Frustrated Mott System on the Quasi-Triangular Lattice, Pd(dmit)$_2$ Salts; A First-Principles Study

Takao Tsumurayaa,b, Tsuyoshi Miyazakib, Hitoshi Seoa,c and Reizo Katoa

a RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
b National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki, 305-0047, Japan
c JST, CREST, Wako, Saitama, 351-0198, Japan

E-mail: tsumu@riken.jp

Electron correlation and spin frustration on the triangular lattice have attracted much attention recently. A series of molecular crystals, β'-type X[Pd(dmit)$_2$]$_2$ display a rich variety of electronic and magnetic properties [X is a monovalent cation, Et$_y$Me$_{4-y}$Z, where $y = 0, 1, 2$, Me = CH$_3$, Et = C$_2$H$_5$, Z = P, As and Sb, and dmit denotes 1,3-dithiol-2-thione-4,5-dithiolate]. At ambient pressure, most of the β'-Pd(dmit)$_2$ salts are Mott insulators associated with a half-filling band coming from the strong dimerization of Pd(dmit)$_2$ molecules. Their magnetic properties depend strongly on the choice of cation; EtMe$_3$Sb salt shows a quantum spin liquid (QSL) state, Et$_2$Me$_2$P salt has a valence bond solid state, Et$_2$Me$_2$Sb salt shows a non-magnetic charge ordering state and others exhibit antiferromagnetic ordering. Previous studies based on extended Hückel tight-binding calculations concluded that the rich variety of the spin configurations arises from the anisotropy of the triangular networks of the dimers, [Pd(dmit)$_2$]$_2$, in terms of a frustration parameter, i.e., the ratio of inter-dimer transfer integrals t'/t (as defined in Figure). In the present study, to understand the relation between intrinsic magnetic properties and electronic structures, we performed first-principles density-functional theory calculations for β'-X[Pd(dmit)$_2$]$_2$ with different kinds of cations, and found noticeable differences in band width and anisotropy of Fermi surface. Furthermore, frustration parameters are derived from an effective dimer model determined by a numerical fitting to the first-principles band structures near the Fermi level. The differences in the band widths and Fermi surfaces have a tendency which is related to t'/t. We also found that t'/t for EtMe$_3$Sb salt, which shows a QSL state, is 0.97, close to the maximum level of spin frustration.

![Image of a graph showing the relation between band width (W) and frustration parameter (t'/t). Open circles indicate t'/t value calculated by Hückel method based on HOMO of Pd(dmit)$_2$; Solid circles indicate t'/t value obtained by a numerical fitting to the first principles bands.]

Takao Tsumuraya

University Education:
PhD; 2009, Hiroshima University, Japan

Professional Career:
JSPS Young Researcher: 2008-2009 Hiroshima University, Japan
Post-Doc: 2009-2011 Northwestern University, Evanston, IL, USA
2011- RIKEN, Wako, Saitama, Japan