## Effect of Pressure on Conductive Anion-Radical Salt, (DMe-DCNQI)<sub>2</sub>Cu

Y. Ishii<sup>1</sup>, I. Watanabe<sup>1</sup>, T. Suzuki<sup>1</sup>, T. Kawamata<sup>1</sup>, T. Matsuzaki<sup>1</sup> and R. Kato<sup>2</sup>

<sup>1</sup>Advanced Meson Science Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan.

<sup>2</sup>Condensed Molecular Materials Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan.

A series of anion radical salts,  $(DCNQI)_2Cu$ , where DCNQI is *N*,*N*-dicyanoquinonediimine, have been extensively investigated because of their peculiar physical phenomena such as heavy-fermion-like behavior and the Metal-Insulator transition [1]. The hybridization between the wide  $1D 2p\pi$  bands and the narrow 3*d* bands is a key factor in understanding electronic properties of these systems.

One of these salts, (DMe-DCNQI)<sub>2</sub>Cu, (DMe-DCNQI = 2,5-dimethyl-DCNQI) has an unusual pressure-temperature (*P*-*T*) phase diagram (Fig. 1). At ambient pressure, this material shows metallic behavior down to 450 mK. Peculiar to (DMe-DCNQI)<sub>2</sub>Cu, an insulating phase is induced by the application of pressure higher than 100 bar [2]. This unusual *P*-*T* phase diagram can be reproduced by the *chemical pressure effect* using selectively deuterated compounds [3]. The fully deuterated sample of (DMe-DCNQI)<sub>2</sub>Cu, in which the chemical pressure corresponds to 512 bar, exhibits the antiferromagnetic ordering below 8 K [4].

Recently, we have developed a high-pressure  $\mu$ SR setup for the RIKEN-RAL Muon Facility and successfully observed a sign of magnetic ordering of (DMe-DCNQI)<sub>2</sub>Cu under 500 bar by means of the high-pressure setup. In this presentation, we will show the experimental results of high-pressure  $\mu$ SR measurements for (DMe-DCNQI)<sub>2</sub>Cu.



[1] R. Kato *et al.*, Phys. Rev. **B 47** 3500 (1993).
[2] S. Tomic *et al.*, J. Phys. C: Solid
State Phys. **21**, L203 (1988).
[3] R. Kato *et al.*, Bull. Chem. Soc.
Jpn. **73** 515 (2000).
[4] M. Tamura *et al.*, Mol. Cryst. Liq.
Cryst. **271**, 13, (1995).