P09

Aperiodic Shubnikov de Haas Oscillations in \(\alpha\)-(BEDT-TTF)\(_2\)I\(_3\)

P. Auban-Senzier\(^1\), E. Tisserond\(^1\), B. Piot\(^2\), J. N. Fuchs\(^{1,3}\), M. O. Goerbig\(^1\), C. Mézière\(^4\), P. Batail\(^4\), Y. Kawasugi\(^5\), M. Suda\(^6\), H. M. Yamamoto\(^6\), R. Kato\(^5\), N. Tajima\(^{5,6,7}\), M. Monteverde\(^1\)

\(^1\) Laboratoire de Physique des Solides, CNRS UMR8502 - Université Paris-Sud, 91405 Orsay cedex, France, e-mail: pascale.senzier@u-psud.fr
\(^2\) Laboratoire National des Champs Magnétiques Intenses CNRS, 25 rue des Martyrs BP166 38042 Grenoble cedex 9, France
\(^3\) Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600 - Université Pierre et Marie Curie 4 Place Jussieu, 75252 Paris cedex 05, France
\(^4\) MOLTECH-Anjou, CNRS UMR 6200 - Université d’Angers, 49045 Angers cedex, France
\(^5\) RIKEN - Hirosawa 2-1, Wako, Saitama 351-0198, Japan
\(^6\) Institute for Molecular Science - Okazaki, Aichi 444-8585, Japan
\(^7\) Department of Physics, Toho University - Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan

We report Shubnikov de Haas oscillations (SdH) in the organic metal \(\alpha\)-(BEDT-TTF)\(_2\)I\(_3\) under hydrostatic pressure up to 30T. Under the studied pressure of 2.2GPa, this quasi-2D electron system consists of Dirac fermions in coexistence with massive carriers \([1]\). Below 7T, SdH oscillations are periodic as a function of the inverse of the magnetic field and the origin intercept related to the Berry phase indicates that Dirac fermions are the involved carriers. However, above 7T, we find a clear increase of the frequency of the SdH oscillations implying a negative curvature in the Landau plot (figure 1, left). We interpret these unusual results within a theoretical model that takes into account an intrinsic distortion of the \(\alpha\)-(BEDT-TTF)\(_2\)I\(_3\) Dirac cones. This distortion, which is an asymmetric particle-hole parabolic correction (figure 1 right), is found to be independent of the Fermi level of the measured crystals \([2]\).

Fig. 1. left: Landau graph of the SdH oscillations in several crystals of \(\alpha\)-(BEDT-TTF)\(_2\)I\(_3\) (index \(n \) plotted versus the inverse magnetic field). The continuous line is the fit with the phenomenological model of distorted Dirac cones. right: Dirac cones with linear dispersion \((m=0)\) and distorted Dirac cones \((m>0)\).

References