First-principles study of molecular-based spin liquid materials: $X[\text{Pd(dmit)}_2]_2$ and κ-H/D$_3$(Cat-EDT-TTF/ST)$_2$

T. Tsumuraya1, H. Seo2,3, M. Tsuchiizu4, R. Kato2, and T. Miyazaki1

1National Institute for Materials Science, Japan
2RIKEN, Japan
3Center for Emergent Matter Science, RIKEN, Japan
4Department of Physics, Nagoya University, Japan

We theoretically study two classes of quasi-two-dimensional molecular conductors, β'-$X[\text{Pd(dmit)}_2]_2$ and κ-H/D$_3$(Cat-EDT-TTF/ST)$_2$. In their Mott insulating phase with localized $S = 1/2$ spins, some members show quantum spin liquid (QSL) behavior, while others show various ground states including those under pressure. Therefore it is important to seek for a systematic view among different members.

The family of β'-$X[\text{Pd(dmit)}_2]_2$ ($X = \text{Et}_y\text{Me}_4-Z, y = 0, 1, 2, \text{Et} = \text{C}_2\text{H}_5, \text{Me} = \text{CH}_3, \text{and } Z = \text{P}, \text{As}, \text{and Sb}$), show various ground states depending on X such as antiferromagnetic state, QSL, charge ordering states [1]. We performed a systematic study of their electronic structures by first-principles density functional theory (DFT) calculations [2]. The parameters of the effective dimer model are discussed in relation with the QSL state in $X = \text{EtMe}_3\text{Sb}$. We also show that the recent analysis using the tight-binding model where fragments of molecular orbital are taken as basis functions can analyze the multi-orbital nature of this system [3].

In κ-H$_3$(Cat-EDT-TTF)$_2$, every two H(Cat-EDT-TTF) units share a hydrogen (H) atom with a short O-H-O hydrogen bond [4]. It shows a Mott insulating state and is considered as a QSL candidate; its selenophene analog, Cat-EDT-ST, and deuterated materials are also synthesized and show different properties [4]. We performed first-principles DFT calculations, and found a stable H-localized structure (different from the experimentally determined one), where charge disproportionation occurs between the two types of H(Cat-EDT-TTF) units [5]. We compare relative stabilities between this H-localized state and experimentally-determined deutrium localized structure found in the deuterated sample [4].