Low-Temperature Heat Capacities of the Quantum Spin Liquid States in Organic Mott Insulators

1Department of Chemistry, Graduate school of Science, Osaka University, Japan. e-mail: sayamash@chem.sci.osaka-u.ac.jp
2Department of Applied Physics, Graduate School of Engineering, the University of Tokyo, Japan.
3Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Japan.
4Condensed Molecular Materials Lab., RIKEN, Japan.

Quantum spin-liquid states were great interested due to their peculiar quantum characters and the relation to high-T_c superconductivity. In the organic Mott insulators κ-(ET)$_2$Cu$_2$(CN)$_3$ and EtMe$_3$Sb[Pd(dmit)$_2$]$_2$, the NMR and magnetic studies did not detect any long-range ordering and spin glass behavior [1,2]. Our previous works reported the evidence realization of the quantum spin liquid state with the gapless excitation and unexpected thermal anomalies in these materials [3].

In this work, we have performed heat capacity measurements for d_8-EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ and κ-(d$_8$:ET)$_2$Cu$_2$(CN)$_3$ at low temperatures in order to investigate the influence of chemical pressures in quantum spin-liquid states. As a result, we found the significant change of the heat capacity due to the chemical pressure in EtMe$_3$Sb[Pd(dmit)$_2$]$_2$. This fact suggests the sensitivity of the quantum spin liquid state in the Pd(dmit)$_2$ system.