13C NMR study of the Zero-gap state in α-(BEDT-TTF)$_2$I$_3$ under pressure

Y. Takada1, Y. Takano1, K. Hiraki1 H. M. Yamamoto2 T. Takahashi1

1Department of Physics, Gakushuin University, Japan
2Condensed Molecular Materials, RIKEN, Japan
Email: 10141006@gakushuin.ac.jp

The title material had recently been confirmed to be in a Zero-gap state (ZGS) with a Dirac-cone type dispersion relation for a massless fermion by theoretical analysis [1,2]. Experimental evidences for ZGS have been accumulated by precise transport measurements [3]. We performed 13C NMR study at 1.1GPa [5] and found the local susceptibility becomes quite different from molecule to molecule in the unit cell as approaching the ZGS under pressure. We experimentally confirmed that the most/least charged site, the B/C-molecule, carries the smallest/largest local susceptibility. This is considered as due to the nature of 'tilted' ZGS, since theoretical calculations [4] well agree with our observation. We also confirmed a linear temperature dependence of susceptibility at low temperatures, which is characteristic for the ZGS and consistent with the theory [4].

The pressure of 1.1 GPa was not high enough to stabilize the ZGS below 50 K. In the present study, we have carried out 13C NMR measurements under pressure of 1.8GPa, which stabilizes the ZGS at low temperatures. We used a single crystal of 10%-13C enriched ET$_2$I$_3$ salt, in which the determination of local susceptibilities and the analysis of electronic properties became straightforward because of the absence of nuclear dipolar interactions.