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Chapter 1.

General Introduction
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1.1. Electronic structures of Molecular Conductors

Molecular conductors (organic conductors or synthetic metals) have

afforded many research topics both in chemistry and physics for the last

40 years.  The study originated from the pioneering work by Akamatu,

Inokuchi and Matsunaga in 1954 [1].  The most memorable is the discovery

of superconductivity in a series of quasi-one-dimensional conductors,

TMTSF salts [2,3], and in a variety of two-dimensional conductors, BEDT-

TTF salts [3].  Following them, some salts of non-symmetric organic

donors such as DMET [4-6] and those of the metal complexes, [Ni(dmit)2]

[7] and [Pd(dmit)2] [8], have been found to exhibit superconductivity.  So

far, various types of metallic systems have been identified.  (For the

chemical structures of TMTSF, BEDT-TTF, DMET and [M(dmit)2], see

Fig. 1.1)  The discovery of superconductivity in an alkaline metal salt of

C60 [9] is also striking in this field.

Not only superconductivity but also several peculiar physical proper-

ties such as CDW (charge density wave) and SDW (spin density wave),

which are closely related to their low dimensionality, have been revealed

in molecular conductors.  Such exotic features have activated many exper-

imental and theoretical investigations on the electronic structures of these

systems, both from chemical and physical sides.  It has been widely

accepted that the dimensionality of the electronic structures plays a key

role in the physical properties of these materials.

In the recent several years, application of sophisticated experimental

techniques at low temperatures, and sometimes under high magnetic fields,
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have provided much information about the electronic structures of these



conductors  (see Sec. 1.3).  This makes it clear that their electronic band

structures can be basically understood within the framework of tight-

binding band model based on the frontier molecular orbital, HOMO (the

highest occupied molecular orbital) or LUMO (the lowest unoccupied

molecular orbital).  At the present time, this should be considered as the

most significant characteristic of the electronic structures of the molecular

conductors.

Prior to the direct experimental evidence for the formation of band

structures, the tight-binding band model has been applied to elucidate the

dimensionality of a molecular conductor from the structural viewpoint

mainly by chemists [10,11].  The basis of this approach is that the separation

of the intramolecular energy levels is sufficiently larger than the intermo-

lecular charge transfer energy.  The estimation of the intermolecular transfer

integrals is the main part of the investigation in this framework.  Usually,

they are obtained as intermolecular overlap integrals multiplied by an

energy factor, where the overlap integrals are calculated on the basis of

the extended Hückel method [12] and only the nearest neighbor ones are

considered.  In this way, even rather involved features of the electronic

properties become describable in terms of the chemical ideas based on

the frontier orbitals and the transfer integrals between them.  On the other

hand, in order to improve this framework and to develop a new design of

molecular conductors, it is desired to estimate the intermolecular interac-

tions experimentally.
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1.2. Tight-binding Band Model

The most basic theory of metals is the electronic band theory based

on Bloch's theorem.  In the theory, the one-electron states are described

by the Bloch wavefunctions, which is delocalized over the crystal and has

the periodicity in accord with that of the lattice.  Fourier transformation

of the Bloch function with respect to the lattice periodicity yields local

function localized on each unit cell.  This localized function is called

Wannier function.  The Bloch function is thus given as the linear combi-

nation of the Wannier functions.

The tight-binding band model is constructed by regarding the molec-

ular orbitals (MOs) in the crystal as the Wannier functions.  This means

that the molecular identity still holds in the crystal.  Diagonalization of

the one-electron Hamiltonian in the space of the MOs taking account of

the lattice periodicity yields the one-electron energy eigenvalues as func-

tions of the wavevector, k.  This is the energy band structure in the

tight-binding framework.  This treatment of the electronic state of the

crystal is analogous to the MO theory based on the linear combination of

atomic orbitals.  The only difference is the consideration of the lattice

periodicity.

If only one MO on each molecule is taken into the basis set, the

treatment is in a complete analogy to the primitive Hückel theory of

π-MOs, in which only one 2p orbital is considered for each atom in a

planar aromatic compound.  For simplicity, it is assumed that all the MOs

are equivalent in the following.  The off-diagonal  element  of the one-
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electron Hamiltonian  between the MOs,  | a > and | b >,



ta, b = < a | H | b >,                                        (1.2.1)

is called the transfer integral between | a > and | b >.  The role of t  is

essentially the same as that of the resonance integrals in the primitive

Hückel MO theory.  Similarly, only the nearest-neighbor ones are consid-

ered in the ordinary tight-binding band calculations.  The transfer integrals

are usually approximated as the overlap integrals multiplied by an energy

factor, ε , that is,

ta, b ≈ ε  Sa, b ,                                           (1.2.2)

where,

Sa, b = < a | b > ,                                          (1.2.3)

and ε  is given by the Mulliken approximation,

ε  < a | a > ≈ < a | H | a > = < b | H | b > ≈ ε  < b | b >.        (1.2.4)

The second equality comes from the equivalency of the MOs.  With MOs

normalized, ε  agrees with the energy of the MOs.

The extended Hückel method is the standard way to calculate the

MOs in the molecular conductors.  The band calculations start from the

estimation of the overlap integrals between the MOs in the crystal calculated

by the extended Hückel method.  Then, the transfer integrals are obtained
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by use of Eqs. (1.2.2) and (1.2.4).



Within this framework, the metallic properties of molecular crystals

can be discussed in terms of the chemical intermolecular interactions.  In

Chapter 2, the procedure of band calculations starting from a set of transfer

integrals is explained.

1.3. Experimental Approach to the Band Structure

Since most electronic properties of a metal are prescribed by the

Fermi surface, the study of the Fermi surface can be compared to the

study of the frontier orbitals, which dominates the chemical properties of

a molecule.  The band structure or the Fermi surface of a metallic material

can be studied by various types of experiments.

The electronic specific heat and the static spin susceptibility afford

the estimation of the density of states at the Fermi level.  The coefficient

of the T-linear term in specific heat, as well as the temperature independent

Pauli-like susceptibility, is proportional to the density of states.

The transport properties, including the Hall effect, thermoelectric

power and magnetoresistance give information on the band-filling, the

curvatures of band near the Fermi level, or the topology of the Fermi

surface.  The electric resistivity, of course, provides significant information

on the band structure.  Magnetic resonances (NMR and ESR) and (pho-

to)electron spectroscopy (e.g., XPS, UPS and energy-loss spectroscopy)

are also known to work as useful tools to study the band structure, as well

as some microscopic features.
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The de Haas-van Alphen (dHvA) effect and the Shubnikov-de Haas



(SdH) effect, the magneto-quantum oscillations, are the direct probe to

the Fermi surface [13].  These experiments are carried out under high

magnetic field at low temperature.  Periodic oscillation of magnetization

(dHvA) or resistance (SdH) as a function of inverse magnetic field can be

observed in such a condition.  This is a result of the cyclotron motion of

carriers along the Fermi surface.  The frequency of the oscillation is

proportional to the extremal cross-sectional area of the Fermi surface

viewed along the field direction.  From the temperature dependence of

the oscillation amplitude, the cyclotron mass, a kind of effective mass of

the carriers on the Fermi surface, is estimated.  These techniques, which

are sometimes called the fermiology, are based completely on the nature

of the Fermi surface.  In other words, the information provided by these

measurements comprises purely of the features of the Fermi surface.

These experiments cannot be applied to one-dimensional conductors with-

out closed Fermi surface.

There is a special technique which has been advanced in the field of

molecular conductors: the angle dependent magnetoresistance oscillation

(ADMRO) [14-17].  This phenomenon is unique to the cylindrical Fermi

surface with small warping, which is characteristic of the quasi-two-

dimensional metals such as the BEDT-TTF salts [16,17].  The ADMRO

is characterized by the periodic oscillation of magnetoresistance as a

function of tan θ, where θ is the angle between the magnetic field and the

axis normal to the two-dimensional plane.  From the period, the Fermi

wavenumber, i.e., the radius of the cylindrical Fermi surface can be derived

[16].
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Unlike the magneto-quantum oscillations and the ADMRO, the pre-



viously mentioned experiments may include information on other features

related to phonons, defects, and so on.  Sometimes, they may yield contro-

versial results about the band structure.  This caused the criticism on the

applicability of the tight-binding band model.  However, the situation has

been changed by the observation of the SdH effect in κ-(BEDT-

TTF)2[Cu(NCS)2] in 1988 [18], for the first time in molecular conductors.

Since then, the SdH or the dHvA experiment has been applied to many

two-dimensional molecular conductors [19].  This advance has greatly

contributed in establishing the validity of the tight-binding model.  It is

also noteworthy that the observation of the magneto-quantum oscillations

requires considerably high quality of the sample.  Therefore, the appearance

of the oscillations in a variety of molecular conductors indicates the high

quality of the crystals of such molecular conductors.

1.4. Optical Study of the Band Structure

Except for the electron spectroscopy, the experimental methods men-

tioned in the preceding section are related to the ground state properties

or to low-lying states just above the ground state.  In contrast to them, the

optical spectroscopy from the infrared to the visible range is the observation

of the excitation of electrons by such photon energies.  For this reason,

the optical properties generally reflect the global structure of the band

rather than the local structure near the Fermi surface.  Consequently, the

optical spectrum over the infrared to visible regions is insensitive to the
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phenomena characterized by a low energy below about 0.05 eV, such as



magnetism and superconductivity.  In order to study such phenomena,

experiments in the far-infrared or microwave region are required.

Practically, the study of optical spectra of metals has the following

advantages.

(1) It is very easy to examine the dimensionality and anisotropy by

the optical experiment using polarized light, while it is difficult

to control the direction of current in a small single crystal in the

measurement of transport properties.

(2) The optical properties are not sensitive to internal cracks in the

crystal, while such cracks reduce the accuracy of the results of

the transport measurements.

(3) The optical technique can be applied to a metal with many

defects or a non-metallic material, whereas the methods sensitive

to the Fermi surface cannot yield any information on such kind

of materials.

(4) Materials with any dimensionality can be studied by the optical

spectroscopy.

(5) Neither high magnetic field nor very low temperature is required

in the optical experiments.

The optical transitions of the conduction electrons can be divided

into two categories, intraband transitions and interband transitions.  The

intraband transitions have the character of the collective motion of charge

carriers corresponding to the plasma oscillation, which is characteristic of

a metal.  The intraband transitions are described by the Drude model of

dielectric function (complex ac dielectric constant),

10



ε (ω ) = ε C - ω P
2 / (ω  2 + i ω τ),                              (1.4.1)

where hω  is the photon energy, τ is the relaxation time of the carriers,

and ω P is the plasma frequency.  The first term includes the constant

contributions from the higher excitations.  From the plasma frequency,

the optical effective mass is estimated by the relation,

 m* = 4 π n e 2 / ω P
2 ,                                         (1.4.2)

where n is the number density of the carriers per unit volume.  This

nature of the intraband transition has been widely used to estimate the

optical effective mass, the number of the carriers and the relaxation time

of a metal.  In view of the relation,

σdc = ω P
2τ / 4π = n e 2τ / m*,                                 (1.4.3)

it is clear that the intraband transitions are closely related to the dc con-

ductivity.  The integrated intensity of the intraband transitions, as well as

the dc conductivity, is determined by the character of the Fermi surface.

It should be remarked here that the optical effective mass should be

distinguished from the thermal effective mass related to the specific heat

and from the cyclotron mass.  These three masses agree with one another

only in the free-electron model.  Generally, the three masses take different

values, particularly in a low-dimensional band described by the tight-

binding model; only the orders of magnitudes are in agreement.  These
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are defined as the averages of the Fermi velocities by different ways of



integrations [20].  In addition, the optical mass is a tensor; the principal

values can be anisotropic with respect to the direction of light polarization.

And the cyclotron mass is defined for each closed cyclotron orbit.  Care

must be taken, in comparing the "effective masses" obtained from different

experiments.

Outstanding examples illustrating the relation of the Fermi surface

and the intraband transitions can be found in recent literature.  The one

concerns the metal-insulator transition in (DCNQI)2Cu system, where

DCNQI is N,N ′-dicyanoquinonediimine [21].  In this system, the intraband

transitions disappear abruptly at the phase transition accompanied by a

drastic change in dimensionality.  From this, it follows that the system

changes from a three-dimensional metal into a one-dimensional insulator.

Another one deals with the temperature dependence of the reflectance

spectra of κ-(BEDT-TTF)2Ag(CN)2·H2O [22].  Disappearance of a part of

the Fermi surface at low temperature was recognized as the suppression

of the intraband transitions in this case.

On the other hand, the interband transitions, optical transitions  across

the band gaps, reflect the gap structure of the bands.  By examining the

fine structures of the spectral shape of interband transitions, the band

structures of inorganic crystals including many semiconductors have been

extensively investigated.  However, the situation is somewhat different in

the organic molecular conductors.  Because of considerably narrow width

of the conduction band, only a broad peak corresponding to the interband

transitions can be observed in the infrared spectra of the molecular con-

ductors.  It seems that the interband transitions afford only coarse features
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of the band structure.  However, the interband transitions can probe the



molecular packing mode in the crystal, which is very useful information

in considering the band formation in view of the tight-binding model.

This characteristic arises from the fact that the interband transitions have

an origin similar to that of the intermolecular excitations of a charge-transfer

complex, which is obvious in the framework of the tight-binding model.

In this model, the origin of the band gaps is attributed to the difference

between the transfer integrals, which are determined by the molecular

packing.

In the determination of the basic optical properties of metals, the

measurement of reflectivity is the most convenient and reliable technique.

The absorption spectroscopy is difficult, because most metallic materials

are not transparent.  It is also difficult to measure the thickness of a small

single crystal sample, which results in inaccurate estimation of the optical

constants.  On the other hand, the measurement of reflectivity or reflectance

spectra requires only smooth surface of the sample.  In this study, polarized

reflectance spectra were measured by use of microspectrophotometers

(spectrophotometers equipped with reflection microscopes and polarizers)

arranged especially for small single crystals of molecular conductors.

Cooling the sample down to low temperature is efficient to resolve different

types of transitions.  For this purpose, low temperature measurements

were carried out.

1.5. The Purposes of This Study
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This study mainly treats the determination of the band structures and



the Fermi surfaces of several two-dimensional conductors based on π-donor

or π-acceptor molecules by use of the intensities of the intraband transitions

obtained from the polarized reflectance spectra.  The compounds picked

up in this study possess considerably simple molecular arrangement, at

least approximately.  This has made it possible to relate the intraband

transitions to the transfer integrals describing the band structure.  The

application of this method, developed in this study, is unique to the

molecular conductors, which is describable by the simple tight-binding

band model.  Nevertheless, it is expected to extend the applicability of

the optical spectroscopy in this field.

The obtained results are then compared with those from the other

experiments such as the magneto-quantum oscillations or the ADMRO,

in order to demonstrate the validity of the method.  If both results are in

agreement, it can be concluded that the band structure is well described

by the simple tight-binding model over the energy range of about 1 eV,

the highest excitation energy of conduction electrons within the band.

This information cannot be obtained from the other experiments.

The interband transitions play only a secondary role in this study.

In some cases, they are too weak to be treated quantitatively.  Moreover,

accurate theoretical calculations of the intensities of the interband transi-

tions are considerably difficult, because they explicitly concern the excited

states of a many-electron system.  However, as mentioned in the preceding

section, the interband transitions give useful information on the molecular

arrangement.  The interband transition thus helps the determination of the

tight-binding band structures.
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1.6. The Contents of the Present Thesis

In Chapter 2, theory of the optical transitions of the conduction

electrons is treated in the framework of the tight-binding band model.

Chapter 3 summarizes the experimental techniques and the procedures of

analysis of the optical data.

From Chapters 4 to 7, experimental results and discussion of the

electronic band structures and the shape of the Fermi surfaces of several

two-dimensional molecular conductors are given.  Chapter 4 is devoted

to the study of the electronic structure of the θ-(BEDT-TTF)2I3.  Since the

molecular arrangement of this material has approximately high symmetry,

θ-(BEDT-TTF)2I3 is considered to be suitable for the investigation from

different points of view.  Thereby, Chapter 4 includes not only the optical

study but also the studies of the magnetic properties, thermoelectric power,

the dHvA and SdH oscillations, and the ADMRO.  Chapter 5 describes

the study of the reflectance spectra of a dimeric BEDT-TTF salt, κ-(BEDT-

TTF)2I3.  Chapters 6 and 7 treat the studies of the reflectance spectra of

two [Ni(dmit)2] salts, Me4N[Ni(dmit)2]2 and α-Et2Me2N[Ni(dmit)2]2, re-

spectively.  Chapter 8 deals with the study of reflectance spectra of a

two-dimensional DMET salt, κ-(DMET)2AuBr2.

Concluding remarks for the present thesis are given in Chapter 9.

Appendices describe some  useful properties of the interband transitions

in connection with the symmetry of the molecular arrangement.
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Chapter 2.

Theoretical Aspects of the Optical Transitions

 of Conduction Electrons
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2.1. Introduction

In this chapter, theoretical aspects of the optical transitions of the

conduction electrons are described.  The calculations of the tight-binding

band are explained in Sec. 2.2.  Section 2.3. deals with the intraband

transitions on the basis of the relaxation time approximation of the Boltz-

mann equation.  Finally, a brief treatment of the interband transitions is

given in Sec. 2.4.  It is recommended to refer to these descriptions to

understand the analysis of the optical data in the following chapters.

2.2. The Band Structure

In the tight-binding framework, the band structure is calculated from

the set of transfer integrals as follows.  Using the second-quantization

expression, the one-electron Hamiltonian is simply expressed as,

H =   ∑    ∑  t l m, l ′m ′ a
†
l m al  ′m ′  ,                       (2.2.1)

                                           l, l'    m, m'

where (l, m) specifies the m 'th MO in the l 'th unit cell.  The summation

is taken over the crystal.  The Fourier transform of a†
l m with respect to the

lattice periodicity is given by,

a†
l m = N –1/2 ∑ a†

m, k  exp(ik·Rl ) ,                           (2.2.2)
                                                 k

20

where N is the number of the unit cells in the crystal, and Rl denotes the



position of the l 'th unit cell.  Substitution with this converts Eq. (2.2.1)

into,

H = N  –1  ∑   ∑   ∑ t l m, l ′m ′  exp[i(k·R l – k ′·R l ′)] a
†
m, k  am′, k ′ . (2.2.3)

                      m, m ′  k, k′′′′       l, l  ′                     

Taking account of the lattice periodicity, we have,

                    ∑ t l  m, l ′m ′ exp[i(k · Rl – k ′ · Rl ′)]
                    l, l  ′

= ∑exp[i(k – k ′) · Rl ′]  ∑ t l m, l ′m ′ exp[ik ·  (Rl – Rl ′)]
                     l  ′                                 l –l  ′

  = ∑exp[i(k – k ′) · Rl ′] ∑ t 0 m, l m ′  exp( ik ·  Rl )  .            (2.2.4)
                    l  ′                                 l

The summation over l ′ results in

   ∑ exp[i(k –k ′) · Rl ′] = N  δ k, k ′  .                    (2.2.5)
                                    l  ′

Thus Eq. (2.2.3) is reduced into,

                            H =  ∑      ∑ [∑ t 0 m, l m ′  exp(ik ·  Rl) a
†
m,k  am,′k  ]

                                   m, m ′       k       l

  =  ∑      ∑ hm,m ′(k) a†
m,k  am,′k  ,                          (2.2.6)

                                    m, m ′       k

where,
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hm,m ′(k) = ∑ t 0 m, l m ′  exp(ik ·  Rl) .                     (2.2.7)
                                                 l

This is an M × M matrix, M being the number of MOs in the unit cell.

