac-
terized by such pseudogap behavior at lower temperatures in
addition to a slight maximum at higher temperatures.

Now we examine the behavior of �x for T < 0:005, which
corresponds to the region described by the Dirac cone.
Instead of �x, we calculate the resistivity, which is obtained
by �x ¼ 1=�x due to the off-diagonal element being much
smaller than the diagonal element.14) The T dependence of
logð�xÞ (base 10 logarithm) as a function of 1=T is shown in
Fig. 5 for P ¼ 8, 7.7, 7.58, and 7.5, the same values as in
Fig. 4. With decreasing P, the increase in logð�xÞ becomes
steep due to the reduction of Dð0Þ and the increase in the gap.
For P ¼ 7:5, behavior of the insulating state is seen, where
logð�xÞ / 1=T suggests an activation gap. With increasing P,
this gap decreases while the following characteristic appears
as a nodal line semimetal. The tangent of logð�xÞ, which is
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Fig. 4. T dependence of �x for � ¼ 0:001 with fixed P ¼ 7:5, 7.58, 7.7,
and 8, where the T dependence of 
ðTÞ in Fig. 3 is taken into account. The
inset denotes the corresponding FxðzÞ at T ¼ 0.
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constant for small 1=T, begins to decrease at 1=T ’ 0:5 �
103{1 � 103 (eV)−1 and slowly varies in the region where the
energy corresponds to the semimetal and Γ. Thus, there are
two regions (I) and (II). Gap behavior occurs in region (I)
given by 1=T < 0:5 � 103 (i.e., 0:002 < T < 0:005) while
semimetallic behavior occurs in region (II) given by 103 <
1=T (i.e., T < 0:001 ¼ �). We define the gap Δ by @ðlnð�Þ=
@ð1=TÞ in region (I). The gap Δ with some choices of P is
shown in the inset, which is estimated from the main figure in
Fig. 5 at 1=T ’ 0:005 (eV)−1 (T ’ 0:002). The dashed line
in the inset denotes the band gap EG, which is defined by
min½E4ðkÞ � E5ðkÞ� for arbitrary k. With increasing P, EG

(’ 0:041) at P ¼ 0 decreases linearly and becomes zero at
P ¼ 7:58. The gap Δ decreases as a function of P but
deviates from the P-linear dependence and remains finite
even at P ¼ 8. The gap Δ at P ¼ 7:5 corresponds well to EG,
while � ≠ 0 and EG ¼ 0 at P ¼ 7:58. For P ¼ 7:7, the gap Δ
in region (I) is further reduced. The metallic contribution in
region (II) originates from the nodal line, for jkz=�j < 0:55,
which is enhanced by Γ, as seen from FxðzÞ in the inset
of Fig. 4. Thus, pseudogap behavior is expected, i.e., the
coexistence of the semimetallic component jkz=�j < 0:55 and
the gap for jkz=�j > 0:55. For P ¼ 8, where the nodal line
exists for arbitrary kz, the crossover still exists but the
boundary between region (I) and region (II) is invisible.

Thus, such P dependence of the gap Δ shows a crossover
from the insulating gap to the pseudogap at P ’ 7:58.

Here we compare the present result of �x with that
observed in the experiment on [Pd(dddt)2], where the dc
resistivity was measured along the longest side of the crystal
(parallel to the a þ c direction).3) Figure 6(a), obtained from
Ref. 3, depicts the T dependence of ρ, where logð�Þ is shown
as a function of 1=T for several choices of P. These behaviors
are also classified into two cases. For small 1=T, the tangent
of logð�Þ as a function of 1=T is large [region (I)], whereas it
is small for large 1=T [region (II)]. The temperature which
separates region (I) from region (II) is about 30–50K for
P ¼ 8:5, 9.8, 10.5, and 12.6GPa. For P ¼ 4:2 and 6,6GPa, ρ
is observed only in region (I). The gap Eg, which is obtained
from the tangent in region (I), is shown in Fig. 6(b). Two
lines are drawn to guide the eye, where the line at lower
pressures indicates a band gap. The gap at higher pressures
exhibits a P dependence different from that at lower
pressures, suggesting a nontrivial origin. Figures 6(a) and
6(b) are compared with Fig. 5. The 1=T dependence of
logð�xÞ at P ¼ 12:6 in the former corresponds to that of P ¼ 8

in the latter. It is found that the crossover temperature between
region (I) and region (II) is comparable but the magnitude of
Eg in the experiment is much larger than Δ of the theory. The
cases for P ¼ 9:8 and 10.5GPa in Fig. 6(a) suggest a state
followed by the pseudogap of the nodal line semimetal.

4. Summary and Discussion

We have examined the temperature dependence of the
resistivity �x using the conductivity �x for Dirac electrons in
[Pd(dddt)2], which exhibits a nodal line semimetal. The main
results are as follows.

