Valence Bond Physics in the Frustrated Quantum Antiferromagnets, [Pd(dmit)₂] Salts

Masafumi Tamura,¹ Yasuyuki Ishii,¹ Reizo Kato¹

¹- Condensed Molecular Materials Lab., RIKEN, Wako, Saitama 351-0198, Japan; tam@riken.jp

A series of the [Pd(dmit)₂] salts provide triangular antiferromagnets, in which the S=1/2 Heisenberg spins localized on the dimeric radical anion units [Pd(dmit)₂]₂⁻ are frustrated [1]. In the EtMe₃P salt (the P2₁/m phase), spin-gapped phase appears below 25 K accompanied by spontaneous breaking of lattice translational symmetry, indicating that the spin gap is formed by the spatially ordered spin-singlet pairs (valence bonds, VB’s) [2]. Suppression of the VB ordering by pressure affords superconductivity [3,4]. Some other salts with larger spatial anisotropy undergo antiferromagnetic long-range ordering. Crossover from a frustrated paramagnetic state to an antiferromagnetically correlated state is observed slightly above the transition temperature, indicating that low-lying short-range spin excitations are crucial role for the release of frustration leading to magnetic long-range order at low temperatures [5]. All these features can be systematically explained in terms of the ordering, resonance and flipping of the VB’s over the 2D triangular network formed by the spin-1/2 units [Pd(dmit)₂]₂⁻.