Equation (2.2.6) has been already diagonalized with respect to k.  The

major contribution in the summation over (l, m ′) in (2.2.6) comes from

the nearest-neighbor sites of the (0,m) one.  By diagonalizing hm,m ′(k), Eq.

(2.2.7), we obtain the eigenvalues, ε µ(k) (µ = 1, 2, ...M) for each k.  That

is,

H = ∑ ε µ(k) a†
µ, k aµ, k     ,                             (2.2.8)

         µ, k

with,

aµ, k  = ∑ Uµ,m(k) amk   ,                                 (2.2.9)
                                                  m

where Uµ,m is the element of the unitary matrix to diagonalize hm,m ′(k).

The tight-binding band structure is thus given as εµ(k).  From this, any

electronic properties related to the conduction band can be given in terms

of µ (the branch index), k, and transfer integrals, as far as the one-electron

band picture holds.
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2.3. Intraband Transitions [1,2]

In the equilibrium state, the distribution of the electrons in a conduction

band is given by the Fermi distribution function, f0(εk , T).  Application of

an external electric field, E(r, t), perturbs the distribution into f(r, T) = f0

+ g(r, T).  The Boltzmann equation for f(r,T) is given as,

df  / dt  =  ∂f  / ∂t + (vk – eE /h) ·  gradk f  .            (2.3.1)

Assuming that the relaxation of g(r,T) to 0, as well as f(r,T) to f0, is a

single exponent type with the relaxation time, τ, we obtain a differential

equation for g(r,T),

∂g / ∂t  +  vk  ·  gradr g + g  / τ = – eE  ·  vk (∂f0 / ∂εk) .     (2.3.2)

Since we concern only the linear response to the field, only the term

linear to E is retained.  Suppose that both E and g are periodic in time

and space, i.e.,

E = Eq, ω  exp[i(q · r – ω t)] ,                            (2.3.3)

g = gq, ω  exp[i(q · r – ω t)] .                             (2.3.4)

Then, the solution of Eq. (2.3.2) is given in terms of gq, ω  ,

gq, ω  (k) = – e τ Eq, ω · v k  (– ∂f0 / ∂εk) / [1+τ (q · vk – iω )] .  (2.3.5)
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With this distribution function, any kind of the bulk collective response

to the field can be calculated.

In what follows, the principal value of the conductivity tensor is

calculated.  The optical response can be expressed in terms of the complex

conductivity with respect to the electric field of the radiation.  The current

density along the principal axis, x, is written in the form,

Jx = 2 (1/8π 3) ∫ (– e vk) x g  d 3k  .                      (2.3.6)

The factor 2 stems from the spin degrees of freedom.  Substituting g in

Eq. (2.3.6) with Eqs. (2.3.4) and (2.3.5), we obtain

(Jq, ω )x = (e 2/4π 3) (Eq, ω)x  ∫ τ |vk |
 2 [1+τ(q·vk – iω )] -1 (– ∂f0 / ∂εk) d

 3k  .

  (2.3.7)

Comparing this with the definition of the conductivity, σ,

Jq, ω  = σ (q, ω ) Eq, ω ,                              (2.3.8)

we have,

σx(q, ω) = (e 2/4π 3) ∫τ |vk |
 2 [1+τ(q·vk – iω )] –1 (– ∂f0 / ∂εk) d

 3k .

     (2.3.9)

This can be reduced into
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σx(ω ) = (e 2/4π 3 h) ∫ [(vF)x
2/|vF|] (1/τ – i ω ) –1 dS ,        (2.3.10)

                                                F.S.             

by use of the facts,

ω  = 2 π c′ | q | » | q·vk | ,                            (2.3.11)

– ∂f0 / ∂ε    k ≈ δ(ε  – εF),                                (2.3.12)

d 3k = (d ε  / | gradk  ε    k |) dS ,                       (2.3.13)

where c ′ is the light velocity in the material, and kBT « εF is assumed.

The integration in Eq. (2.3.10) is taken over the Fermi surface.  We

assume here that τ in Eq. (2.3.10) is independent of | k | and ω .  Only the

anisotropy of τ is phenomenologically taken account of.  Thus we have,

4π σx(ω ) = (1 / τx – iω ) –1 (e 2 / 4π 2 h)∫ [(vF)x
2 / |vF|]  dS .    (2.3.14)

                                                                       F.S.

The assumptions made for τ is not a trivial one; it should be checked by

experiments in each case.  Introduction of the plasma frequency, (ω P)x, by

(ω P
2)x = (e 2 / π 2 h)∫ [(vF)x

2 / |vF|]  dS  ,                 (2.3.15)
                                                          F.S.

leads to

4π σx(ω ) =  (ω P
2)x / (1 / τ – i ω ) ,                   (2.3.16)
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or, in terms of the dielectric function,

ε x(ω ) –1 = (4π i /ω ) σx(ω )  = – (ω P
2)x / (ω  2 – i ω  τ) .   (2.3.17)

The final expression is equivalent to that of the Drude model.  The

intensity of the intraband transitions, ω P
2, is thus related to the band

structure near the Fermi surface.  That is, the plasma frequency can be

calculated from the band structure, εµ(k) in Eq. (2.2.8), using Eq. (2.3.15).

Application of Gauss' theorem to Eq. (2.3.15) yields

                   (ω P
2)x = (e 2 / π 2 h) ∫ (vF)x ux d S

                                                F.S.

= (e 2 / π 2 h) ∫ div [(vF)x ux] f0(ε k)  d
 3k

            = (e 2 / π 2 h 2)  ∫ (∂ 2ε  / ∂kx
2) f0(ε k)  d

 3k ,              (2.3.18)

where ux is the unit vector in the x-direction.  For a parabolic band given

as

ε  = – h 2[kx
2 /2m*x + ky

2 /2m*y  +kz
2 /2m*z ]  ,          (2.3.19)

Eq. (2.3.18) reduces into a simple form,

(ω P
2)x = 4 π n e 2/m*x  ,                            (2.3.20)
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n = (1 / 4π 2)∫ f0(ε k) d
 3k  ,                         (2.3.21)

is the number density of the electrons.

In the above discussion, the intraband transitions are regarded as the

transverse collective motion of the conduction electrons.  Such kind of

treatment is based closely on the theory of random-phase approximation

for the Fermi liquid.  However, the assumption for τ to be independent of

| k | and ω  is a subtle problem.  If there is a relaxation process important

only at low frequencies, the relation between the optical properties and

the Fermi surface, Eq. (2.3.15), may be modified.  This can be detected as

the discrepancy between the band structure deduced from the optical

properties and that concluded from the transport properties.  Such a "dy-

namical" effect implies the deviation of the band structure just near the

Fermi surface from the global one over the range of the photon energy.

2.4. Interband Transitions [3-5]

In the framework of the one-electron band theory, the interband

transitions can be regarded as one-electron excitations, which is in contrast

to the case of the intraband transitions.  For such  a process, the probability

of the optical transition can be readily obtained.  Suppose the Hamiltonian

for the tight-binding model, Eq. (2.2.1),

H =   ∑     ∑  t l m,l ′m ′ a
†
l m al ′m ′  ,                          (2.4.1)
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And the x-component of the electric dipole moment operator is written in

the form,

Px = e   ∑ (Rl, m )x a
†
l m al m  ,                             (2.4.2)

                                      l, m

where Rl, m  is the position of the m 'th molecular site in the l 'th unit cell.

From the standard first-order perturbation theory with the dipole approx-

imation, the transition probability per unit time interval is obtained as,

w = Ex
2 ∑ < i | Px | f >< f | Px | i > (π / 2h) δ(hω  – hωf, i) ,   (2.4.3)

                  i, f                              

where i and f denotes the initial and final states, respectively.  The energies

of the initial and final states are εi and ε f , respectively, and the transition

energy is then, hω f, i = εf – ε i .  The power loss of light due to the

absorption can be expressed in terms of the transition probability, that is,

p = h ω  w  .                                         (2.4.4)

On the other hand, the power loss is related to conductivity as,

p = σx Ex
2 V / 2  ,                                   (2.4.5)

where V is the volume of the crystal.  Comparison of Eq. (2.4.5) with Eq.
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σx = (2 / V Ex
2) hω w  .                              (2.4.6)

Consequently, from Eqs. (2.4.3) and (2.4.6), we obtain,

σx(ω ) = (π / V h) ∑ ω f, i < i | Px | f > < f | Px | i > δ(ω  – ωf, i ),
                                   i, f                  

(2.4.7)

When the δ-function is replaced by a Lorentzian line-shape function with

the width of γ, Eq. (2.4.7) is rewritten in the form,

σx(ω ) = (2i / V h) ∑ ω f,i < i | Px | f >< f | Px | i > ω  /(ω  2– ωf, i + i γω ) .
                                i, f

                                                                              (2.4.8)

The commutator of H and Px is,

[H , Px] = e ∑ ∑ t l m,l ′m ′ a
†
l m al ′m ′ (Rl, m– R l  ′, m′)x (a

†
l m al ′m ′ – a†

l ′m ′ al m).
                     l, l ′  m, m ′

(2.4.9)

The matrix element of [H, Px] is,

< i | [H, Px] | f > = (εi – ε f) < i | Px | f > .              (2.4.10)

Using this, Eq. (2.4.8) is converted into,

σx(ω ) = (2 / iV h 3) ∑ < i | [H, Px] | f > < f | [H, Px] | i >
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                            ×  (ω  / ω f, i) / (ω  2– ω f,  i + i γω )  .

                                                                                                 (2.4.11)

which is calculable in the framework of the tight-binding model by use of

Eq. (2.4.9).  In the actual calculations, the pair of states, (i, f), is specified

by the pair, (µ, k) and (µ ′, k), the occupied and vacant one-electron

states, respectively.  The matrix element, then, reduces into that between

the one-electron states (µ, k) and (µ ′, k) and the summation is taken over

the pairs of the branch indices (µ, µ ′) and all k in the first Brillouin zone.

This formulation is based simply on the one-electron picture; highly

excited one-electron states, in which the many-body effect may play an

essential role even in the metallic state, are concerned.  As regards the

quantitative features, the result may be modified, even if the band picture

holds for low-lying states.  However, it is still useful in elucidating the

basic origin and character of the transition.
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Chapter 3.

Measurement of Polarized Reflectance Spectrum

 and Analysis of the Data
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3.1. Measurement of Polarized Reflectance Spectrum

As mentioned in Sec. 1.4., the polarized reflectance spectroscopy is

the most efficient tool to examine the basic optical properties of a metallic

material.  The standard experimental configuration used for a single crystal

of conductors is the normal reflectance measurement, where the incident

light is normal to the crystal face.  The absolute value of reflectivity can

be determined as a function of the wavenumber and polarization of light

by comparing the intensity of the light reflected from the sample face

with that from a standard mirror.

With regard to the application to the organic π-molecular conductors,

the main difficulty lies in the smallness of their single crystals.  The

typical dimension of the most developed crystal face is about 1 × 1 mm 2

or less.  This problem can be solved by combined use of a microscope

and a spectrophotometer, the microspectrophotometry

A mid-infrared reflection microspectrophotometer made by Dr. H.

Tajima (Univ. of Tokyo), JASCO MIR-300, has been used in this study.

The main experimental techniques for the room temperature and low

temperature measurements of the infrared reflectance spectra have been

established by him, and the details are described in his thesis [1,2].  The

spectrometer is originally equipped with a semiconductor detector of InSb

(1800-5400 cm –1) and HgCdTe (720-1800 cm –1) by Infrared Associates

Inc.  The optical study in Chap. 4. was carried out with this combination.

The performance of the apparatus has been improved by the introduction

of a liquid helium cooled composite Ge bolometer by Infrared Laboratories
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afford better signal-to-noise ratio over the mid-infrared region, during

this study.  The experiments in Chaps. 5-8 were done with this improved

version.  For the low temperature measurements, a liquid helium flow

type cryostat, CF 104A by Oxford Instruments Limited, was used.

In the near-infrared and visible regions (4200-25000 cm –1), a modified

version of a reflection microspectrophotometer, Olympus MMSP, has

been used.  The low temperature measurements in these regions were

carried out by use of a closed cycle helium refrigerator, CTI SPECTRIM.

Since the focal length of the objective lenses in the microscope varies

with wavenumber, the height of the sample has to be adjusted at each

wavenumber.  This process has been automated by Dr. T. Ida (Himeji

Institute of Technology).  Since the optical system used for the mid-infrared

region contains no lens, the adjustment of sample height is not required

in the mid-infrared measurements.

The alternate measurement of the reflectance signals of a sample

and a standard mirror at each wavenumber is employed in order to minimize

the effects of drifting of the atmosphere (H2O and CO2 in air), the source

light intensity and the detector sensitivity.  This was done by use of

computer-controlled movable sample stages.  The light was chopped,

monochromatized, polarized and then introduced in the microscopes

equipped with half mirrors separating the incident and reflected rays.

The light intensity data were collected by lock-in amplifiers and transferred

to the computers.  The reflectivity values were calculated from the ratio

of the sample signal to the mirror signal.  As the standard mirror, a silver

mirror is used for the mid-infrared measurement, and a Si plate for the
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In every case in this study, the crystal face on which the spectra

were measured has rather high symmetry; it includes at least one unique

axis.  In such a case, the principal directions of reflectance should agree

with the crystal axes, because the reflectivity, as well as the conductivity,

is a tensor quantity.  This was checked in every measurement by comparing

the X-ray photographs with the reflectance results obtained by rotating

the polarizer.

In the low temperature measurements, a single crystal sample was

mounted on a small Si plate placed on the rotating center of a goniometer

head for each cryostat attached on the cold head of the cryostat.  The

attachment of the sample and the Si plate was made by Apiezon L grease.

The crystal face was aligned so as to retain the normal incidence of light

at room temperature.  The goniometer head was covered with a radiation

shield and a vacuum chamber.  Both have windows of KBr (mid-infrared)

or quartz (near-infrared and visible), through which the ray can pass.  The

window and the sample face were not kept in parallel, in order to avoid

the light reflected from the window.  Evacuation inside the vacuum chamber

should be followed by readjustment of the position of the cryostat.  In the

cooling, the temperature of the goniometer head was monitored by

Au(Fe)/Chromel thermocouple.

The alternate measurement was applied also to the low temperature

case.  In the mid-infrared apparatus, a movable mirror was installed above

the cryostat to switch the ray focus from the sample in the cryostat to a

standard mirror.  The effect of the KBr windows was corrected by measuring

the data for the standard Ag mirror placed in the cryostat instead of a
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the position of the cryostat was automatically adjustable.  Thereby, the

alternate measurement was done by changing the ray focus from the

sample on the cold head to a Si plate outside by moving the cryostat.  The

effect of the quartz windows was also corrected by measuring the room

temperature reflectance of a Si plate or the sample.

3.2. Analysis of the Reflectance Spectrum

In this study, the most important thing is the estimation of the intensity

of the intraband transitions.  Since the observed spectra contain other

spectral features such as the interband transitions, it is required to separate

the intraband contribution from the other ones.

A curve-fitting method was applied to extract the intraband contribu-

tions from the reflectance spectra.  As the model function, the Drude-Lorentz

model [3] was used.  It is written, in terms of the dielectric function, as

                           

ε (ω ) = ε C – ω P
2 / (ω 2 + iω / τ)  + ∑ fj / [(ω j

2–ω 2) – iγjω ] .  (3.2.1)
                                                                    j

The reflectivity is related to the dielectric function by the equation,

    R = [1 + | ε | – √2(| ε | + Re(ε)) ] / [1 + | ε  | + √2(| ε | + Re(ε)) ] . (3.2.2)

The first term in the right-hand side of Eq.(3.2.1), εC, stands for the

constant contribution from the higher energy transitions outside the exper-

imental spectral region.  The second term, the Drude term, gives the
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frequency, ω P
2, is the integrated intensity of the intraband transitions, and

τ is the relaxation time of the charge carriers.  The summation describes

the contributions of other transitions: the interband transitions, the e-mv

coupling modes.  The intensity, position and spectral width of each term

in the summation, are given as fj , ω j and γj , respectively.  Strictly

speaking, they do not follow the Lorentzian profile.  However, it is found

in every case in this study that these contributions are well approximated

as a Lorentzian or as a superposition of a few Lorentzian profiles, at least

at sufficiently low temperature.  Thus, this Drude-Lorentz fitting afforded

satisfactory results for the estimation of the intraband plasma frequencies.

As is clear from Eq. (3.2.2), the reflectance spectrum is not the

superposition of different transitions.  This makes it difficult to choose

the Lorentzian terms suitable for the curve-fitting.  In stead of the reflectance

spectra, the conductivity spectra can be used for the choice.  The conduc-

tivity spectra, in which the contributions of different transitions are more

resolved and the superposition of them is visible, were obtained by the

Kramers-Kronig transformation [4] of the reflectance spectra.  The use of

conductivity spectra enables us to find out a deviation from the Drude

behavior easily.

3.3. Derivation of Band Structure and Fermi Surface

In Sec. 2.3., a general expression for the intensity of the intraband

transitions is derived.  That is,
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(ω P
2)x = (e 2 /π 2 h)∫ [(vF)x

2 / |vF| ]  dS  ,                   (3.3.1)
                                                        F.S.

In a two-dimensional case, this can be reduced into a very simple form.

Let the xy-plane be the two-dimensional plane.  It follows immediately

that (ω P
2)z = 0 because (vF)z is zero at any k.  The transformations,

dS  = |vF|  dkFy dkFz / |(vF)x| = |vF|  dkFx dkFz / |(vF)y| ,       (3.3.2)

yield the set of equations,

(ω P
2)x = (e 2 /π 2 h) (2π / z) ∫ |(vF)x| dkFy   ,                  (3.3.3)

                                                                  F.S.