(i) For a pressure P ¼ 8 corresponding to the Dirac
electron observed in the experiment, a T-linear increase in
�xðTÞ is obtained at low temperatures, whereas �xðTÞ is
almost constant at high temperatures. The former originates
from the Dirac cone and the latter is due to the finite DOS of
the conventional band outside of the Dirac cone. The ratio
�xð0:001Þ=�xð0Þ ’ 2 obtained for � ¼ 0:001 is similar to that
in the experiment.3) Note that �x depends on Γ since the ratio
�xð0:001Þ=�xð0Þ is given by 3.1, 2.0, 1.4, and 0.87 for � ¼
0:0005, 0.001, 0.002, and 0.004, respectively, suggesting a
reasonable choice of � ¼ 0:001 to comprehend the results of
the experiment. (ii) With decreasing P, �x decreases due to
the decrease in the loop of the nodal line and the increase in
the gap, as seen from the calculation of �x for a fixed kz.14)

For P ¼ 7:7, the nodal line exists for kz=� < 0:55 and is
absent for 0:55 < kz=� 	 1. This gives pseudogap behavior
in �x since the former gives a semimetal and the latter gives a
gap. Such a magnitude of the gap Δ, which is estimated from
the tangent of the logð�Þ–1=T plot, is different from the band
gap EG and is characteristic of a nodal line semimetal close to
the insulating state. (iii) The calculation of �x using the tight-
binding model is compared with that obtained experimentally
and qualitatively good agreement is found. The experimental
results are understood as evidence of a nodal line semimetal,
where the loop of the Dirac point gives pseudogap behavior
depending on the pressure.

We discuss the agreement between the experiment and
theory. Our tight-binding model with the transfer energies
well qualitatively describes the pressure and temperature

(a)

(b)

Fig. 6. (Color online) (a) logð�Þ as a function of 1=T, which is taken from
Ref. 3, at P ¼ 4:2, 6.6, 8.5, 9.8, 10.5, and 12.6GPa, where units are ρ (Ω cm)
and T (K). (b) P dependence of Eg in the unit of meV, which is obtained from
the tangent of (a) for T > 50K, where the lines are a guide to the eye.
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dependence of the conductivity, but the determination of the
absolute value is beyond the present scheme due to the
Hückel approximation. For further comparison, it will be
useful to observe the resistivity perpendicular to the present
direction corresponding to the longest size of the crystal since
large anisotropy is predicted by the theory.

In addition to the energy band, the topological property of
the wave function given by the Berry phase19) is important
for understanding the Dirac nodal line. The Berry curvature
of two-dimensional Dirac electrons shows a peak around the
Dirac point, which also occurs for graphene and organic
conductors.20,21) However, that of the nodal line is compli-
cated due to the three-dimensional behavior, where the
direction of the curvature rotates along the line. The Berry
phase with a component parallel to the magnetic field could
contribute to observe the Hall conductivity, which is
expected to be different from that in two dimensions.1,22)
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Appendix: Matrix Elements of Hamiltonian

We show explicitly the real matrix obtained from ĤðkÞ in
Ref. 9 using a unitary transformation given by ðUĤU�1Þij ¼
hi;j, where U has only the diagonal matrix elements given
by ðUÞ11 ¼ �i, ðUÞ22 ¼ �ie�iðxþyþzÞ=2, ðUÞ33 ¼ �ie�iðxþyÞ=2,
ðUÞ44 ¼ �ieiz=2, ðUÞ55 ¼ 1, ðUÞ66 ¼ e�iðxþyþzÞ=2, ðUÞ77 ¼
e�iðxþyÞ=2, and ðUÞ88 ¼ eiz=2 with x ¼ kx, y ¼ ky, and z ¼ kz.
Since the symmetry of the HOMO (LUMO) is odd (even)
with respect to the Pd atom, the matrix elements of H–L (hi;j
with i ¼ 1; . . . ; 4, and j ¼ 5; . . . ; 8) are odd functions with
respect to k, i.e., antisymmetric at the time-reversal-invariant
momentum.

The real matrix elements hij (i; j ¼ 1; . . . ; 8) are shown in
Table A·I, where the matrix elements of hi;j are divided into
the 4 � 4 matrices, hH;H, hH;L, hL;L corresponding to the
H–H, H–L, and L–L components, respectively. The functions
in Table A·I are defined by cða; bÞ ¼ 2a cosðb=2Þ, sða; bÞ ¼
2a sinðb=2Þ, c1ðaÞ ¼ cða; x þ yÞ þ cða; x � yÞ, s1ðaÞ ¼
sða1HL; x þ yÞ þ sða2HL; x � yÞ, and s2ðaÞ ¼ sða1HL; x � yÞ þ
sða2HL; x þ yÞ with x ¼ kx, y ¼ ky, and z ¼ kz, where �
denotes hj;i ¼ hi;j.
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Table A·I. Matrix elements of real Hamiltonian hi; j.

hH;H H1 H2 H3 H4

H1 cðb1H; 2yÞ cðaH; x þ y þ zÞ c1ðpHÞ cðcH; zÞ
H2 � cðb2H; 2yÞ cðcH; zÞ c1ðqHÞ
H3 � � cðb1H; 2yÞ cðaH; x � y þ zÞ
H4 � � � cðb2H; 2yÞ

hH;L L1 L2 L3 L4

H1 sðb1HL; 2yÞ 0 s1ðpÞ 0
H2 �sðaHL; x þ y þ zÞ sðb2HL; 2yÞ �sðcHL; 2y þ zÞ s2ðqÞ
H3 �s2ðpÞ 0 sðb1HL; 2yÞ 0
H4 �sðcHL; 2y � zÞ �s1ðqÞ sðaHL; x � y þ zÞ sðb2HL; 2yÞ

hL;L L1 L2 L3 L4

L1 �E þ cðb1L; 2yÞ cðaL; x þ y þ zÞ c1ðpLÞ cðcL; 2y � zÞ
L2 � �E þ cðb2L; 2yÞ cðcL; 2y þ zÞ c1ðqLÞ
L3 � � �E þ cðb1L; 2yÞ cðaL; x � y þ zÞ
L4 � � � �E þ cðb2L; 2yÞ
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