Quantum Spin Liquids Reveal the Dynamics of Pristine Mott Insulators

Andrzej Pustogow1, Mathias Bories1, Miriam Sanz Alonso1, Elena Zhukova1,2,3, Boris Gorshunov1,2,3, John Schlüter4, Anja Löhle1, Ralph Hübner1,5, Yukihiro Yoshida6, Takahaki Hiramatsu6, Gunzi Saito6,7, Yohei Saito1,8, Atsushi Kawamoto8, Reizo Kato9, Simone Fratini10, Tsung-Han Lee11 and Vladimir Dobrosavljevic11, Martin Dressel1

11. Physikalisches Institut, Universität Stuttgart, Germany
2 A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia
3 Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
4 Material Science Division, Argonne National Laboratory, Argonne, Illinois, U.S.A.
5 Inst. Functional Matter and Quantum Techn., Universität Stuttgart, Germany
6 Faculty of Agriculture, Meijo University, Nagoya, Japan
7 Toyota Physical and Chemical Research Institute, Nagakute, Japan
8 Division of Physics, School of Sciences, Hokkaido University, Sapporo, Japan
9 Condensed Molecular Materials Laboratory, RIKEN, Japan
10 Institut Néel - CNRS and Université Grenoble Alpes, France
11 Dep. Physics and Nat. High Magnetic Field Laboratory, Florida State University, Tallahassee, U.S.A.

Email: dressel@pi1.physik.uni-stuttgart.de

In Mott insulators strong electronic interactions prevent the metallic state. As a paradigm of correlated electron systems, the Mott insulating state is under scrutiny theoretically for more than half a century. Still, the low-temperature behavior evaded experimental exploration because it is typically concealed by an antiferromagnetic phase. In quantum spin liquids, however, no magnetic order is reached, offering the unique possibility to elucidate the pristine Mott state. Here we explore the electrodynamic response of three organic quantum spin liquids with different degrees of effective correlation and frustration. The low-frequency behavior strongly depends on the position in the temperature-pressure phase diagram. In particular in the vicinity of the quantum critical point, metallic fluctuations can be identified at low temperatures. Combining our optical data with pressure-dependent transport studies and theoretical calculations, we can construct a universal phase diagram of the correlation-controlled Mott insulator.

We present comprehensive optical and transport investigations on several organic Mott insulators, which do not order magnetically down to lowest temperatures and thus are considered as prime examples of quantum spin liquids, such as on β′-EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3, and κ-(BEDT-TTF)2Cu2(CN)3. In addition, we tune through the phase diagram applying chemical pressure via κ-(BEDT-TTF)xBEDT-STFx2Cu2(CN)3 with 0 ≤ x ≤ 1, and compare our findings with Mott insulators that undergo magnetic order at low temperatures. Finally, we discuss the importance of disorder on the electronic properties as well as on the superconducting and spin liquid states.