(ω P
2)y = (e 2 /π 2 h) (2π / z) ∫ |(vF)y| dkFx   ,                  (3.3.4)

                                                                  F.S.

where z denotes the lattice period along the z-direction.  These equations

well describe the anisotropic shape of a two-dimensional Fermi surface

and the anisotropy of the plasma frequency.  Since the Fermi velocity

vector is perpendicular to the Fermi surface at each kF, the major contribution

comes from the portion of the Fermi surface nearly perpendicular to the

light polarization.

If the band structure is describable only by two independent transfer

integrals, t1 and t2, they can be directly determined form the plasma

frequencies by Eqs. (3.3.3) and (3.3.4).  In the actual calculations, the

knowledge of the Fermi level is required to settle the Fermi surface.  The
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following equation should be satisfied,

F SBZ = ∫ | kFx |  dkFy = ∫ | kFy |  dkFx ,                    (3.3.5)

where F is the band filling expected from the stoichiometry.  The integrals

in (3.3.5) stand for the half of the area inside the Fermi surface.  By

solving Eqs. (3.3.3)-(3.3.5) simultaneously, the three band parameters t1,

t2 and EF can be derived from the three experimental data, ω Px, ω Py and

the stoichiometry.  The integrals in Eqs. (3.3.3)-(3.3.5) were numerically

evaluated in a computational program to find out the optimal values of t1,

t2 and EF , which was developed in this study.

From the band structure and Fermi surface determined as above, the

cross-sectional area of each cyclotron orbit and the extremal values of kFx

and kFy  can be readily calculated.  These parameters are referred to in the

comparison of the optical results with those of the magneto-quantum

oscillations and the ADMRO.  The cyclotron mass was also evaluated

following the definition [5],

m*c = (h 2  / 2π) (dS  / dE) ; E = EF,                       (3.3.6)

where S is the corresponding cross-sectional area.  For a two-dimensional

system, it is noteworthy that the evaluation of the cyclotron mass is the

same as that of the density of states.
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3.4. A Case Study of the Relation between the Optical Properties

 and Fermi Surface

In order to illustrate how the Fermi surface determines the optical

properties and other physical properties, a case study was carried out for

a model of a realistic two-dimensional molecular arrangement shown in

Fig. 3.1.  The plasma frequencies, the cross-sectional areas, the cyclotron

masses and the extremal values of the Fermi wavenumbers were calculated

as functions of the transfer integrals, assuming 1/2- or 3/4-filling of the

conduction band.  The computational method is outlined in the preceding

section.

In the following, the lattice parameters normalized to unity are used.

The band structure of the model is given by,

E(kx, ky) = 2tx coskx ± 2 (ty
2 + 2ty ty′cos ky + ty′

 2 )1 / 2 cos (kx / 2),   (3.4.1)

When ty = ty′, this reduces into

E(kx, ky) = 2tx cos kx ±  4 ty cos(kx / 2) cos (ky / 2) .         (3.4.2)

There are the degeneracies between the two branches at the zone boundary

(kx = π or ky = π) in Eq. (3.4.2), while it is removed at the ky = π line in

Eq. (3.4.1).  As ty =ty′= 0 is approached, the system becomes one-

dimensional, while the system remains two-dimensional even at tx = 0.

The physical properties were calculated for the 1/2- or 3/4-filled
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1 eV.  The results are displayed in Figs. 3.2-3.6. for the 1/2-filled case

and in Figs. 3.7-3.11 for the 3/4-filled case.

In Figs. 3.2 and 3.7, the ratio of the plasma frequencies for the

polarization E || x and E || y  is plotted.  The effect of the dimensionality

is obvious.  By use of these diagrams, we can determine the ratio of the

transfer integrals from the observed anisotropy of the plasma frequency.

Since the plasma frequency is proportional to x /√V  (for the E || x

polarization) or to y /√V  (for E || y), where V is the cell volume, the

plasma frequency should be normalized with respect to these factors

before use.

The absolute values of the transfer integrals in eV units can be

obtained by comparing the observed values of the plasma frequency with

the ones plotted in Figs. 3.3 and 3.8, which are normalized for the lattice

parameters and for tT
1 / 2 = (tx +ty) 

1 / 2 and are measured in Å 1 / 2 eV  1 / 2

units.  Suppose that tx +ty = tT eV in our case and that we have the value

of the observed plasma frequency of ωP
obs  eV Å 1 / 2 normalized for the

lattice parameters.  Using the diagrams, we can find the value for tx +ty =

1 eV, ωP
calc Å 1 / 2 eV 1 / 2, from the relevant transfer integral ratio.  Then, we

obtain tT = (ωP
obs/ωP

calc)2, because the plasma frequency is proportional to

the square root of the transfer integrals.  From the sum and ratio of the

two, the value of each transfer integral can be determined.

The fractional value of the cross-sectional area for each cyclotron

orbit is shown in Figs. 3.4 and 3.9, as a function of the transfer integral

ratio.  The topology of the Fermi surface varies with the ratio as schemat-

ically shown in Fig. 3.12, where the notation of the orbits is also shown.
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Since the β-orbit has the constant value (1.0 for the 1/2-filled case and



0.5 for 3/4-filled case), it is omitted in the diagrams.  Strictly speaking,

the cyclotron motion around the α-orbit should not be observed for this

band structure.  Therefore, the present results should be regarded as those

with considerably small difference between ty and ty′.

Figures 3.5 and 3.10 show the cyclotron mass for each orbit for tx +ty

= 1 eV.  We can obtain the cyclotron mass values in our case, tx +ty = tT

eV, by dividing those in the diagrams by x y tT.  In the 1/2-filled case, the

mass for the β-orbit is about twice as large as that for the α-orbit over a

wide range of the transfer integral ratio.

Figures 3.6 and 3.11 display the radii of the cyclotron orbits.  These

values are useful not only in drawing the approximate shape of the Fermi

surface but also in predicting the ADMRO periods.

In order to see the effect of the removal of degeneracy, some quantities

are calculated for the 1/2-filled band of Eq. (3.4.1) as functions of the

relative difference, 2(ty – ty′)/(ty + ty′).  The values of the transfer integrals,

tx = 0.048 eV and ty + ty′ = 0.104 eV are used.  Figure 3.13 shows the

plasma frequencies.  It is found that the intensity of intraband transitions

for E || y decreases more rapidly than that for E || x.  The cyclotron

masses are shown in Fig. 3.14, where the magnetic breakdown is assumed

for the β-orbit.  Compared with the plasma frequencies, they seem to be

less sensitive to the removal of degeneracy in this model.
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Fig. 3.1.  A realistic model of the intermolecular interactions in two-dimensional

                molecular conductors.  All the molecules are equivalent.  Each molecule

                is surrounded by six nearest neighbor ones.  Solid lines indicates the 

                unit cell.
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Fig. 3.2. Anisotropy of plasma frequency plotted against the transfer integral

ratio, for the 1/2-filled model band with ty = ty´. (a) for tx < ty,

and (b) for tx > ty.
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ratio, for the 1/2-filled model band with ty = ty´. (a) for tx < ty,

and (b) for tx > ty.
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Fig. 3.4. Fractional cross-sectional area of each cyclotron orbit plotted against

the transfer integral ratio, for the 1/2-filled model band with ty = ty´.

(a) for tx < ty, and (b) for tx > ty. For the notation of the orbits, see

Fig. 3.12.
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Fig. 3.5. Cyclotron mass of each orbit normalized for the lattice constants and

for total transfer integral, , tT = tx + ty, is plotted against the transfer

integral ratio, for the 1/2-filled model band with ty = ty´. (a) for

tx < ty, and (b) for tx > ty. For the notation of the orbits, see Fig. 3.12.
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Fig. 3.6. Fractional radii of each cyclotron orbit plotted against the transfer

integral ratio, for the 1/2-filled model band with ty = ty´. (a) for

tx < ty, and (b) for tx > ty. For the notation of the orbits, see Fig. 3.12.
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Fig. 3.7. Anisotropy of plasma frequency plotted against the transfer integral

ratio, for the 3/4-filled model band with ty = ty´. (a) for tx < ty,

and (b) for tx > ty.
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Fig. 3.8. Plasma frequencies normalized for the lattice constants and for total

transfer integral, tT = tx + ty, is plotted against the transfer integral

ratio, for the 3/4-filled model band with ty = ty´. (a) for tx < ty,

and (b) for tx > ty.
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Fig. 3.9. Fractional cross-sectional area of each cyclotron orbit plotted against

the transfer integral ratio, for the 3/4-filled model band with ty = ty´.

(a) for tx < ty, and (b) for tx > ty. For the notation of the orbits, see

Fig. 3.12.
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Fig. 3.10. Cyclotron mass of each orbit normalized for the lattice constants and

for total transfer integral, , tT = tx + ty, is plotted against the transfer

integral ratio, for the 3/4-filled model band with ty = ty´. (a) for

tx < ty, and (b) for tx > ty. For the notation of the orbits, see Fig. 3.12.
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Fig. 3.11. Fractional radii of each cyclotron orbit plotted against the transfer

integral ratio, for the 3/4-filled model band with ty = ty´. (a) for

tx < ty, and (b) for tx > ty. For the notation of the orbits, see Fig. 3.12.
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Fig. 3.12. Schematic display of the Fermi surface topology. Notation of the

cyclotron orbits and their radii are also shown. The topology changes

to right, with increasing tx /ty.
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Chapter 4.

Electronic Structure of θθθθ-(BEDT-TTF)2I3

59



4.1. Introduction

A quasi-two-dimensional (2D) molecular conductor θ-(BEDT-

TTF)2I3, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene, exhib-

its superconducting transition at 3.6 K under ambient pressure [1], which

is the first discovery of an organic superconductor in Japan (1986).  The

arrangement of BEDT-TTF molecules in the donor sheets of this salt

(Fig. 4.1.1) [2] contains no  distinct dimerization, but has approximately

high symmetry which affords a considerably simple band structure with a

large 2D free-electron-like Fermi surface [2].  For this reason, this salt

occupies a unique position among the molecular conductors; one-

dimensional stacking or dimerization is the most popular structural motif

in the molecular conductors.

However, the situation becomes somewhat complicated, when the

doubled periodicity stemming from the anion arrangement [3] is taken

account of.  First, most crystals are twinned [2-4], which may yield

ambiguity in the experimental study of this salt.  Second, the band structure

calculated on the basis of the detailed crystal structure gives complex

topology of the Fermi surface [4].  Therefore, experimental examinations

of the electronic structure of this salt have been desired.

The optical experiment [5] was first applied to the band structure of

this salt (Sec. 4.3).  Unlike other metallic BEDT-TTF salts, θ-(BEDT-

TTF)2I3 exhibited Drude-like spectra even at room temperature.  It was

concluded from this that the optical properties of this salt are basically

understandable on the basis of the simple band structure emerging from
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the highly symmetric molecular arrangement.   Unlike the calculated ones
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Fig. 4.1.1.  The arrangement of BEDT-TTF in the conduction layer of θ-(BEDT-TTF)2I3.

The solid and broken lines indicate the orthorhombic and monoclinic unit cells,

respectively.



[2,4], the shape of the Fermi surface predicted from the optical results is a

simple elliptic one [5].   Following this,  the de Haas-van Alphen (dHvA)

oscillations were observed in this salt [6].  A clear saw-tooth-like waveform,

which is characteristic of a nearly ideal 2D system, was directly detected

for the first time [6].  The topology of the Fermi surface deduced from

the dHvA results [6] have supported the prediction by the optical study

[5].  The detailed analysis of the dHvA oscillations [7], which takes

account of the magnetic breakdown effect, have confirmed the geometry

of the Fermi surface (Sec. 4.6).

Another significant finding in this salt is the angle dependent magne-

toresistance oscillation (ADMRO); this phenomenon was found first in

this salt by Kajita el at. [8], though it was found also independently in

β-(BEDT-TTF)2IBr2 [9,10].  The origin of the ADMRO has been theoret-

ically explained by considering a quasi-2D cylindrical Fermi surface with

small warping [11,12].  However, the interpretation of the ADMRO in

θ-(BEDT-TTF)2I3 in terms of a realistic band structure has not been reported

yet, although the ADMRO is expected to provide valuable information

on the Fermi surface geometry.  For this reason, the ADMRO in this salt

is reexamined and interpreted [13] (Sec. 4.7).

In this way, the study of θ-(BEDT-TTF)2I3 well illustrates how the

band structure of a molecular conductor is explored.  It also demonstrates

how the optical study is efficient.  The main purpose of this chapter is the

description of these aspects.  The optical study is given in Sec. 4.3.

Section 4.4. deals with the magnetic properties in the superconducting

state, as a characterization of the superconductivity.  Section 4.5. treats
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the thermoelectric power measurement, which provides an aspect from a



different viewpoint.  In Secs. 4.6 and 4.7, the dHvA results and the

Subnikov-de Haas (SdH) results [14] are described, respectively.  In the

latter, the recent finding of an extraordinarily small three-dimensional

Fermi surface [14] is also presented.  Finally, the reexamination of the

ADMRO is reported in Sec. 4.8.

4.2. Experimental

The single crystals of θ-(BEDT-TTF)2I3 used for the optical exper-

iments were provided by Prof. Hayao Kobayashi (Toho Univ.), Prof.

Akiko Kobayashi and Prof. Reizo Kato (Univ. of Tokyo).  The crystals

were grown by electrochemical oxidation of BEDT-TTF in a tetrahydrofu-

ran solution containing 95:5 mixture of (n-C4H9)4NI3 and (n-C4H9)4NAuI2

as supporting electrolyte around 20 C  [15].  The single crystals used in

the other studies (Secs. 4.4-8) were prepared by the author in a similar

way.  The content of Au in the crystals was usually so small that this salt

is considered to be essentially the I3 salt.  In fact, it was found in the

present study that the addition of (n-C4H9)4NAuI2 is not necessary in the

crystal growth.  Electrocrystallization without (n-C4H9)4NAuI2 using Pt

plates or wires as the electrodes afforded the single crystals with satisfac-

torily high quality even under air.  It took about a weak to obtain the

crystals with a constant current of 1 µA applied.  However, it was also

found that the result of the crystallization strongly depends on the cell

used.  In most cases, the product was α-(BEDT-TTF)2I3.

Two nomenclatures of the crystal axes are used: the one is based on
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the averaged orthorhombic structure with the space group of Pnma [2],



and the other is based on the monoclinic structure with the space group of

P21/c [3,4], which explicitly takes account of the doubled periodicity and

the twinned lattice.  The relation between the two [3] is, am = 2co, bm = ao

and cm = bo – co, where the subscripts, m and o, mean the monoclinic and

orthorhombic lattices, respectively.  The 2D plane is the aoco-plane in the

orthorhombic lattice.  Since the present study concerns mainly the

orthorhombic structure, the notation based on it is used in Secs. 4.3-4.5,

though Secs. 4.7 and 4.8 are written in terms of the monoclinic notation.

The crystal axes were identified by X-ray diffraction or by reflectance

anisotropy in all the experiments.

Polarized reflectance spectra (Sec. 4.3) were measured on the (010)

crystal face for the light polarizations parallel to the a- and c-axes. These

are the principal directions within the 2D plane.  The spectra were measured

by the method described in Sec. 3.1, at 295, 200, 120, 75 and 16 K.  The

spectrum for the polarization parallel to the b-axis (perpendicular to the

plane) was also measured at 295 K on the (001) crystal face.

Static magnetization measurements were carried out by use of an

SHE SQUID magnetometer model 905.  The correction for the sample

holder was made only when the magnetization of the sample is about as

small as that of the holder.

Thermoelectric power (Sec. 4.5) was measured by Prof. Takehiko

Mori (Tokyo Institute for Technology) in The Institute for Molecular

Science.  The measurement was made along the a- and c-axes.  The

results are little affected by whether gold foil as the thermal contact is

used or not.
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The dHvA measurements (Sec. 4.6) were carried out by Prof. J. S.



Brooks, Dr. A. G. Swanson (Boston Univ.), Prof. C. C. Agosta (Clark

Univ.), S. T. Hannahs (Massachusetts Institute of Technology) and Dr.

Madoka Tokumoto (Electrotechnical Laboratory) with the assistance by

the staff of the Francis Bitter National Magnet Laboratory at Massachusetts

Institute of Technology [16].  For the measurements, the single crystal

sample was installed in a 3He cryostat designed to operate in high field

magnets at the Francis Bitter National Magnet Laboratory.  The magneti-

zation of the sample was measured up to about 23 T by Brooks' method

using the small-sample force magnetometer [17].  Transverse magnetore-

sistance was also measured by the standard four-probe method with gold

contacts using a lock-in ac detection.

The SdH and ADMRO experiments were performed by Dr. Haruyoshi

Aoki, Dr. Shinya Uji and Dr. Taichi Terashima (National Research Insitute

for Metals).  Electric contacts were made by gold paste.   The sample

used showed no superconductivity down to 0.05 K.  The residual resistivity

ratio, ρ(280 K) /ρ(4.2 K), of the sample amounted to about 1000.  The

SdH signals were recorded up to 13.8 T with electric current in the

direction perpendicular to the 2D plane by using the field modulation

technique.  The ADMRO was also measured with this current direction.

4.3. Reflectance Spectra

4.3.1. Spectral Features

Figure 4.3.1 shows the polarized reflectance spectra measured at

room temperature.  Both the || a and || c spectra exhibit Drude-like disper-
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sions  in the infrared region  showing  the plasma edge  around 4000-6000
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Fig. 4.3.1.  Polarized reflectance spectra measured at room temperature.



cm –1.  In the cases of the BEDT-TTF salts investigated before [18-22],

the shapes of the infrared reflectance spectra were not Drude-like, at least

at room temperature.  To our knowledge, θ-(BEDT-TTF)2I3 is the first

example of the BEDT-TTF salt whose room temperature spectra exhibit

Drude-like infrared dispersion for the two independent light polarizations

within the two-dimensional molecular sheet of   BEDT-TTF.

As already mentioned, the reflectance spectra of metallic BEDT-TTF

salts usually show a non-Drude-like infrared dispersion.  To elucidate the

origin of these dispersions, a systematic investigation of reflectance spectra

on a series of BEDT-TTF salts has been carried out [18-22].  In these

studies, the probabilities of the optical interband transitions from the

lower filled bands to the upper vacant (or partially filled) bands have

been calculated in the framework of the one-electron band model.  In the

cases of the BEDT-TTF salts, these bands are formed from the HOMOs

of BEDT-TTFs.  It has been shown that the observed infrared dispersions

are primarily associated with the interband transitions and have relatively

small contribution of the intraband transitions [18-22].

