μSR study of quasi two-dimensional \(S = 1/2 \) triangular antiferromagnet, \(\text{EtMe}_3\text{Sb}[\text{Pd(dmit)}_2]_2 \)

Y. Ishii, F. Pratt, I. Watanabe, T. Suzuki, R. Kato

1Shibaura Institute of Technology, Department of Physics, College of Engineering, Saitama-city, Saitama, Japan;
2Rutherford Appleton Laboratory, ISIS Facility, Didcot, Great Britain;
3RIKEN, Advanced Meson Science Laboratory, Wako, Saitama, Japan;
4RIKEN, Condensed Molecular Materials Laboratory, Wako, Saitama, Japan

Magnetic ground states of quasi-two-dimensional (Q2D) triangular Heisenberg antiferromagnetic (AF) systems are of great interest. Magnetic frustration arising from the triangular exchange network suppresses the AF order. This kind of quantum-spin states without either long-range magnetic order or lattice symmetry breaking is named quantum spin liquid (QSL) state. Although experimentalist have sought real model materials with QSL state for quite some time, only a few candidate materials are known to this date. Recently, we have performed longitudinal field (LF) μSR measurements on a QSL candidate, \(\text{EtMe}_3\text{Sb}[\text{Pd(dmit)}_2]_2 \) which do not show any AF order due to strong spin frustrations[1]. Preliminary analysis suggest that magnetic field \(H_{\text{ext}} \) dependence of muon relaxation rate, \(\lambda \) is proportional to \(H_{\text{ext}}^{-1/2} \) behavior in a field range of \(0.1 \leq \mu_0 H_{\text{ext}} \leq 100 \text{ mT} \) at low-temperatures. Such a behavior is expected from spins diffusing along a one-dimensional direction (see figure).

![Figure 1: Magnetic-field-dependent \(\lambda \) of \(\text{EtMe}_3\text{Sb}[\text{Pd(dmit)}_2]_2 \) measured at 28 mK. The lines are best-fit curves for 1D(solid) and 2D(dashed) models.](image)