Recent Progress on the issue of Neutral-Ionic Transition
in Charge-Transfer Complexes

R. Takehara1, K. Sunami1, F. Iwase1, M. Hosoda1, T. Nishikawa1, K. Miyagawa1, T. Miyamoto2, H. Okamoto2, R. Kato3, S. Horiuchi4 and K. Kanoda1

1Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
2Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561, Japan
3Condensed Molecular Materials Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
4Flexible Electronic Research Center, AIST, Tsukuba, Ibaraki, 305-8565, Japan

We revisit the long standing issue, neutral-ionic transition, in terms of conductivity and magnetism in the light of electronic ferroelectricity stemming from charge transfer coupled with lattice symmetry breaking. Investigating a quasi-one-dimensional organic ferroelectric TTF-QCl$_4$ by nuclear quadrupole resonance (NQR) under pressure, we reveal a renewed pressure-temperature phase diagram, where charge-transfer instability and lattice symmetry breaking (dimerization), which occur coincidentally below 8.5 kbar, are separated at higher pressures. Above the bifurcation point, we observed a huge enhancement of electrical conductivity with highly one-dimensional nature around the charge-transfer crossover line, which is attributed to excitations of topological charges associated with neutral-ionic domain walls. In a pressure-temperature region between the charge-transfer crossover line and the dimerization transition line, NQR and nuclear magnetic resonance (NMR) experiments found that the lattice dimerization is not long-range ordered but forms a dimer liquid and that spin excitations, which violate non-magnetic ferroelectric order, are solitonic. The present results demonstrate that strong coupling between charge and lattice degrees of freedom in one dimension brings about emergent charge/spin excitations with topological natures at low energies. In the workshop, we also report on the observation of gigantic quantum critical fluctuations in the antiferroelectric DMTTF-QBr$_4$.

[3] K. Sunami et al., submitted