Similar calculations based on the orthorhombic BEDT-TTF lattice

of θ-(BEDT-TTF)2I3 yield no contribution of the interband transitions.

This is consistent with the rule given in Appendix A.: The BEDT-TTF

layer has glide symmetry along the a-axis and two-fold screw symmetry

along the c-axis, and contains two BEDT-TTFs in the two-dimensional

unit cell.  This well explains the absence of dominant contribution of the

interband transitions.  The infrared dispersions of θ-(BEDT-TTF)2I3 are

thus attributed basically to the intraband transitions.
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The broad peak near 20 × 10 3 cm –1 in the || c spectrum can be



assigned to the intramolecular excitation of I3
–, which is expected to be

completely polarized in the direction of the long axis of this linear anion.

The || b reflectance spectrum measured on the (001) crystal face is shown

in the inset of Fig. 4.3.1.  The prominent dispersion near 10 × 10 3 cm –1 is

attributable to the intramolecular excitation of the cation radical of BEDT-

TTF, since the transition moment of this dispersion is almost parallel to

the long axis of the BEDT-TTFs.  The excitation energy was evaluated to

be 1.22 eV by the curve-fitting analysis assuming a Lorentz oscillator.

The spectroscopic study on BPDT-TTF (bis(propylenedithio)tetrathiaful-

valene) radical salts also supports this assignment [23].  Incidentally, the

fact that there is no indication of in the || b spectrum for the presence of a

reflectivity minimum around 5000 cm –1 associated with the plasma edge,

indicates that the delocalization of charge carriers along the b-axis is

strongly interrupted by the layers of the counter anions sandwiched by

the BEDT-TTF molecular sheets.

Figure 4.3.2 shows the reflectance spectra of θ-(BEDT-TTF)2I3 mea-

sured at several different temperatures.  On lowering temperature, the

plasma edge becomes sharper accompanying the increase in reflectivity

in the low wavenumber region.

Although the spectra shown are Drude-like, it is not possible to

reproduce exactly the observed reflectance curves only with the Drude

model.  Figure 4.3.3 shows the conductivity spectra in the infrared region

obtained from the Kramers-Kronig analysis of the reflectance data.  Small

broad shoulders around 2500 cm –1, which is indicated by the arrows in

Fig. 4.3.3, appear on the Drude tails.  These shoulders seem to be the
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ones associated with the interband transitions which used to appear in the
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Fig. 4.3.2.  Temperature dependence of the reflectrance spectra.  The upper and lower

panels show the E //a and E // c spectra, respectively.  Solid curves show the fit to the

Drude-Lorentz model.
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Fig. 4.3.3.  Conductivity spectra at various temperatures.  The arrows indicate the weak

absorption due to the interband transitions.



spectra of the BEDT-TTF salts in the infrared region.  If the arrangement

of the BEDT-TTFs is exactly describable by the orthorhombic lattice, the

interband transition should be absent, as mentioned above.  The appearance

of the weak interband transitions indicates the slight deviation of the

arrangement from the orthorhombic structure.

According to the X-ray analysis of the crystal structure [3], the real

structure is described by the monoclinic lattice.  The glide mirror and the

screw symmetries are no longer hold within the molecular layer of this

monoclinic structure.  The unit cell is doubled along the c-axis.  Therefore,

the symmetry discussion based on the orthorhombic lattice is an approx-

imate one; weak interband transitions can be observed.  Nevertheless, the

fact that the interband contributions are very small supports that the con-

sideration based on the orthorhombic lattice is a good approximation.

The small hump appearing around 1100 cm –1 in the || a and || c

spectra (Figs. 4.3.1 and 4.3.2) is attributable to the totally-symmetric

vibrational mode of BEDT-TTF coupled with the conduction electrons,

because its position and linewidth agree with the corresponding peak

observed in the spectra of other BEDT-TTF salts [24].  This electron-

molecular-vibration (e-mv) coupling peak arises by borrowing the intensity

of the interband transitions.  The appearance of the weak e-mv peak in

the spectra of θ-(BEDT-TTF)2I3 also supports the presence of the weak

interband transitions in this salt.

4.3.2. Curve-fitting Analysis and Optical Effective Mass

In order to separate the contribution of the intraband transitions and
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those of the interband transitions and the intramolecular transitions, the



curve-fitting method based on the following Drude-Lorentz dielectric func-

tion,

ε (ω ) = ε C – ω P
2 / (ω 2+iω / τ) + ∑ f j  / [(ω j

2 –ω 2) – iγ jω ].
                                                                       j

(4.3.1)

was used.  The first term stands for the dielectric constant stemming from

the higher energy excitations outside the experimental spectral region, the

second term is the Drude term representing the intraband transitions, and

the third term describes the interband transitions (j = 1) and the local

excitation of I3
– anion (j = 2).  The results of the curve-fitting were shown

by the solid curves in Fig. 4.3.2, and the obtained parameters are summarized

in Table 4.3.I, together with the dc conductivity values deduced from this

model.  The local excitation of I3
– near 20000 cm –1 is explicitly included

for the analysis of the || c spectrum at room temperature, but it is not for

the low temperature spectra, which is limited below 4200 cm –1.  However,

the local excitation is implicitly included in the first term, ε C, because the

contribution of the third term for this excitation is almost constant below

4200 cm –1.  The reflectivity is related to dielectric function by the equation,

    R = [1 + | ε | –√2(| ε | + Re(ε)) ] / [1+| ε  | + √2(| ε | + Re(ε)) ] .

(4.3.2)

In terms of a two-dimensional parabolic band model (a nearly-free-electron

model), the anisotropic effective mass of the carriers can be derived from
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the plasma frequency for each polarization.  The band model is expressed



as,

ε  = – h 2 [ka
2 /2m*a + kc

2 /2m*c ]  ,                        (4.3.3)

where m*a and m*c are the a- and c-components of the effective mass

tensor.  The plasma frequency is given by,

(ω P
2)x = 4 π n e 2/m*x  ,   x = a and c                      (4.3.4)

From the plasma frequency data at 16 K, the effective masses are calculated

to be m*a = 1.5 me and m*c = 3.0 me.

Table. 4.3.I.  The Drude parameters obtained by the Drude-Lorentz fit of

the reflectance data.
                                                                                                      

Polarization  T / K     εc      ωp / eV  τ – 1 / eV   σdc
opt / S cm – 1 a)

                                                                                                      
// a 295 3.55 0.92 0.16   730

200 3.49 0.97 0.087 1440
120 3.62 1.04 0.068 2130
  16 3.42 1.05 0.042 3550

// c 295 2.52 0.62 0.12   440
200 5.59 b) 0.71 0.074   900
120 5.68 b) 0.72 0.049 1400
  75 5.76 b) 0.72 0.039 1910
  16 5.98 b) 0.73 0.022 3290

                                                                                                  

a)  The values obtained by extrapolating the Drude conductivity to

zero wavenumber.

b)  These values are larger than the room temperature one, because

they involve the contribution of the local excitation of anions.
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See Text.



4.3.3. Tight-binding Band Structure Derived from Optical Data

According to the tight-binding model taking account of HOMOs of

BEDT-TTFs, the energy band of θ-(BEDT-TTF)2I3 is expressed as,

E(ka, kc) = 2tc cos(ckc) ±  4 ta cos(aka / 2) cos (ckc / 2) ,     (4.3.5)

where the transfer integrals, ta and tc, are defined as indicated in Fig.

4.1.1.  Because of the high symmetry of the molecular arrangement in the

assumed orthorhombic BEDT-TTF sublattice, the band structure is de-

scribed only by three parameters, EF, ta and tc, where EF is the Fermi

energy.  These parameters can be related to the three experimental data,

i.e. ,  the plasma frequencies,     (ω P)a and (ω P)c , and the number of holes,

Nh, which is estimated from the crystal structure and the stoichiometry.

The Fermi energy is determined implicitly by,

                                     k Fc

Nh = (2 / 4π 2) (4 /a) ∫   cos –1{[EF – 2tccos(ckc)] / 4 ta cos (ckc / 2)} dkc,
                                    0

(4.3.6)

                                         

where Nh is the number of holes per unit area of the (010) plane (the

conduction plane), and kFc denotes the maximum value of the c-component

of the Fermi wave vector.  The plasma frequencies are related to the

Fermi velocities by,

                                                                         k Fc

(π 2h / e 2)(ωP
2)a  = [2π /(b / 2)]∫ | vFa(kc) | dkc ,            (4.3.7)
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                                                                       –k Fc 



                                                                         k Fa

(π 2h / e 2)(ωP
2)c  = [2π /(b / 2)]∫ | vFc(ka) | dka ,            (4.3.8)

                                                                       –k Fa 

where kFa is the maximum value of the a-component of the Fermi wave

vector, vFa and vFc denote the a- and c-components of the Fermi velocity,

respectively, and b is the lattice constant perpendicular to the (010) plane.

Note that the unit cell of θ-(BEDT-TTF)2I3 includes two equivalent con-

duction layers.  The Fermi velocity is defined as,

vF = h –1 [gradk E(ka, kc)];  E = EF.                  (4.3.9)

The parameters, kFa and kFc are related to the Fermi energy by,

EF = 2tc  +  4 ta cos(akFa / 2),                        (4.3.10)

EF = 2tc cos(ckFc) +  4 ta cos (ckFc / 2) ,             (4.3.11)

By numerically solving the simultaneous equations, (4.3.6)-(4.3.11), a set

of solution, EF, ta, tc, kFa and kFc were obtained.  The results are shown in

Table 4.3.II.  For example, at 16 K,  the parameters are EF = 0.12 eV, ta =

0.080 eV,  tc = 0.046 eV, kFa = 0.30 Å –1 and kFc = 0.42 Å –1.  Figure 4.3.4

shows the energy band structure and the Fermi surface calculated by use

of these parameters.  This is the first example of BEDT-TTF salt where

the transfer integrals of the tight-binding band model are directly inferred

from the optical data.
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Fig. 4.3.4.  The tight-binding band structure and the Fermi surface estimated from the

reflectance spectra at 16 K.
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Table 4.3.II.  The tight-binding band parameters estimated from the optical data.

                                                                        

T / K ta / eV tc / eV EF / eV εF / eV a)kFa / Å
–1 kFc / Å

–1

                                                                        

200 0.069 0.045 0.10 0.26 0.30 0.41

120 0.078 0.043 0.11 0.28 0.29 0.42

 16 0.080 0.046 0.12 0.29 0.30 0.42

                                                                        

a) The Fermi energy measured from the top of the conduction band, i.e.,

    εF = 2 tc + 4 ta – EF.

Fig. 4.3.5.  The shape of the Fermi surface calculated from the crystal structure by means of

the tight-binding approximation.  Left: for the orthorhombic lattic [2].  Right: for the

monoclinic lattice [4].



The band structure and the shape of the Fermi surface thus obtained

are somewhat different from those calculated from the crystal structure

[2,4] (Fig. 4.3.5).  In the calculations of the band structure from the

crystal structure, the transfer integrals (t 's) are assumed to be proportional

to the overlap integrals (S's) between the HOMOs of BEDT-TTFs.  The

present optical study has yielded ta / tc = 1.7,   whereas the calculated

ratio of the overlap integrals is Sa / Sc = 0.66 [2].  This difference, which

is the origin of the difference between the experimental and calculated

band structures, is not negligible.  In order to establish the band structure

of θ-(BEDT-TTF)2I3, it is desired to study it by further experiments.

It should be also remarked here again that the present results are

based on the orthorhombic average structure.  The doubled periodicity

along the c-axis in the monoclinic structure yields the Brillouin zone

folded at the mid point of the ΓZ line.  This folding results in the closed

pocket area around the new zone boundary.  The area of this pocket

amounts to 14 % of that of the first Brillouin zone.  Furthermore, the

lowered symmetry gives rise to removal of degeneracy on the new zone

boundary, which is not included in the present band model.  The mid-infrared

optical properties are insensitive to the expected small gap structures of

the Fermi surface.  Therefore, an experiment sensitive to the detailed

structure of the Fermi surface can afford results slightly different from

the present ones.  However, the origin of such difference should be under-

stood in this way.  The essential point of the present conclusion is that the

Fermi surface is an elliptic one elongated along the c-direction.
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4.3.4. Temperature Dependence of the Spectra

The temperature dependence of the spectra is caused mainly by the

temperature dependence of the relaxation time, τ, as noticed from Table

4.3.I.  From the Fermi velocity values and τ, the mean free path of the

carriers is estimated as,

Λ = vF τ,                                         (4.3.12)

Within the (010) plane, the vF values of about 2 × 10 7 cm s –1, are derived

from the band structure obtained as above.  The mean free path within the

(010) plane amounts to about 40 Å at 16 K, larger than the lattice constants.

On the other hand, the corresponding values at room temperature are

shorter than 10 Å, comparable or smaller than the lattice constants.  This

implies the breakdown of the simple picture of metal.  Another contradictory

point concerns the dc conductivities deduced from the optical data (Table

4.3.I).  The agreement between them and the values obtained directly by

the dc measurement is satisfactory at low temperatures.  However, the

agreement becomes remarkably worse as temperature increases; at room

temperature the former are about 400 - 700 S cm –1, whereas the latter is

less than 100 S cm –1.  This fact suggests the possibility of anomalous

non-Drude dispersion at lower wavenumbers outside the experimentally

accessible region at high temperatures.  The extraordinarily short mean

free paths at high temperatures indicates that the carriers are strongly

scattered by some thermally excited modes in the crystal.  The physical

picture has not been established for such a situation yet.  Nevertheless,
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this is expected to be the origin of the anomaly.  At low temperatures, the



concluded electronic structure seems to be free from such complication.

However, it is desired to test it by different experiments.

4.4.  Magnetic Properties in the Superconducting State

Temperature dependence of the shielding and Meissner effect and

anisotropy of the magnetization curve are investigated to characterize the

superconductivity in θ-(BEDT-TTF)2I3.  In the following, the sample

dependence is reported first.  Next, the anisotropy of the magnetization

curve is discussed.

4.4.1. Sample Dependent Superconductivity

The magnetic behavior in the superconducting state is found to vary

from sample to sample.  This should be related to the sample dependent

behavior of the resistivity [25,26].  The sample-dependence of magnetiza-

tion was examined after cooling the sample down to 1.8 K in zero field.

After the cooling, a magnetic field up to 10 G was applied along the

b-axis in order to probe the diamagnetism.  The samples could be divided

into two groups: Group I exhibited a diamagnetic shielding of 0.3 emu/g

at 10 G and Group II exhibited a very small shielding, 1/1000 of the

value of the Group I.  Among the 12 crystals examined, two were found

to be of the Group I.

Figures 4.4.1 and 4.4.2 show the temperature dependence of static

magnetization of the Group I and II samples, respectively.  In this mea-
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surement,   the sample was  first cooled down to 1.8 K in zero field,  then
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Fig. 4.4.1.  Temperature dependence of the shielding and Meissner effect of the Group I

sample (#13-5 in Table 4.4.I) in the magnetic field of 10 G applied along the b-axis.

Correction for the background is not made.
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Fig. 4.4.2.  Typical temperature dependence of the shielding and Meissner effect of the

Group II sample in the magnetic field of 10 G applied along b-axis.  Since the zero point of

magnetization (ordinate) is ambiguous in this case, it was taken as the magnetization value at

5K.  Compare the scale of magnetization with that in Fig. 4.4.1.



the magnetic field of 10 G was applied, and the diamagnetic shielding

signal was measured on the warming process up to 5 K.  Again the

sample was cooled down to 1.8 K in the same field in order to measure

the Meissner signal.  As shown in Figs. 2 and 3, the diamagnetism of the

Group I samples was much larger than that of the Group II samples in the

lower temperature.  The diamagnetic shielding decreased with increasing

temperature up to about 3.5 K.  Above this temperature, the Group I

sample shows a small and constant signal due to the Pauli paramagnetism,

while the magnetization signals of the Group II sample were too small to

distinguish from background noises above 3 K.  This behavior is not in

conflict with the reported temperature dependence of the resistivity at

zero field, because the applied field (10 G) slightly exceeds the lower

critical field even at 1.8 K as described below.

On the cooling process in the magnetic field, the Group I sample

exhibited a diamagnetism due to the Meissner effect which gradually

increased on cooling down to 1.8 K.  The Meissner signal, which was

defined as the ratio of the Meissner expulsion to the shielding signal, was

about 1 above 3 K, while it reduced with decreasing temperature.  It was

found to be about 0.1 at 1.8 K for the Group I sample.  The Group II

sample showed a similar Meissner behavior.  However, the Meissner

signal was estimate to be 5 times as large as that of the Group I sample at

1.8 K.  Since the shielding signal of the Group II sample is remarkably

small for its size, the large Meissner signal never involves large supercon-

ducting volume.

Judging only from the Meissner signal value of about 0.1, the super-
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conductivity in θ-(BEDT-TTF)2I3 seems to be a bulk one.  In this case,



the shielding effect is suppressed by insufficient development of supercur-

rent path loop on the crystal surface as observed in the Group II samples.

Since the penetrating flux tends to be trapped mainly in the defect domain

in the Group II crystal, the Meissner to shielding ratio could be held at

rather larger value (0.5) than that of the Group I sample (0.1).  Anyway in

the Group II crystals, the fractional volume of the superconducting part is

significantly suppressed.  The reduction of the superconducting volume

can result in the appearance of the residual resistivity [25,26].

4.4.2. Anisotropy of the Lower Critical Field (Hc1)

The anisotropy of magnetization curve of the Group I sample up to

40 or 60 G was investigated at 1.8 K.  Figures 4.4.3 and 4.4.4 show the

initial magnetization and the magnetization curves obtained by applying

magnetic field along the crystal axis, b, a and c.  The b-axis is normal to

the conduction layer, and the a- and c-axes are the in-plane directions.

Strong irreversibility in the magnetization curves found for all the field

directions is attributable to the flux trapping, which is a characteristic

feature of the non-ideal type II superconductor.

The initial magnetization for H || b was from ten to twenty times as

large as those for the fields along the in-plane directions, H || a  and H ||

c. The magnetization curve for H || b has a definite diamagnetic maximum,

whereas the magnetization is approximately constant or gradually decreas-

ing in the high field region for H || a and H || c.  This difference indicates

that the upper critical field, Hc2, has smaller value for H || b than that for

H || a or H || c.  This observation agrees with the result of resistivity
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measurements [26],  in which the values of Hc2 for H || b was found to be
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Fig. 4.4.3. Initial magnetization of the Group I sample (#13-5 in Table 4.4.I) at 1.8 K for the

three field directions, b, a, and c. The solid lines are the least square fit of the first

several data points to linearity, indicating the initial slope.
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Fig. 4.4.4 Magnetization curves of the Group I sample (#13-5 in Table 4.4.I) at 1.8 K for the

three field directions, b, a and c.



larger than that for an in-plane field by a factor of about 30.  Furthermore,

a strong flux trapping may also prevent the field from penetrating into the

sample in the higher field along the ac-plane.

