Magnetic and Thermal Properties of Antiferromagnetic Insulator λ-(BETS)$_2$FeCl$_4$

H. Akiba,1 K. Nobori1, Y. Nishio1, K. Kajita1, R. Kato2, B. Zhou3, A. Kobayashi1 and H. Kobayashi3

1Department of Physics, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba, Japan
2Condensed Molecular Materials Lab., Riken, 2-1 Hirosawa, Wako-shi, Saitama, Japan
3Department of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, Japan

An organic field-induced superconductor λ-(BETS)$_2$FeCl$_4$ exhibits a new type of phase transition from a paramagnetic metal (PM) to an antiferromagnetic insulator (AFI) at $T_M \sim 8\text{K}$ at zero magnetic field [1]. Recently, from the specific heat measurement, a novel π-d spin structure model below T_M was proposed [2]. In this model, the Fe 3d high spins maintain the paramagnetic states even at the lowest studied temperature 0.2 K, whereas the π electrons are localized and form the AF spin configuration at T_M. The effective field on the 3d spin due to the AF π spin can be estimated from the Zeeman splitting of the 3d spin. On the basis of the analysis, we investigated the angular dependence (anisotropy) of the specific heat and magnetization on the applied magnetic field to discuss about the role of Fe 3d spin on AFI ground state.