Electronic state of metal-insulator transition in λ-BETS$_2$FeCl$_4$ under magnetic field

S. Sugiura, K. Shimada, N. Tajima, K. Kajita, Y. Nishio
R. Katoa, H. Kobayashib and A. Kobayashib

Department of Physics, Toho University, Chiba, 274-8510, Japan
a Condensed Molecular Materials Lab. RIKEN, Saitama, 351-0198, Japan
b Department of Humanities and Sciences, Nihon University, Tokyo 156-8550, Japan

sugi4ura4sho4@gmail.com

A magnetic organic conductor λ-BETS$_2$FeCl$_4$ (BETS = bis (ethylenendithio) tetraselenafulvalene) exhibits the metal-insulator (M-I) transition combining with the magnetic ordering [1]. Schottky-type of specific heat in weak magnetic field of antiferromagnetic insulator (AFI) phase and a large linear specific heat in magnetic field induced metal (M) phase were observed. We studied the transport properties of π conduction electron varying the magnetic field. A figure shows that the temperature dependence of the resistivity. As increasing the magnetic field, M-I transition temperature (T_{MI}) and increasing resistivity derived from M-I transition do not show the noticeable changes up to 3 T. Above 3 T, T_{MI} starts to go down, nevertheless the clearly changes in increase of resistivity can’t be observed. We discuss the mechanism of the M-I transition comparing this transports properties of π electron with the Schottky-type specific heat caused by 3d spin.

Temperature dependence of the resistivity of λ-BETS$_2$FeCl$_4$ as a function of magnetic field.