We define Hc1
obs as the field where the first deviation from linearity

in the magnetization curve of the shielding signal occurs. In fact, we

required that Hc1
obs should satisfy the following two conditions: i) at Hc1

obs

the diamagnetic signal reduces to the value less than 98% of that extrapolated

linearly from the least square fit of the first 4 or 5 data points, and ii) at

the fields higher than Hc1
obs the signals show no recovery to the extrapolated

values. The ambiguity in estimating Hc1
obs was less than ± 1 G for H || b

and ± 0.2 G for H || a and H || c. The Hc1
obs values thus estimated for the

three field directions are compiled in Table I, together with the sizes of

the samples used. At a glance, they do not seem to be very anisotropic;

the deviation from linearity starts at the field of about 2 G for all the

directions.  However, they could be underestimated values of the lower

critical field, Hc1, because of the demagnetization effect.  The samples

used in our experiments were rather thin plates, so that the effective field

felt around the sample is much enhanced owing to the demagnetization,

especially for the field normal to the plane.  Since the shapes of our

samples were far from ellipsoids, the magnetic field felt near the sample

surface should be inhomogeneous.  Thus it is difficult to carry out an

accurate correction for the demagnetization effect.  However, we have

carried out a rough estimation by approximating the sample shape as an

ellipsoid touching internally to crystal faces in order to obtain the demag-

netization factors.  The enhancement of the effective field is written as
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       Heff = Happ / (1–D) = f  Happ ,                           (4.4.1)

where D (0 ≤ D ≤ 1) is the demagnetization factor and f is the enhancement

factor.  The ellipsoid approximation gives an enhancement factor of about

5 for the field normal to the plane, while the factors are near 1 for the

in-plane fields. This estimation is considered to reflect the lower limits of

the enhancement factors.  The values of Hc1's, estimated roughly in this

way, are also listed in Table 4.4.I, together with the enhancement factors

calculated from the demagnetization coefficients for the ellipsoids [11].

Another way to evaluate the anisotropy of Hc1 is to use the initial

magnetization slope.  Without the demagnetization effect, the slopes of

the curves for the three field directions should be equal to each other in

the linear region at low field.  Even if there is the demagnetization effect,

we could still obtain the same slopes using Heff instead of Happ.  We

changed the scale of each field so that the three curves have the same

slope in the linear region.  The result is shown in Fig. 4.4.5, where the

demagnetization factor for H || c is assumed to be equal to that calculated

by the ellipsoid approximation.  This method gives the anisotropic Hc1

values, Hc1, b = 40 G, Hc1, a = 1.4 G, and Hc1, c = 2.0 G.  Since the field

applied perpendicular to the plane exhibits strong inhomogeneity, the

difference between Hc1, b values estimated by the two methods is not

surprising.  The Hc1, b value given by the ellipsoid approximation is clearly

underestimated.

Thus, anisotropic Hc1 values were estimated for this  material, which

is compatible with the anisotropy of Hc2 reported previously.  Similar

anisotropic   behavior   was   found    in   other   organic   superconductors,
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Table 4.4.I.  The lower critical filed, the demagnetization factor and the size of the 

sample for each field direction.

                                                                        
Sample Direction Size /mm Hc1

obs / G Hc1 / G
 a) D  f  Hc1 / G  b)

                                                                        
#13-5 b 0.16 4.0 17 0.77 4.35 40

a 0.74 1.2   1.4 0.15 1.18   1.4
c 1.10 1.8   2.0 0.08 1.09   2.0

#2-1 b 0.13 2.0 11.1 0.82 5.56
a 0.94 1.0   1.1 0.09 1.10
c 1.05 1.5   1.6 0.08 1.09

                                                                        

a)  The lower critical fields obtained by the ellipsoid approximation.

b)  The lower critical fields evaluated by adjusting the initial magnetization slope.

Fig. 4.4.5  Initial magnetization of the Group I sample (#13-5 in Table 4.4.I)  at 1.8 K,  

plotted versus H eff.   For the H //c data (filled squares),  H eff is calculated by the ellipsoid

approximation, while those for the H //a (open circles) and H //b (filled circles) data are

adjusted so that the initial slopes match with that of the H //c curve.  Note that the initial

magnetization is about 10 % of that of the perfect diamagnetism (broken lines).  The sample

volume was calculated from the density, 2.25 g / cm 3, and the crystal weight, 0.33 mg.



(TMTSF)2ClO4 [28,29], β-(BEDT-TTF)2I3 [30], β-(BEDT-TTF)2IBr2

[31], β-(BEDT-TTF)2AuI2 [31], and κ-(BEDT-TTF)2[Cu(NCS)2] [32].

In the framework of the Ginzburg-Landau (GL) theory, Hc1 and Hc2

are related to GL parameter, κ, and the thermodynamical critical field,

Hc, by the equations,

        κ = (1/2) 1 / 2 (ln κ + 0.497) Hc / Hc1,                                   (4.4.2)

        κ = (1/2) 1 / 2 Hc2 /Hc .                                            (4.4.3)

The parameter, κ, is defined as

        κ = λ / ξ ,                                             (4.4.4)

where λ is the penetration depth and ξ is the coherence length.  The

observed anisotropy of Hc1, as well as of Hc2, is probably ascribable to the

anisotropy of ξ, which is largest in the ac-plane [26].  The estimated Hc1

values are about 40 G for H || b ( by the initial slope scaling method ) and

from 1.1 to 2 G for the in-plane fields.  The ratio, 20 to 36, is consistent

with that of 1/Hc2, about 30.

Although the in-plane anisotropy of Hc2 has not been known, the

anisotropic optical effective mass was estimated as [6],

    m*a = 1.5 me and m*c = 3.0 me,                       (4.4.5)
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where me denotes the electron mass.  It was elucidated that the nearly-



free-electron model with parabolic dispersion can well reproduce the tight-

binding band structure of this material [6].  Using the former model, we

obtain the ratio,

        κc / κa = vFa / vFc = (m*a / m*c )
 1 / 2= 0.7 ,                     (4.4.6)

where vFa and vFc are the a- and c-components of the Fermi velocity,

respectively.  On the other hand, to the limit of large κ, we can calculate

the ratio, κc / κa, from Eq.(4.4.2) as,

       κc / κa = (Hc1)a / (Hc1)c .                                  (4.4.7)

By use of the Hc1 values obtained in this work, the ratio, κc / κa, is

estimated to be 0.7. This is consistent with the result of Eq.(4.4.6).

4.5. Thermoelectric Power

In Sec. 4.3, the structures of the conduction band and the Fermi

surface of θ-(BEDT-TTF)2I3 have been derived from the optical properties

by assuming the orthorhombic averaged structure.  However, strictly speak-

ing, the assumed structure, and thus the derived band structure, does not

exactly hold for a real crystal of θ-(BEDT-TTF)2I3, because the true

structure is the monoclinic one with lowered symmetry of the molecular

arrangement.  Since the effect of this difference is small, as noted by the
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weakness of the interband transitions, the global shape of the Fermi surface



derived from the optical data is reliable.  In other words, the optical

experiments probe only the global features and are insensitive to local

small structures of the Fermi surface.  For more detailed examination of

the electronic structure of this salt, it is necessary to do other experiment

which is sensitive to small structures.

Thermoelectric power (TEP) measurement is one of such tools [33,34].

As well as dc conductivity measurement, it reflects the lowest energy

excitation (< kBT) around the Fermi level.  Moreover, its sign and amplitude,

which may be anisotropic and temperature dependent, reflect the curvature

of the energy band around the Fermi surface.  In some cases, TEP infor-

mation has been shown to be useful to investigate the Fermi surface of

BEDT-TTF salts.  Thus, it is expected that TEP measurement would

reveal a new feature of the structure of the Fermi surface of θ-(BEDT-

TTF)2I3, which was not detected in the optical study.

Figure 4.5.1 shows the TEP of θ-(BEDT-TTF)2I3 measured along

the two directions in the conduction plane, a and c.  For both directions,

TEP is considerably small as compared with other BEDT-TTF salts.

Along the a-axis, TEP is negative and very small; it is almost zero at

room temperature.  The TEP makes a broad shoulder and minimum around

50 K and 200 K, respectively.  Along the c-axis, TEP is positive, with a

prominent peak at about 20 K, and gradually decreases with increasing

temperature up to about 220 K.  These features are qualitatively similar to

those of a series of BEDT-TTF salts, (BEDT-TTF)2MHg(SCN)4 (M=K,

Rb and NH4), except for the considerably suppressed values of TEP and

for the minimum at 220 K along the c-axis.  The peak along the c-axis
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should be  ascribed  to the phonon contribution,  such as  the phonon drug
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Fig. 4.5.1.  Thermoelectric power of θ-(BEDT-TTF)2I3.  The broken curves stand for the

calculations with the following parameter sets:

(1): t a = 0.090 eV, t a′ = 0.120 eV and t c = 0.055 eV.

(2): t a = 0.045 eV, t a′ = 0.060 eV and t c = 0.030 eV.

For the definition of the transfer integrals, see Fig. 4.5.2.



effect, rather than to the electronic band origin.  The TEP values are so

small that it is difficult to distinguish exactly the contributions of phonons

and electrons at low temperatures.  In the following, the TEP values

above about 100 K are mainly considered.

It possible to simulate the temperature dependence of TEP on the

basis of the tight-binding band structure [33].  According to the Boltzmann

equation [35], TEP (S) of a metal is expressed as

                                3
         Si j = (1 / eT) ∑ (K0 – 1)i j K1, k j   (i, j, k = x, y, z)  ,         (4.5.1)
                               k=1

      K0, i j = (τ /4π 3h) ∫∫  (vF)i (vF)j (– ∂f0 / ∂ε) (dS  /vF) dε ,       (4.5.2)

K1, i j = (τ /4π 3h) ∫∫  (vF)i (vF)j (ε  – εF)(– ∂f0 / ∂ε) (dS  /vF) dε ,

      (4.5.3)

where f0 is the Fermi distribution function, εF is the Fermi energy, and vF

and (vF)i are the Fermi velocity and its component, respectively.  The

quantities, S, K0 and K1 are tensors.  In the simulations presented here, the

integrals over the Fermi surface were numerically calculated by dividing

the first Brillouin zone into 160 × 160 meshes.

A simulation based on the band structure derived from the optical

study yields positive TEP both for a- and c-axis, which is in contradiction

to the observation.  This band structure is derived by assuming the ortho-

rhombic lattice.  In this assumed structure, the energy band is described
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only by two transfer integrals, ta and tc.  The Fermi surface is determined



so as to satisfy the requirement of 3/4-filling of this band.  The charge

carriers are considered to be holes for this 3/4-filled band.  This is the

origin of the positive sign of the simulated TEP.

It is thus evident that the band structure is more complicated one

than assumed previously.  The effect of lowered symmetry should be

taken account of.  For example, a simple model given in Fig. 4.5.2 can

approximate this feature.  In Fig. 4.5.1, the curves calculated from two

parameter sets for this model are depicted.  Qualitative agreement with

the observation, i.e., the sign for each direction and the small values, is

obtained.  This model can describe the removal of degeneracy on the XM

zone boundary.  This affords the positive curvature of the upper band

near the XM boundary, so that this portion of the Fermi surface retains

the electron character (Fig. 4.5.3).  The origin of the negative TEP along

the c-axis can be understood in this way.

The curvature of the band near the zone boundary is a subtle problem.

This is because of the cos(aka / 2) dependence of the band dispersion for

the basic orthorhombic packing, where the curvature is exactly zero at the

boundary.  This situation is similar to those in κ-(BEDT-TTF)2[Cu(NCS)2]

[33] and (BEDT-TTF)2MHg(SCN)4 [34].  The small values of TEP can

also be understood in this framework, while the considerably wide band

width of this salt also responsible for the suppression of TEP.  It is also

noticed that the TEP values are prescribed not only by the amplitudes of

transfer integrals but also by the differences between them.  Therefore,

further improvement of the fit between the calculation and observation is

difficult.  For instance, the different two parameter sets yields similar
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temperature dependence of TEP.
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Fig. 4.5.3.  Schematic display of the effect of the symmetry lowering (t a >t a′ )

                   on the band structure near the zone boundary.  Thick and broken 

                   lines are with and without the symmetry lowering, respectively.



The present TEP results have revealed that the effect of lowered

symmetry, i.e., the removal of degeneracy, plays a crucial role in the

transport phenomena in θ-(BEDT-TTF)2I3.  This affords a viewpoint dif-

ferent from that of the optical study.

4.6. The de Haas-van Alphen (dHvA) Oscillations

The first observation of the "saw-tooth" dHvA oscillation in θ-(BEDT-

TTF)2I3 has shown that a satisfactory clear 2D  electronic system is realized

in this salt [6].  The topology of the Fermi surface (FS) has been deduced

from the interpretation of the dHvA oscillations in terms of the magnetic

breakdown (MB) effect, the effect of tunnelling across the gap at Fermi

surface under high magnetic field [6].  This point is examined in more

detail in this section.  Moreover, the dHvA results, including the cyclotron

mass, are compared with the band structure inferred from the optical

study (Sec. 4.3)

4.6.1. Analysis of the dHvA Oscillations and Magnetic Breakdown Effect

Figure 4.6.1 shows the magnetization as a function of magnetic field

at the selected temperatures [16].  The data was recorded for the crystal

other than the one previously reported [6,36-38].  A significant difference

between these two samples is the appearance of the nodes at about 12, 15

and 20 T in the data in Fig. 4.6.1.  The Fourier transform of the data
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displayed in Fig. 4.6.2.  shows that these nodes result from the beat of the
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Fig. 4.6.2.  Fourier transform of the 0.89 K data in Fig. 4.6.1.  The inset is the close-up

around the higher frequencies.

Fig. 4.6.1.  dHvA oscillations of θ-(BEDT-TTF)2I3 as a function of field at

selected temperatures.  The curves for T=0.89 K and T=1.67 K

are shifted up for clarity.  Twinning effect is visible as the nodes

at about 12, 15 and 20 T.



two close frequency components at fβ′=4440 T and f β″=4494 T.  The

coexistence of such two fast oscillations, corresponding to approximately

100 % of the first Brillouin zone (BZ), in an exactly single crystal contradicts

to the basic chemical architecture of the salt.  As mentioned above,

θ-(BEDT-TTF)2I3 often crystallizes in a twinning form.  Therefore, it is

very likely to think of the beat as a result of the twinning in the crystal

examined.  If this is the case, the nodes due to this beat should be

observed at the field, Hn, satisfying,

    cos[π(f β″– f β′) / Hn] = 0,     (n = 0, 1, 2,....)                 (4.6.1)

or,

    (f β″– f β′) / Hn = n + 1/2.     (n = 0, 1, 2,....)                 (4.6.2)

Corresponding to n = 3 and 4, the fields Hn= 15.4 and 12.0 T are respectively

obtained, which is consistent with the observation.  The oscillation without

such beat was able to be observed for the other crystal [6,36-38] (Fig.

4.6.3).  On the other hand, beat behavior may come from small warping

of a single cylindrical FS.  The beat having such origin should give nodes

at the field, H ′n, satisfying,

    cos[π(f β″– f β′) / H
 ′n – π/4] = 0,  (n = 0, 1, 2,....)            (4.6.1′)

or,
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    (f β″– f β′) / H
 ′n = n + 3 / 4,     (n = 0, 1, 2,....)               (4.6.2′)

where f β′ and f β″ correspond to the minimum and maximum of the cross-

sectional area of the warped FS, respectively.  For n=3 and 4, we obtain

H ′n = 14.4 and 11.4 T, respectively.  These values are appreciably lower

than those observed for θ-(BEDT-TTF)2I3.  Thus we conclude that the

observed behavior is composed of the contributions from two domains in

different orientations; each domain exhibits the fast and slow oscillations,

f α and f β at about 800 T and 4000 T, respectively.

We derive the cyclotron mass values from the data showing twinning

effect (Figs. 4.6.1 and 4.6.2) below, because only they are available for

the analysis of the temperature dependence.  The inset of Fig. 3 displays

the Fourier transform of the magnetization data without a remarkable

beat, showing the fast oscillation at fβ = 4290 T.  Assuming that the field

direction was parallel to the principal axis in this measurement, we can

estimate the inclination of each twinning domain with respect to the field

from the deviation of fβ′ and fβ″ from fβ.  The angles between the principal

axes of the domains and the field direction are 15  and 17 , corresponding

to fβ′ and fβ″, respectively.  This misorientation may yield at most 6 % of

error in our mass analysis for a cylindrical FS.

In Fig. 4.6.4, the mass-plot, the plot of A / T versus T, is shown,

where A is the amplitude of the Fourier component at each frequency.

From the slope of each plot, the cyclotron masses are evaluated: mβ = 3.6

me for the fast oscillations,  and mα = 2.0 me for the slow oscillation, are

obtained.
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Fig. 4.6.4.  The mass-plot, i.e., the plot of A / T versus T, where A is the amplitude of the

Fourier component at each frequency.

Fig. 4.6.3.  dHvA oscillations and its Fourie tranform (inset) of θ-(BEDT-

TTF)2I3 showing no distinct beat.
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Fig. 4.6.5. Top: Field dependence of the oscillation amplitude.  Bottom: The Dingle plot of

the data in Fig. 4.6.3.  The solid lines stand for the calculations considering the

magnetic breakdown effect.



Field dependence of the oscillation amplitude is also analyzed in

terms of the Lifshitz-Kosevich (LK) formula [39].  In the presence of the

magnetic breakdown (MB) effect, the tunnelling probability is approx-

imately expressed as,

     P = exp(– HB /H),                                    (4.6.3)

where HB denotes the breakdown field.  We consider here the tunnelling

junctions between the closed pocket (α) and the pair of open portion.

