Anomalous antiferromagnetic resonance of λ-(BETS)$_2$FeCl$_4$ in antiferromagnetic insulating phase

T. H. Lee$^{A, B}$, Y. Oshima$^{A, B}$, H.-B. CuiB and R. KatoB

AHokkaido Univ., BRIKEN

The π-d molecular conductor λ-(BETS)$_2$FeCl$_4$ consists of the conducting π-electrons in BETS molecules and the magnetic d-electrons in FeCl$_4^-$, Thanks to the strong interaction between π- and d-electrons, λ-(BETS)$_2$FeCl$_4$ has a fascinating temperature(T)–magnetic field(B) phase diagram including a paramagnetic metal phase, an antiferromagnetic insulating (AFI) phase and a field-induced superconducting phase [1-2]. However, the ground state of the AFI phase is still under debate [2]. It was previously believed that the AFI phase is due to the antiferromagnetic long-range order of the d-electrons. However, recent heat capacity measurement observed a Schottky anomaly below T_N, and its origin was explained from the contribution of paramagnetic d-electrons. This suggests that the d-electron remains paramagnetic below T_N, and only the π-electron becomes antiferromagnetic and localized [3]. Nevertheless, this explanation is not consistent with the existence of strong π-d interaction, and contradicts with previous electron spin resonance (ESR) studies [4-6]. In addition, anomalous dielectric behavior due to the metastable state of the π-electrons was reported for the AFI phase [4]. Hence, to have a more microscopic information of the AFI phase, we are studying λ-(BETS)$_2$FeCl$_4$ using ESR spectroscopy.

We previously presented [7] that the easy-axis of λ-(BETS)$_2$FeCl$_4$ is changing with temperature. In order to study the relation between the change of the easy-axis and the external field, we have investigated the field-dependence of antiferromagnetic resonance (AFMR) using high-field ESR spectroscopy. When the magnetic field is applied parallel to the easy-axis, the easy-axis mode of AFMR is observed below 5 T, however, the easy-axis mode of AFMR changes to the hard-axis mode of AFMR above 5 T as shown Fig. 1 (conventional AFMR mode is shown in the inset of Fig.1). This suggests the change of the easy-axis occurs above 5 T. In addition, the change of permittivity was reported around 4–6 T [4], which suggests that the magnetic properties of λ-(BETS)$_2$FeCl$_4$ should be strongly connected with the electronic state of the π-electrons. Therefore, the change of the easy-axis is supposed to be due to the metastable state of the π-electrons. Moreover, splitting of AFMR signals is observed above 5,9 T (as shown Fig.1), this behavior suggests two different environments of Fe spins exist.

[7] T. H. Lee et al., 72nd Annual JPS meeting, 17aC21-4, March 17-20 2017

Fig. 1: Frequency-field dependence of AFMR (B//easy-axis, $T = 2$ K) The inset shows frequency-field dependence of conventional AFMR