Two electrically different molecular conductors based on unsymmetrical Au(III)-dithiolene complexes with similar crystal structures

Blank line (16 points)

<u>Kazuya Kubo^a,</u> Akiko Nakao^a, Yasuyuki Ishii^a, Masafumi Tamura^a, Reizo Kato^a, Gen-etsu Matsubayashi^b

^aRIKEN, JST-CREST, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; e-mail:

kkubo@riken.jp; ^bDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan; e-mail:

matsu@ch.wani.osaka-u.ac.jp

Blank line (16 points)

Donors based on unsymmetrical Au(III) dithiolene complexes, $[Au(ppy)(C_8H_4S_8)]$ and $[Au(ppy)(C_8H_4S_6O_2)]$ (Scheme 1), are capable of providing molecular conductors. We report here that cation radical salts, $[Au(ppy)(C_8H_4S_8)]_2[PF_6]$ (1) and $[Au(ppy)(C_8H_4S_6O_2)]_2[BF_4]$ (2) show different physical properties in spite of similar crystal structures. A columnar structure is commonly formed by two-fold head-to-head stacking of the cation radicals. Salt 1 is a semiconductor ($\rho_{r,t} = 2.6 \times 10^2 \,\Omega$ cm) with small activation energy ($E_a = 0.03 \text{ eV}$) under ambient pressure, and shows metallic behavior under high pressure (0.8-2.0 GPa). On the other hand, 2 is an insulator ($\rho_{r.t.} = 3.1 \times 10^4 \Omega$ cm, $E_a = 0.08$ eV) at ambient pressure. This notable contrast is caused by a subtle difference between the cation arrangements of 1 and 2. Construction of effective conduction pathways through the S^{...}S contacts was found in the crystal structure of **1**. However, the crystal of 2 contains no such conduction pathways through the S...S contacts. The energy band structures of 1 and 2 were calculated by the simple tight-binding method based on the crystal structural data (Fig. 1). These calculations suggest that even a subtle distinction of cation arrangements provides the remarkable distinction found between 1 and 2. The electronic properties of 1 and 2 will be discussed in more detail based on the crystal structure, band calculation and magnetic susceptibility.