Such a situation modifies the original LK formula for a single orbit.  The

results can be expressed as [40],

Sβ= Mβ(H) H 1/2 sinh[K(mβ / me)T / H]

                      ∝ P 4 exp[– K(mβ / me)TDβ / H],                      (4.6.4)

and,

Sα = Mα(H) H 1/2 sinh[K(mα /me)T / H]

        ∝ (1 – P) 2 exp[– K(mα/me)TDα / H],              (4.6.5)

where K = 2π 2meckB /e h = 14.7 T / K, M(H) is the amplitude of the

oscillation, and TD is the Dingle temperature; the subscripts, α and β,

denote the slow and fast oscillations, respectively.  By using mα and mβ
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evaluated as above, TDα, TDβ and HB can be estimated from the slope of



log(S) versus 1 / H plots.  Figure 4.6.5 shows such a plot of the data

given in Fig. 4.6.3.  Too small amplitude of the oscillations below 15 T

prevents us from evaluating the parameters precisely.  Nevertheless, the

parameter set TDα = 2 K, TDβ = 0.8 K, and HB =  15 T seems to reproduce

the data well, as depicted by the solid curves in Fig. 4.6.5.  The overall

field dependence is thus explained by the MB effect.

Another evidence for the MB effect is the overall field dependence

of the resistivity [16].  Figure 4.6.6 shows the transverse magnetoresistance

of θ-(BEDT-TTF)2I3 at 0.7 K for the field perpendicular to the basal

plane.  SdH oscillation appears above about 15 T.  Superconductivity was

not observed for this sample.  The low field behavior is consistent with

that reported in Ref.8.  Noteworthy is the maximum around 6 T.

By taking account of the MB effect, the decrease in resistance above

Hmax= 6 T can be qualitatively explained as follows.  In the low field

limit, H « HB, where the MB effect is negligible, the resistivity is dominated

by the electron scattering.  The resistivity should increase quadratically

until the MB effect becomes appreciable.  In the high field limit, the

dominant term in the resistivity can be calculated by means of a path

integral method including the possibility of the magnetic breakdown.

This contribution is written as [40-42],

      R = (H / n e c )8(1 – P) / πP,                           (4.6.6)

where n is the number density of the carriers.  As H → ∞, this term takes

the form 1 + HB / 2H, so that the resistivity decreases with increasing
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field.   Hence,  a maximum of resistivity  should appear  at an intermediate
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Fig. 4.6.7. The Fermi surface topology concluded in this study, together with the notation of

the cyclotron orbits, α and β.  The directions, x and y, corresponds to the b and a

axes in the monoclinic lattice defined in Ref. 3, respectively.

Fig. 4.6.6. Transverse magnetoresistance of θ-(BEDT-TTF)2I3 at 0.7 K.  The

field was applied perpendicular to the two-dimensional plane.



field, Hmax, which depends on HB and the scattering time.  Such behavior

has been found also for (BEDT-TTF)2KHg(SCN)4 [43], which has FS

topology similar to that of θ-(BEDT-TTF)2I3.  According to the semiclas-

sical model assuming a field independent scattering time, Hmax lies between

HB / 3 and HB / 10 [41].  The present results, HB=15 T and Hmax= 6 T, can

be qualitatively explained by this scheme.

4.6.2. Fermi Surface and Band Structure

The intermolecular transfer interactions in the donor sheets of

θ-(BEDT-TTF)2I3 can be categorized into two groups; there are three

face-to-face ones and four face-to-side ones [4].  The difference within

each group is related to the structural modulation on the uniform packing

of BEDT-TTFs arising from I3
– ion arrangement.  Since this modulation

is expected to be small, we first consider only two types of transfer

integrals, tf-f and tf-s, standing for the two groups in describing the band

structure.  (On the basis of the notation in Sec. 4.3, tf-f and tf-s correspond

to tc and ta, respectively.)  This simplification enables us to treat the

Fermi surface geometry and other physical properties exactly.  In this

picture, the open and closed portions of FS stick together at the MB

junctions.  The geometry of the FS is determined only by the ratio of the

transfer integrals,  tf-f / tf-s.

On the basis of such approximation, the infrared reflectance spectra

of this salt were first analyzed and the band structure was deduced [5]

(Sec. 4.3).  The ratio of the transfer integrals,  tf-f / tf-s, found to reproduce

the optical results, is 0.59 [5].  From the reported band parameters [5], the
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cyclotron mass corresponding to the orbit on each portion of FS can be



calculated by use of the following equations,

      mc = (h 2 / 2π) (∂Ac / ∂ε);  ε = εF                       (4.6.7)

and,

     (∂Ac / ∂ε) = SBZ ρc(ε);   ε = εF                        (4.6.8)

where mc  and Ac are the mass and cross sectional areas for the cyclotron

orbit c, SBZ the area of the first BZ, and ρc(εF) density of states per 2D unit

cell per spin  for the portion of FS corresponding to the orbit c. It is also

possible to estimate the cross sectional areas.  The cyclotron masses

calculated in this way are,  mβ
opt=2.2 me and mα

opt=1.0 me, with the cross

sectional areas, Aβ and Aα, 100 % (exact)  and 14 % of SBZ, respectively.

Here, c = β and c = α denote the whole FS and the closed portion,

respectively (Fig. 4.6.7).

Equations (7) and (8) indicate that the cyclotron mass for a 2D

system is proportional to the (partial) density of states of the relevant

portion of the Fermi surface.  It follows from this that the larger cyclotron

mass value for the fast oscillation arising from the MB effect is the

simple sum of the partial densities of states of the portions to be coupled

each other by the breakdown; it is not an average along  the coupled

orbit.  Therefore, for a coupled large orbit composed of a closed pocket

and open portions,  we usually obtain cyclotron mass value larger than

that for the small pocket only.  The larger value of the coupled orbit
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mass, as in the present case, is not surprising and does not necessarily



involve the larger mass for the open portions.  We have to be careful in

comparing the cyclotron masses for different types of orbits.  The enhanced

mass for the open portions of the FS larger than that for the coupled orbit

[45] cannot be concluded.

The geometry of the FS concerns the two ratios, mβ/mα and Aα / Aβ.

The values, mβ/mα = 2.2 and Aα / Aβ = 0.14, are inferred from the optical

results, while the present dHvA results give Aα / Aβ = fα / fβ = 0.18  and mβ /

mα = 1.8.  This comparison supports the picture shown in Fig. 7, although

there remains discrepancy which probably comes from the simplification

introduced in the analysis of the optical data.  The MB effect clearly

shows opening of a small gap at the junction of FS.  This gap should give

rise to interband optical transitions.  However, the transition energy, i.e.,

the gap width, is so small that this interband contribution cannot be well

separated from the intraband one in the observed spectra.  In Ref. 5,

therefore, the band parameters were estimated from the plasma frequencies

including the low energy interband contributions.  Since the FS is still

connected along the x-direction in Fig. 4.6.7 even in the presence of the

gap, such overestimation of the plasma frequency is expected mainly for

the y-direction data.  This means that kFy
β in Fig. 4.6.7 is relatively under-

estimated, which results in the underestimation of mα and Aα in the analysis

of the optical data.  The discrepancy between the optical and the dHvA

results can be qualitatively explained in this way.

On the other hand, the values of cyclotron mass, mβ= 3.6 me deduced

from the dHvA oscillations is larger than that calculated from the optical

results by the factor of about 1.6.  In order to remove this discrepancy,
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the transfer integrals smaller than the reported ones [5] by the factor of



0.6 should be used.  Such difference cannot be ascribable only to exper-

imental error.  It is also difficult to explain this  by taking account of the

difference in the transfer integrals within each group.  Mass enhancement

near the Fermi level due to many-body effect, such as electron-phonon

interaction, is thereby suggested.  The optical spectra probe the global

structure of the conduction band rather than the detailed features near the

Fermi level, so that the optical mass is insensitive to the many-body

effect on the quasiparticle energy near the Fermi level.

Next, let us direct our attention to the gap affording the MB effect.

The breakdown field, HB, is approximately related to the energy gap near

the junction, εg, by the equation [40,45],

      HB = (π / 4) (c /e h) (εg
2 / vx vy ),                        (4.6.9)

where vx and vy are the components of the Fermi velocity at the junction

parallel and perpendicular to the zone boundary, respectively.  The simpli-

fied tight-binding model with the parameters inferred from the optical

results [5] yields vx = 1.5 × 10 7 cm/s and vy =1.1 × 10 7 cm/s.  From this,

together with HB = 15 T, it follows that εg=1.5 × 10 – 2 eV.  If the mass

enhancement near the Fermi level is taken into account, the gap should

be about the half of this value.  A more popular formula [40],

     HB ≈  (mα c / e h) (εg
2 /εF),                          (4.6.10)

with the cyclotron mass, mα=3.6 me, results in the same order of magnitude,
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i.e., εg ≈ 1 × 10 – 2 eV.  The corresponding spacing between the open and



the closed portions of the FS at the junction  is  as small as about 2 % of

π / b, where b is the lattice constant along the x-direction.  This justifies

the application of the simplified band model to approximate estimation of

the masses and εF.

In the framework of the tight-binding band model, the origin of the

gap at the zone boundary is the difference of transfer integrals within the

groups, which reflects the small deviations from the uniform packing of

BEDT-TTFs.  In the present case, it seems difficult to predict such a

small energy structure accurately enough.  Nevertheless, the empirical

tight-binding band calculations can provide a reasonable estimation of

the order of magnitude of the gap [4].  Another problem which exists in

the present case is the failure in prediction of the topology of FS by the

calculations [4].  Even in the presence of the deviations from the uniform

packing, the geometry of FS is basically determined by the ratio of  the

group averages  of the transfer integrals, <tf-f> / <tf-s>.  Since the modes

and characters of the intermolecular contacts are entirely different between

the groups, attention should be paid in comparing tf-f with tf-s.  The calcula-

tions [4] yielded <tf-f> / <tf-s> = 1.7, while the optical and the dHvA

experiments support <tf-f> / <tf-s> = 0.59.  The former one is sensitive to

the details in the parameterization in the extended Hückel molecular orbital

calculations, and can be suppressed down to about 0.2 by taking account

of the contributions of sulfur 3d orbitals [46].  Therefore, the contradiction

between the experiments and the calculations is expected to be removed,

when moderate weight of the sulfur 3d contributions is adopted.  In spite

of such arbitrariness in the empirical parameterization, it is evident that in
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studying the electronic structures of the molecular conductors  the frame-



work of the tight-binding band model works well with the help of exper-

iments, as demonstrated in this study.

4.6.3. Summary

From the analysis of the dHvA oscillations in θ-(BEDT-TTF)2I3, the

cyclotron masses have been evaluated to be 2.0 me and 3.6 me , for the

slow and fast oscillations, about 800 T and 4000 T.  The latter has been

shown to be as a consequence of the magnetic breakdown effect which

connects the closed and open portions of the Fermi surface.  These two

portions are separated by the gap of 1.5 × 10 – 2 eV at the junction.  These

results are consistent with the topology of the Fermi surface deduced

from the tight-binding band model with the parameters inferred from the

optical measurement.  It is also proposed that the contribution of the

sulfur 3d orbitals should be taken account of in the extended Hückel

calculations of the HOMO of BEDT-TTF.

4.7. The Subnikov-de Haas (SdH) Oscillations

 and Small Fermi Surface

In this section, the notation of the crystal axes follows that of the

monoclinic system.

A typical SdH signal observed in a high magnetic field range is

shown in Fig. 4.7.2 (a).  The Fourier spectrum shows the two fundamental

frequencies marked by the symbols, α and β, and their combination
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frequencies.  The α and  β  oscillations   are attributed  to the closed orbit
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Fig. 4.7.1.  The Fermi surface of θ-(BEDT-TTF)2I3 concluded from the optical and the dHvA

results in the framework of the tight-binding model.
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Fig. 4.7.2.  (a) Typical SdH oscillations in a high magnetic field range.  The inset shows the

corresponding Fourier spectrum.  (b) Frequencies of α and β as a function of the field angle

measured from the c*-axis.  The lines show the 1 / cosθ  fits.



around the zone boundary and the magnetic breakdown orbit, respectively

(Fig. 4.7.1).  The angle dependence of their frequencies is summarized in

Fig. 4.7.2 (b).  The angle dependence fits well with the formula, f = f0 /

cos θ, both for H || ac* and for H || bc*, where θ is the angle between the

magnetic field and the c*-axis.  The 1/cos θ  dependence indicates that

the Fermi surfaces responsible for the α and β oscillations are almost

perfect cylinders, as expected for the two-dimensionality of the electronic

structure of θ-(BEDT-TTF)2I3.  The frequency, f0, is 779 T for α and

4234 T for β.  The corresponding cross-sectional areas are 19 % and 102

% of the area of the first Brillouin zone viewed along the c*-axis for α

and β, respectively.  From the temperature dependence of the amplitudes

between 0.05 and 0.6 K, the cyclotron masses of the α and β orbits are

estimated to be (1.8 ± 0.1) me and (3.5 ± 0.1) me, respectively.  The

frequencies and the cyclotron masses are in good agreement with the

dHvA results [6,7] given in the preceding section.  The cross-sectional

area of the orbit α, 19 %, is also closed to that predicted from the optical

study, 14 % [5].  The angle dependence, the frequencies, and the cyclotron

mass have definitely established the topology and the shape of the two-

dimensional Fermi surface of θ-(BEDT-TTF)2I3.

New SdH oscillations are found in a low magnetic field range below

about 3 T.  Figure 4.7.3 shows the SdH oscillations together with their

Fourier spectra for several field directions.  The angle dependence of the

frequencies is summarized in Fig. 4.7.4, where the frequencies are tenta-

tively classified into branches, γ (γ ′,γ ″), δ and ε.  We have examined the

angle dependence from about – 40  to 90  for each of θa, θb, and φ, and
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confirmed the symmetry with respect to c* and b axes.
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Fig. 4.7.3.  (a) SdH oscillations in a low field range.  (b) Corresponding Fourier spectra.
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Fig. 4.7.4.  Angle dependence of the new series of SdH frequencies.



The γ oscillation is observed for field directions around H || c*.  For

H || c*, the frequency is about 6 T and the corresponding cross-sectional

area is only 0.15 % of the first Brillouin zone viewed along the c*-axis.

As the field is tilted towards the b-axis, the frequency of γ decreases and

the γ oscillation disappears above θb ≥ 31 .  When the field is tilted from

the c*-axis towards the a-axis up to θa = 20 , the frequency slightly

increases.  The three data points for θa ≥ 33 , which are denoted by the

symbol, (γ), in Fig. 4.7.4, seem to be related to the γ branch, though SdH

oscillation was not detected for θa = 26  nor θa = 30 .  On the other

hand, another branch marked by γ ′ appears for θa ≥ 20 .  Its frequency

increases rapidly with θa , approaching that of γ.  The peaks appearing in

the Fourier spectra for θa = 45  and 50  are relatively broad.  Accordingly,

the two branches, γ and γ ′, may join and be connected with γ ″.

The δ oscillation is remarkable; it is visible for the magnetic fields

parallel to the two-dimensional conducting plane (the ab plane) in a wide

angle range.  A Clear SdH oscillation observed for observed for H || b  is

shown in Fig. 4.7.3.  With the field rotating within the ab-plane, we could

observe the δ oscillation up to φ = 60 .  Its amplitude decreases as the

field direction approaches the a-axis.  The frequency of δ gradually increases

as φ increases.   When the field is rotated from the b-axis towards the

c*-axis, the frequency increases as well.

The cyclotron effective masses were determined from the amplitudes

in the Fourier spectra between 0.05 and 1.2 K for γ (H || c*) and δ (H ||b).

Figure 4.7.5(a) shows a mass-plot for the γ oscillation (H || c*).  The

cyclotron mass can be estimated to be (0.05 ± 0.02) me for γ, though the
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data  points  are  scattered   because  of  the  small  amplitudes.     A  very



118

Fig. 4.7.5.  The SdH amplitudes are plotted against temperature for (a) γ (H //c *) and (b) δ

(H // b).  The lines are those calculated with the Lifshitz-Kosevich formula

using the cyclotron mass values designated in the figure.



small mass value of (0.014 ± 0.002) me is found for the δ oscillation, as

shown in Fig. 4.7.5(b).

The band structures of BEDT-TTF-based conductors have been con-

sidered to be highly two-dimensional, as expected from their typical layered

structures.  The two-dimensional band structures are calculated on the

basis of the tight-binding approximation in terms of the HOMOs of BEDT-

TTF molecules.  Usually, only the transfer integrals within one BEDT-TTF

layer are taken into consideration.  For several BEDT-TTF salts, the

dHvA or SdH experiments have indeed revealed the 1/cos θ  dependence

of the frequencies, indicating the presence of almost cylindrical Fermi

surfaces as evidence for the two-dimensionality [47].  The α and β branches

are clearly explained within this framework.  They come from the large

cylindrical Fermi surface, as is demonstrated by the 1/cos θ dependence

(Fig. 4.7.2(b)).  They can be regarded as originating from the HOMOs of

BEDT-TTFs.

On the other hand, the interlayer interactions have been believed to

play only a minor role in determining the band structures; they have been

treated as much smaller (10– 3) transfer interactions between the BEDT-TTF

layers only leading to slight corrugation of the cylindrical Fermi surfaces.

The angle-dependent magnetoresistance oscillation observed for several

BEDT-TTF salts has been thought to arise from such slight warping of

the Fermi surface [9-12].

The above framework does not necessarily exclude the possibility of

a very small closed Fermi surface; it can be formed around the zone

boundary, if a slightly corrugated Fermi surface touches the boundary.
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However, this cannot explain the new SdH oscillations, γ, δ and ε.  First,



the frequency of γ decreases as the field is tilted from the c*-axis towards

the b-axis.  This implies that there exists a considerable energy dispersion

along the c*-axis at least around the γ cyclotron orbit.  That is, if we think

of an ellipsoidal shape of Fermi surface for the γ oscillation, it must be

elongated along the b-axis.  Such a shape of the Fermi surface cannot be

expected from the presumed small interlayer interactions.  Second, the

cyclotron mass of the δ orbit for H || b is very small (0.014 me).  Within

an effective mass band model (parabolic band), the observed mass is

expressed as (mc* ma)
 1 / 2, where mc* and ma are the c*- and a-components

of the effective mass tensor, respectively.  Thus, not only mc* but also ma

should be small.  It is difficult to explain this only by the small interlayer

interactions.

Accordingly, the conclusions can be summarized as follows.  Two

different types of the Fermi surface coexist in θ-(BEDT-TTF)2I3.  The

first group consists of the large quasi-two-dimensional Fermi surfaces

originating from the HOMOs of BEDT-TTFs, corresponding to the α and

β oscillations.  The second group, related to the γ, γ′, γ ″, δ and ε oscillations,

comprises the very small Fermi surfaces exhibiting a pronounced dispersion

even for the direction perpendicular to the BEDT-TTF layer.  They cannot

be understood within the conventional tight-binding framework based

only on the HOMOs of BEDT-TTFs.  In order to interpret  the present

results, further improvement of the band structure calculations, which

takes account of the other molecular orbitals of BEDT-TTFs or anions,

seems necessary.  Thus, this SdH study has established the HOMO-based

band structure on one hand, and revealed the new features outside the
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simple picture on the other hand.



4.8. The Angle Dependent Magnetoresistance Oscillation

 (ADMRO)

As shown first by Yamaji [11], the period of the ADMRO peaks can

be related to the Fermi wavenumber kF, by

kF = π / d ∆ tan θ ,                                           (4.8.1)

where d is the periodicity in the direction perpendicular to the two-

dimensional plane, and θ is the angle between the magnetic field direction

and the normal direction.  Therefore, the ADMRO is expected to provide

detailed information on the geometry of the Fermi surface.  Although

θ-(BEDT-TTF)2I3 is one of the first material in which the ADMRO is

observed [8], the interpretation of the oscillation period based on a realistic

band structure has not been done yet.  Nowadays, the Fermi surface of

this salt has been well understood by the optical (Sec. 4.3) [5], dHvA

(Sec. 4.4) [6,7] and SdH (Sec. 4.5) [14] studies.  In order to establish the

relation between the ADMRO and the Fermi surface geometry in this

salt, the ADMRO is reexamined here.  The notation of the crystal axes

based on the monoclinic lattice is referred to again in this section.

Figure 4.8.1 shows the resistance measured along the c*-axis with

the magnetic field rotated in the ac*-plane, where θ is the angle between

the c*-axis and the field direction.  Two oscillations with short and long

period can be distinguished.  The short-period oscillation with sharp peaks

is prominent for small values of tan θ (| tan θ | < ca. 5).  The values of
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tanθ at  the peaks  are plotted  against  the peak number  in  Fig. 4.8.2 (a),
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Fig. 4.8.1.  The ADMRO for H // ac *.  Top: Plot against the angle θ.  Bottom: Plot

against  tan θ.    The  short-period oscillation  at  small  values of

|tanθ | and the long-period oscillation at large values of | tan θ | are evident.

The broken line shows the envelope function which smoothly connects the

peaks due to the short-period oscillation.  The ticks indicate the peak

positions due to the long-period oscillation.



123

Fig. 4.8.2.  The plot of tan θ versus peak number for H // ac *.  (a) The short period

oscillation.  (b) The long-period oscillation.



where the peaks for tan θ > 0 (tan θ < 0) are numbered with positive

(negative) integers from the one closest to tan θ = 0.  The period, ∆ tan θ,

is determined to be 0.42, which is in good agreement with the value

reported by Kajita et al. [8].  On the other hand, a long-period oscillation,

which was not reported so far, becomes evident for large values of tan θ.

This finding may be ascribed to the quite high quality of the crystal (RRR

= 1200, where RRR is the residual resistivity ratio, ρ(280 K) / ρ(4.2 K))

and to the fine angle-step (0.3 ) around θ = 90  used in recording the

resistance.  The long-period oscillation is visible as an oscillation of the

envelop function for small values of tan θ; the height of the peaks due to

the short-period oscillation periodically oscillates as is shown by the

dotted curve in Fig. 4.8.1.  The peak positions are independent of the

magnetic field for the long-period oscillations, as is the case for the

short-period one.  The values of tan θ at the peaks, including those of the

envelop function, are plotted against the peak number in Fig. 4.8.2 (b).

The data points lie on the straight line, from which the period, ∆ tan θ =

1.6, is obtained.

The resistance for the magnetic field rotating in the bc*-plane is

plotted against tan θ in Fig. 4.8.3.  In this case, the oscillatory features are

considerably weak, and therefore the second derivative, d2R / dθ 2, is also

shown to identify the peaks.  The values of tan θ at the peaks are plotted

against the peak number in Fig. 4.8.4.  The peak positions lie on the

straight line with ∆ tan θ = 0.68 and 0.97.  The discrepancy between the

periods for tan θ > 0 and tan θ < 0 does not seem intrinsic.  The long-period

oscillation seems to overcome the short-period one at large values of
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|tanθ |.
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Fig. 4.8.3.  The ADMRO for H // bc *.  Top: Plot against the angle, θ.  Bottom: Plot

against tan θ, where the most upper curve shows the second derivative at H = 13

T.  The ticks indicate the peak positions due to the long-period oscillation.
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Fig. 4.8.4.  The plot of tan θ versus peak number for H // bc *.



In order to examine the present results by using Eq. (4.8.1), we have

to know the fundamental period of the energy band structure along the

c*-direction in the k-space, 2π / d.  By applying the Bloch theorem with

respect to this direction, the wavefunction can be expanded in a Fourier

series,

Ψk(r) = ∑ φk, G (x, y) exp[– i(kc +  G) z],                 (4.8.2)
                                G

where x, y and z are the components of r in the real space, and G is the

c*-component of the reciprocal lattice vector.  The matrix element of the

Hamiltonian of the tight-binding band model is written as,

          < Kz | H | K ′z > = ∑   <Kz  | χm > < χm | H | χm ′ > <χm ′ | K ′
z >

                                        m, m ′

            = ∑    <Kz  | χm > < χm ′ |K ′z > tm, m ′  ,     (4.8.3)
                                        m, m ′

in terms of the representation based on plane waves propagating along

the z-direction, where | χm > is the molecular orbital, tm, m ′ is the transfer

integral between the molecular orbitals | χm  > and | χm ′  > and

| Kz > = (2L) –1 / 2 exp(– iKz z) ,                         (4.8.4)

L being the length of the crystal along the z-direction.
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Let us consider the symmetry operation of the crystal, α, defined by



α: r  → ρα r  + ττττα ,                                   (4.8.5)

where ρα and ττττα are the rotation and translation part of the operation, α.

Operating  α on χm and χm ′ , we have,

tα m, α m ′ = tm, m ′      ,                                    (4.8.6)

because the Hamiltonian is not affected by the symmetry operation.  There-

fore, Eq. (4.8.3) can be written as,

< Kz | H | K ′
z> = ∑ tm, m ′  ∑ <Kz | α

n χm> < αn χm ′ | K ′
z > ,

                                 (m , m ′ )        n                 
(4.8.7)

where (m , m ′ ) runs over the pairs in which m  cannot be related to m ′ by

αn, with n running up to a very large integer.

There is a glide mirror symmetry along the c-axis in the monoclinic

structure of θ-(BEDT-TTF)2I3.  Regarding this as the operation, α, i.e., ττττα

= c / 2, we obtain,

            <Kz | χ  [αnm ] > =   ∫ exp(iKz·z) χm (ρ α –1r – n c / 2) d3r

                                        =  ∫ exp[iKz· (z + n c sin β  / 2)] χm (r) d
3r

                                   =  exp(in Kz· c sin β  / 2) <Kz | χm >,   (4.8.8)
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taking account of the fact that ρα (π-rotation around the z-axis) does not

affect the z-component.  Accordingly, the matrix element (4.8.7) is con-

verted into,

<Kz | H | K ′z> = ∑ exp[i n (Kz – K ′
z) c sin β / 2]      

                                        n

                    ×  ∑ tm, m ′ <Kz  | χm  > < χm ′ | K ′z  >.    (4.8.9)
                                          (m , m′ )

                                             

The factor,

∑ exp[i n (Kz – K ′
z) c sin β / 2]  ,                (4.8.10)

                             n

is the Laue function appearing in the X-ray diffraction theory.  From the

nature of the Laue function, it follows that <Kz | H | K′
z> becomes negligible

unless there exists an integer, I, satisfying,

K′
z = Kz + 4πI  / c sin β   .                        (4.8.11)

Therefore, only the terms with

G = 4πI  / c sin β ,                                 (4.8.12)

is required in the expansion (4.8.2).  This indicates that the fundamental

period along the c*-direction in the k-space is 4π / c sin β.
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With this knowledge, the observed periods of ADMRO can be related



to the Fermi wavenumbers by Eq. (4.8.1); the interlayer distance, d ,

should be c sin β / 2 = 16.93 Å.  From the periods, ∆ tan θ, of the

short-period oscillation, the Fermi wavenumbers are estimated to be 0.44

Å –1 and 0.27 Å –1 along the a- and b-axes, respectively.  First of all, the

short-period oscillation is ascribable to the large magnetic breakdown

orbit, β, because the Fermi wavenumber along the a-axis points outside

the first Brillouin zone (a* / 2 = 0.32 Å –1 ).  The both Fermi wavenumbers,

i.e., the long and short radii of the elliptic Fermi surface, are in excellent

agreement with those predicted from the optical study.

Accordingly, it is natural to attribute the long-period oscillation to

the closed orbit, α, around the zone boundary.  Using the observed periods,

∆ tan θ = 1.6 and 0.97, the Fermi wavenumbers are evaluated to be 0.12

Å –1 and 0.19 Å –1 along the a- and b-axes, respectively.  Again, these

values are in good agreement with the size of the orbit α deduced from

the Fermi surface determined by the optical study.

Recently, another study of the angle dependent magnetoresistance

oscillation has been carried out [48].  In this study, the short-period

oscillation is examined for tilting of the field from the c*-axis towards

various directions in the ab-plane.  From the obtained period as a function

of the tilting direction, the shape of the magnetic breakdown orbit, β, has

been inferred as shown in Fig. 4.8.6 [48].  This shape is in satisfactory

agreement with the results above.

Thus, the angle dependent magnetoresistance oscillation in θ-(BEDT-

TTF)2I3 has been clearly explained on the basis of the Fermi surface

concluded from the optical study.
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Table 4.8.I.  The Fermi wavenumbers, k F.

                                                   
 ADMRO Optical Study [5]

  Orbit ∆ tan θ kF /Å
– 1 kF /Å

 – 1

                                                   
α // a 1.6 0.12 0.10

// b 0.97 0.19 0.20
β // a 0.42 0.44 0.42

// b 0.68 0.27 0.30
                                                   

                                        

Fig. 4.8.6.  The geometry of the Fermi surface derived from the ADMRO with various tilting

way of field [48].

Fig. 4.8.5. The Fermi surface of θ-(BEDT-TTF)2I3.



4.9. Concluding Remarks

The geometry of the 2D Fermi surface of θ-(BEDT-TTF)2I3 has

been almost entirely established.  As regards the Fermi surface geometry,

the simple tight-binding band model inferred from the optical data is

found to be satisfactorily accurate.  The discrepancy between the calculated

and experimental band structures has been attributed to the neglect of the

sulfur 3d contribution in the calculations of the HOMO of BEDT-TTF.

This conclusion has been provided by the dHvA, SdH and ADMRO

experiments, which also clarify that this salt affords an almost ideal 2D

electron system showing magnetic breakdown effect.

However, the cyclotron mass values predicted from the optical data

do not well agree with those obtained from the dHvA and SdH results.

This may be an indication of enhancement of the density of states just

near the Fermi level due to the many-body effect [49-51].  In this connection,

attention should be directed to the discrepancy between the observed dc

conductivity and that estimated from the optical data at high temperatures.

On the other hand, the TEP results indicate that the simplified band

model fails to give the local curvatures near the Fermi surface.  From the

viewpoint of the optical properties, this corresponds to the appearance of

weak interband transitions, which are not allowed in the simplified band

model.  In order to explain these features, it is desired to improve theoretical

tools.

The finding of the extraordinarily small three-dimensional Fermi

surface by the SdH experiments is striking: it seems impossible to explain
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this within the HOMO based tight-binding model.  Contribution of another



degree of freedom is suggested.
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Chapter 5.

Reflectance Spectra of κκκκ-(BEDT-TTF)2I3
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5.1. Introduction

The κ-form of di[bis(ethylenedithio)tetrathiafulvalene] triiodide,

κ-(BEDT-TTF)2I3, exhibits superconducting transition at 3.6 K under am-

bient pressure [1].  So far, other κ-type BEDT-TTF salts, such as [Cu(NCS)2]

salt [2], [CuN(CN)2Br] salt [3], were found to be ambient pressure super-

conductors.  The transition temperatures (Tc) of the [Cu(NCS)2] and

[CuN(CN)2Br] salts exceed 10 K, which being the highest ones among

the organic superconductors.  In this connection, the κ-type molecular

arrangement is believed to have a key to the higher Tc; extensive studies

have been made on these κ-type salts.  The κ-type structure is characterized

by a two-dimensional arrangement of the dimeric units of donor molecules

[4], as shown in Fig. 5.1.

The reflectance spectra of metallic BEDT-TTF salts have been inves-

tigated, in order to elucidate their electronic structures [5-15].  The disper-

sion of the reflectance spectra of the BEDT-TTF salts often deviates from

the Drude-type one in the infrared region.  With the aid of the calculations

of the optical transition probabilities based on the one-electron theory [7],

the origin of the non-Drude dispersion has been pointed out to be the

interband transitions between the split band arising from non-uniform

arrangements of BEDT-TTF molecules.  In this connection, κ-(BEDT-

TTF)2I3 looks to be a suitable example to examine whether the optical

properties of metallic BEDT-TTF salts are understandable within the

framework of the conventional band model, since the κ-salt has a typical

dimeric structure.
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Fig. 5.1.  Left: Arrangement of BEDT-TTF molecules in κ-(BEDT-TTF)2I3 viewed along the

long-axis of BEDT-TTF, and the definition of the transfer integrals.  Right:

Orientaion of BEDT-TTFs within the bc-plane.



In this study, reflectance spectra of κ-(BEDT-TTF)2I3, in the infrared

and visible region (500-25000 cm –1) at 295 K and 15 K, are presented.

In 5.3.1, a distinct correlation between the appearance of the non-Drude

anomaly and the dimeric arrangement of BEDT-TTF molecules is described

in detail.  The curve-fitting analysis of the observed spectra is explained

in 5.3.2.  Strong two-dimensionality of the optical effective mass is eluci-

dated. In 5.3.4, the inter-dimer transfer integrals describing the HOMO

bands of κ-(BEDT-TTF)2I3 are evaluated by use of the band scheme

based on the dimer model.  The four inter-molecular transfer integrals are

also estimated, and the optical conductivity spectra are calculated using

these integrals.

5.2. Experimental

The single crystals of κ-(BEDT-TTF)2I3 were provided by Prof. H.

Kobayashi (Toho Univ.), Prof. A. Kobayashi and Prof. R. Kato (Univ. of

Tokyo).  The single crystals were obtained by electrochemical oxidation

of BEDT-TTF in a tetrahydrofuran solution containing mixed electrolyte,

(n-C4H9)4NX (X=I3 and AuI2, or IBr2 and AuI2) [16].  The content of Au

and Br of the samples used were less than the detectable limit of electron-

probe micro-analyzer (EPMA) [17].  The crystal axes of the samples

were identified by X-ray diffraction.  Reflectance Spectra were measured

on the (100) crystal face, which is the most developed one, following the

method described in Sec. 3.1.  Details of the apparatus used in this work
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were described elsewhere [5].  A composite bolometer (Infrared Lab-



oratories Inc.) was used in the measurement below 2000 cm –1.  The

principal axes of reflectance in the bc-plane were confirmed to be the b-

and c-axes by measuring the change in reflectance at 2500 cm –1 on

rotating the light polarizer.

Since there were many scratches on the crystal surface, we had to

select out a small area free from scratches by use of a microspectropho-

tometer with a highly magnifying objective lens in the visible and near-

infrared region.  However, we can not use such a procedure in the infrared

region.  Thus it was not possible to determine directly an absolute reflectivity

in this region.  Consequently, a calibration was carried out by comparing

the reflected lights from the sample surface with that from the gold-coated

sample surface.

5.3. Results

5.3.1 Reflectance Spectra

Figure 5.2 shows the reflectance spectra of κ-(BEDT-TTF)2I3 at 295

K and 15 K.  The intra-molecular transition of I3
– anion appeared around

23000 cm –1 for the polarization direction parallel to the c-axis, along

which the linear I3
– anions are oriented.  The peak position shifts to

higher wavenumber on lowering the temperature.  This transition was

observed also for other (BEDT-TTF)2I3 salts [7-10,12,13].  A hump was

found near 10000 cm –1 in the || c spectrum, but no such dispersion

appears in the || b  spectrum.  Since the long axes of BEDT-TTF molecules
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are almost perpendicular  to b-axis in κ-(BEDT-TTF)2I3, this dispersion is
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Fig. 5.2.  Reflectance spectra of κ-(BEDT-TTF)2I3.  The solid lines are the fit to the Drude-

Lorentz model.  The inset shows the reflectance spectra of β-(BEDT-TTF)2I3.
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Fig. 5.3.  Conductivity spectra of κ-(BEDT-TTF)2I3.



assigned to the intra-molecular transition of BEDT-TTF+ radical.  This

assignment is supported by our studies on θ-(BEDT-TTF)2I3 [13] and

BPDT-TTF salts [17] (BPDT-TTF denotes bis(propylenedithio)tetrathia-

fulvalene).  The curve-fitting procedure described below gives the peak

position for this transition as 11200 cm –1 at 295 K and 11300 cm –1 at 15

K.

Let us concentrate our attention on the electronic transition observed

in the infrared region.  As Fig. 5.2 shows, the dispersion curves for the

two different polarization directions are similar to each other, suggesting

the strongly two-dimensional character of this salt.  Although both || b

and || c spectra indicate the plasma-edge-like minima around 5000 cm –1,

the line shapes do not follow the Drude behavior below 4000 cm –1.  The

reflectance curves exhibit broad shoulders around 3000 cm –1 and prominent

vibronic structures at about 1100 cm –1. The latter can be assigned to the

molecular vibration coupled with the intermolecular transition.  Another

vibronic transition was found around 800 cm–1.  A similar spectral feature

has been reported for the || [110] spectrum of β-(BEDT-TTF)2I3 at room

temperature [7], which is depicted in the inset of Fig. 5.2.

In many BEDT-TTF salts, BEDT-TTF molecules form two-

dimensional networks as regards the electron transfer interactions.  Gener-

ally this network is not uniform but sometimes has a dimeric unit.  For

example, in the donor sheets of β-(BEDT-TTF)2I3, BEDT-TTF molecules

form dimers along the [110] axis [19].  The network structure of κ-salt is

the most typical case of dimerization.  A strong intra-dimer interaction

splits the conduction band formed from HOMO's of BEDT-TTF into two
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branches, between which the dimerization gap open [20].  The lower



branch has a bonding character of the dimer, while the upper branch has

an anti-bonding character.  Thus, the optical transition between these

branches is infrared active and polarized along the dimerization direction,

i.e., the direction connecting the centers of molecules in the dimer.

As a consequence of this interband transition, the infrared dispersion

is expected to be a superposition of the two contributions, i.e., the Drude-like

dispersion due to the intraband transitions and the contribution of the

interband transitions.  If this is the case, the temperature dependence of

the spectra should give insight into the presence of these two contributions.

At room temperature, the Drude-like dispersion is broad and obscured by

the electron scattering near the Fermi energy.  On lowering the temperature,

the scattering rate becomes saliently suppressed, and decreases more and

more.  This yields large negative values of the real part of dielectric

function at lower wavenumbers and a distinct plasma-edge in the reflectance

curve.  On the other hand, the line shape of the interband transitions is

basically ruled by the band dispersion, thus being rather insensitive to the

temperature than that of the intraband transitions.  Consequently, the

spectra are expected to approach a Drude-like dispersion on lowering the

temperature.  Such a temperature dependence is in fact observed for

κ-(BEDT-TTF)2I3, as shown in Fig. 5.2.  A similar result was also reported

for β-(BEDT-TTF)2I3 (Fig. 5.2 inset) [8]. The conductivity spectra obtained

by means of the Kramers-Kronig analysis of the reflectance data at 295 K

and 15 K are shown in Fig. 5.3.  For both the || b and || c polarizations, the

contribution of the intraband transitions centered at zero wavenumber

becomes fairly sharp at 15 K.  On the other hand, the absorption band
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around 2500 cm –1 corresponding to the interband transitions shows an



intensity decrease and a slight red-shift at 15 K.  These facts support the

view that the intra- and interband transitions coexist in the infrared region.

Now, let us compare the reflectance spectra of different forms of

(BEDT-TTF)2I3 to see the relationship between the structure and optical

property. In β-(BEDT-TTF)2I3, BEDT-TTF molecules form a dimerized

stack and all the dimers are oriented in parallel [19,20].  The prominent

conductivity peak appears only in the || [110] spectra.  It has been proposed

that the inter-band transition across the dimerization gap is responsible

for this prominent peak by comparing with the calculation of conductivity

spectra [7].  On the other hand, there are two different dimerization axes

in the κ-salt, which are almost perpendicular to each other.  As was

pointed out before, the infrared peak appears along two polarization direc-

tions in the bc-plane.  In the average structure of θ-(BEDT-TTF)2I3, all

the BEDT-TTF molecules are crystallographically equivalent, forming a

uniform two-dimensional network [21,22].  The molecular arrangement

in the κ-salt [4] is connected with the average structure of θ-salt [22], by

replacing each BEDT-TTF with a BEDT-TTF dimer. The infrared property

of the θ-salt is Drude-like as expected for a two-dimensional metal [9,13].

The calculation of conductivity spectra also showed that there would be

no contribution from the interband transitions.  This is because the interband

transition is forbidden by the high crystal symmetry.  (See also Appendix

A.)

As mentioned above, the prominent peak in the infrared region is

ascribed to the inter-band transition across the dimerization gap.  The low

temperature spectra also supported this interpretation.  This infrared peak
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always appears only along the dimerization direction: It appears in two



directions in the κ-salt, in one direction in the β-salt, and disappears in

any directions in the θ-salt.  One of the simplest way to explain this

strong correlation between the structures and the spectra is to ascribe this

infrared peak to the one associated with the interband transitions across

the dimerization gap based on the tight-binding band scheme [7,12,15].

Let us make here a brief comment on the relation between the electron-

molecular vibration (e-mv) coupling and the interband transition. The

e-mv coupling have been investigated mainly for one-dimensional organic

conductors [23,24].  Strong e-mv peaks appear in the spectra of the β-salt

[7,8] and κ-salt, whereas only weak e-mv peaks were observed for the

θ-salt [13].  This suggests a correlation between the e-mv coupling and

the interband transition; the intensity and the dichroism of the e-mv mode

seem to reflect those of the interband transition. These modes, usually

observed around 1200 cm –1 for BEDT-TTF salts, correspond to the totally

symmetric (breathing) intramolecular vibrational modes with the character

of C=C stretching [25,26].  In a free molecule these modes are infrared-

inactive.  However, they appear in the infrared spectra by borrowing the

intensity of the interband transitions.  On the analogy of the theory for a

dimer chain [23,24], the inter-band transition across the dimerization gap,

referring to the electronic charge oscillation between the two molecules

within the dimer, can couple to the asymmetric combination of the totally

symmetric vibrations of the two molecules.  Consequently, it appears as

peaks observed at frequencies slightly lower than those of the original

C=C stretching modes.

From an experimental viewpoint, it can be pointed out that the obser-
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vation of the e-mv modes affords a probe to the properties of the interband



transitions; the high intensity of the e-mv peak should indicate the presence

of strong interband transitions in the same light polarization.  This consid-

eration is consistent with the experimental results for several BEDT-TTF

salts [5-15].  It works as a convenient index, because the e-mv coupling

modes are easier to distinguish than the interband transition itself; The

interband transitions have a broad-band dispersion, which is often indis-

tinguishable from that of the intraband transitions.  (See also Appendix

B., about the discussion presented here.)

Let us apply the above consideration to the cases of the β-, θ-, and

κ-(BEDT-TTF)2I3. The appearance of strong e-mv peaks in the β- [7,9]

and the κ-salts reflects large intensities of the interband transitions in

these salts.  In spite of the Drude-like behavior, weak e-mv modes were

observed in the θ-salt [13],  suggesting the existence of weak interband

transitions.  In fact there are small shoulders in the conductivity spectra

around 2500 cm –1 [13].  This can be interpreted as a result of the lowering

of symmetry in the real structure of the θ-salt [27].  The present investigation

is limited to qualitative one because of low resolution of our spectra.

Detailed experimental features of the vibronic structures have been reported

for some BEDT-TTF salts [25,26,28-31].

5.3.2 Curve-Fitting Procedure

The intraband transitions contain the information concerning the

dispersion of the conduction band, while the interband transitions reflect

the band splitting due to the dimeric intermolecular interaction.  We

estimated the band parameters by analyzing the intraband transitions sep-
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arated from the interband transitions.  The separation was carried out by a



curve-fitting by use of the Drude-Lorentz model,

                                                    3 or 4

ε (ω ) = ε C – ω P
2 / (ω 2 + iω / τ) + ∑ f j / [(ω j

2 – ω 2) – iγ jω ] .      (5.1)
                                                                j

The reflectivity is related to the dielectric function by the equation,

    R = [1 + | ε | – √2(| ε | + Re(ε)) ] / [1 + | ε  | + √2(| ε | + Re(ε)) ] .   

(5.2)

The first term in the right-hand side of Eq.(5.1) stands for the constant

contribution from the higher energy transitions outside the experimental

spectral region.  The second term, the Drude term, gives the contribution

of the intraband transitions.  The third term describes the contribution of

other transitions: the interband transitions, the e-mv coupling modes and

the intramolecular electronic transitions.  The line shape of the interband

transitions is empirically expressed as a superposition of two Lorentzian

oscillators, since the shape of the interband transitions shown in Figs. 5.2

and 5.3 could not be reproduced well by a single Lorentzian.  Instead of

including the contribution of the transitions beyond 20000 cm –1 explicitly,

we limited the fitting region below 15000 cm –1, so that they were implicitly

included in the first term, εc.  The curve-fitting results were shown as the

solid curves in Fig. 5.2, and the obtained parameters were compiled in
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Table 5.I.



Table 5.I.  Curve-fitting results.

                                                                                                                    
 Polarization T / K  εc   ωp / eV  τ / eV – 1Ωp / eV a) m*/m e σdc

opt / Scm – 1  b)

                                                                                                                    
     // b 295 4.0 0.63   2.7 0.93 4.1   150

  15 4.0 0.74 22 0.98 3.0 1600
// c 295 3.9 0.76   3.2 0.95 2.9   250

  15 3.6 0.82 16 0.96 2.4 1500
                                                                                                                     

a) Ωp
2 = ωp

2 + ∑j fj , where the summation is taken over the e-mv mode and the

interband transitions.

b) The values obtained by extrapolating the Drude conductivity to zero wavenumber.

5.3.3 Optical Effective Mass

To obtain the information on the conduction band structure from the

optical data, the effective mass model is widely used as a simple description

of the band dispersion.  In this model the structure of the two-dimensional

conduction band is expressed as a parabola around the Γ point, that is,

ε  = – h 2 [kb
2 / 2m*b + kc

2 / 2m*c ]  ,                         (5.3)

where m*b and m*c are the principal values of the two-dimensional effective

mass tensor defined in the bc plane. The effective mass values are estimated

from the intraband plasma frequencies, ω P's, by using Eq.(5.4),

     m*x = 4 π n e 2 /m*x(ω P
2)x  ,   x = b and c                      (5.4)
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where n and e denote the number density of the holes per unit volume

and the electron charge, respectively.  The effective mass values are

calculated to be m*b = 3.0 me and m*c = 2.4 me, when the plasma frequency

values  obtained from the 15 K spectra, (ω P)b = 0.74 eV and (ω P)c = 0.82

eV, together with n = 1.185 × 10 21 cm –1, are used.  Small temperature

dependence of the lattice constant and the hole density are neglected

here.  The  obtained ratio, m*b / m*c = 1.3, is very small among the

known organic conductors, a similar value being known for κ-(BEDT-

TTF)2[Cu(NCS)2] [11].  For β- and θ-(BEDT-TTF)2I3, the corresponding

effective mass ratios are estimated to be 3.5 and 2.0, respectively [8,13].

This elucidates the strong two-dimensionality of the electronic structure

of κ-(BEDT-TTF)2I3. The obtained results are shown in Table 5.I.

5.3.4 Analysis by Tight-Binding Band Model

The effective mass model is simple and applicable to any metallic

material.  However, this model gives little information on the intermolecular

interaction.  Moreover, when the Fermi level is far from the edge of the

conduction band, this model is no longer a good approximation.  In this

respect, it is worthwhile to examine the analysis based on the tight-binding

approximation. This approximation is formulated in terms of transfer

integrals between the frontier molecular orbitals of the nearest-neighbor

molecules calculated by the extended Hückel method [32-34].  This ap-

proach has been successfully applied on several BEDT-TTF salts [6-

8,13,32-38].  The recent self-consistent-field band calculations suggest

that the molecular orbital identities of BEDT-TTF are maintained in the
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crystal electronic structure of β-(BEDT-TTF)2X [39].
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Fig. 5.5.  Effective interdimer interactions in κ-(BEDT-TTF)2I3.



For the sake of estimating the tight-binding band parameters from

the optical data, we have developed a dimer-based treatment using a

perturbation theory.  The overlap integrals between the HOMO's of the

neighboring molecules are given as Sb1 = 10.92 × 10 – 2, Sb2 = 2.46 × 10 – 3,

Sp = 5.05 × 10 – 3, and Sq = -1.85 × 10 – 3 for  κ-(BEDT-TTF)2I3 [4].  The

intradimer overlap, tb1, is considerably larger than the others, indicating

the dimeric structure of this salt.  According to the calculation by the

tight-binding approximation, the higher two branches and the lower two

are separated by the dimerization gap, as shown in Fig. 5.4.  If the

dimerization is sufficiently strong, i.e., the intradimer transfer integral

sufficiently excels the interdimer ones, we can start from the unperturbed

dimer state with two energy levels, the bonding (lower) and the anti-bonding

(higher) levels of the dimer.  Due to the perturbation of interdimer interac-

tion, the two levels form two bands, keeping the dimerization gap between

them.  Indeed, the energy band structure shown in Fig. 5.4 has this

character.

The one-electron Hamiltonian, which is diagonalized to give tight-

binding band energies, is divided into two terms as follows:

H(tb1, tb2, tp, tq; k)  =  H0(tb1; k) + H1(tb2, tp, tq; k).           (5.5)

Since there are four molecules in the unit cell, the Hamiltonian is 4 × 4

matrix. We first solve the diagonalization problem for the unperturbed

Hamiltonian, H0, and find the eigenvalues,
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E1
0 = E2

0 = tb1 and E3
0 = E4

0 = –tb1.                        (5.6)



E1
0 and E2

0 correspond to the bonding levels and E3
0 and  E4

0 to two

anti-bonding levels of the dimer.  These levels are independent of wavevec-

tor, k, since H0 contains no interdimer interaction.  The degeneracy comes

from the presence of the two crystallographically equivalent dimers in the

unit cell.  The next step is to calculate the matrix elements of H1, (H1)i, j =

<Ψ i
0 | H1 |Ψj

0 >, where Ψi
0 stands for the Bloch sum of the HOMO's of the

molecules, i.  Following this, we obtain the first-order correction energy,

δE, by solving the secular equation,

       det [(H1)i, j – δE  δi, j ] = 0 ,                                (5.7)

for each pair of the doubly degenerating states, (1, 2) and (3, 4).  The

resultant energies to the first-order, E 1 = E 0+δE ,  are written in the

explicit forms,

E1
1(k) = E1

0 + tb2 cos(b k) – 2 | tp+tq | cos(b k / 2) cos(c k / 2),

E2
1(k) = E2

0 + tb2 cos(b k) +2 | tp+tq |

cos(b k / 2) cos(c k / 2),

E3
1(k) = E3

0 – tb2 cos(b k) – 2 | tp–tq | cos(b k / 2) cos(c k / 2),

E4
1(k) = E4

0 – tb2 cos(b k) + 2 | tp–tq | cos(b k / 2) cos(c k / 2) .

   (5.8)

The obtained energy dispersion is similar to that of θ-(BEDT-TTF)2I3

(the average structure), which is given by,

154



 E(k) = 2 tc cos(c k) ± 4 |tb | cos(c k/ 2) cos(a k / 2) .       (5.9)

Since the arrangement of BEDT-TTF dimers in the κ-structure has

the same symmetry as that of the molecules in the θ-structure, the similarity

between Eqs.(5.8) and (5.9) is natural. In this approximation, as a result

of the interdimer interactions, tb2, tp and tq, the  doubly degenerate bonding

levels of the two dimers in the unit cell form the pair of branches, E1
1 (k)

and E2
1(k), and the anti-bonding levels form the other pair, E3

1(k) and

E4
1(k).  In other words, we regard the dimers as supermolecules (Fig.5.5).

This approximation is good, when the energy separation  E3
1(k) –E2

1(k)

sufficiently exceeds E3
1(k) –E4

1(k) and E1
1(k) –E2

1(k).  As Fig.5.4 shows,

this condition is actually satisfied around the Fermi surface.

Taking account of this perturbation theory, we can estimate the

values of effective interdimer transfer integrals from the Drude  plasma

frequencies.  The plasma frequencies, (ω P)b  and (ω P)c are the function of

the Fermi velocities.  Since the Fermi level crosses the upper two branches,

E3
1 and E4

1, we can explicitly relate the two plasma frequencies and the

number of states beyond the Fermi level per unit area, Nh, to the three

parameters, tb = -tb2 / 2, tc = | tp-tq | / 2 and the  Fermi energy, EF, by the

following equations,

(π2h / e 2) (ω P
2)b = (2π / a sin β) ∫ | (vF)b | dkc ,            (5.10)

(π2h / e 2) (ω P
2)c = (2π / a sin β) ∫ | (vF)c | dkb ,            (5.11)
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Nh = (2/4π2) ∫ | kFc(kb) |  dkb ,                          (5.12)



where (vF)b and (vF)c denote the b- and c-components of the Fermi velocity,

respectively.  The components of the Fermi wavenumber, kFb and kFc,

satisfy E(kFb, kFc) = EF.  These three integrals are taken over the two-

dimensional Fermi surface in the bc-plane. As have been done in the case

of θ-(BEDT-TTF)2I3 [13], it is possible to solve these three equations

simultaneously to determine tb, tc and EF for given values of (ω P)b , (ω P)c

and Nh.  By using (ω P)b = 0.74 eV, (ω P)c = 0.82 eV, a = 16.387 Å, sin(β)=

0.948, and  Nh = 1.841 × 10 14 cm– 2, we obtained the result: tb = 0.034, tc =

0.054 and EF = – 0.037 eV.  Thus, the effective band parameters have

been determined for the upper half of the HOMO band of κ-(BEDT-TTF)2I3.

In this "θ-model", the band structure of κ-salt is modeled on that of

θ-salt.

Next the procedure to estimate the full parameter set (tb1, tb2, tp, tq) of

the exact κ-band is described.  The intradimer transfer integral, tb1, is

closely related to the excitation energy of the inter-band transition.  Since

the line shape of the conductivity spectra (Fig.5.3) is broad, it is difficult

to specify the accurate excitation energy values of the inter-band transitions.

Nevertheless, we assumed that,

       tb1 ≈ – 0.15 eV ,                                     (5.13)

because this value gives preferable peak positions in the calculation of

the inter-band transitions described below (Fig.9).  There is no experimental

information on the values of tp and tq, so that we assumed the ratio, tp / tq,
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based on the calculations of the overlap integrals as Eq.(5.14):



       tp / tq = – 5.05 / 1.85 ≈ – 2.7 .                         (5.14)

Then, to be searched is the set of parameters (tb1, tb2, tp, tq) which

satisfies the following conditions: i) tb1 = – 0.15 eV, ii) tp / tq ≈ – 2.7 eV,

and iii) the plasma frequencies fits with the observed ones.  The most

reliable parameters are tb1 = – 0.15 (by assumption), tb2 = – 0.037, tp =

–0.074, and tq = 0.027 eV.  Figure 5.6 shows the band structure and the

Fermi surface drawn by the use of these parameters and those of the

θ-model described by tb and tc.  In the θ-model the top of the band is 0.32

eV from the Fermi level, while in the exact band the corresponding value

is 0.24 eV.  The obtained shape of the Fermi surface is substantially the

same with each other.  These results are in agreement with the calculation

[4] displayed in Fig. 5.4.

There are the relations to the first-order linking tb and tc with tb2, tp

and tq , i.e.,

        tb = –tb2 / 2 and tc = |tp – tq | / 2 .                           (5.15)

Due to the contribution of tb1, which is neglected here, the effective

parameters, tb and tc, should be somewhat larger than those expected from

these relations.  In fact, we have,

       tb = 0.034 > –tb2 / 2 = 0.019 eV,                           (5.16)

        tc = 0.054 > | tp – tq | / 2 = 0.051 eV.                         (5.17)
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The  density of states (DOS)  for  the tight-binding bands  of  κ- and
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Fig. 5.6.  Tight-binding band structure and the Fermi surface estimated from the reflectance

spectra at 15 K.  Solid curves are by the "exact κ-band" and broken curves are by

the "θ-model".
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Fig. 5.7.   Density of states of κ-(BEDT-TTF)2I3 (upper panel) and θ-(BEDT-TTF)2I3

(lower panel) calculated from the tight-binding bands estimated from the

reflectance spectra.



θ-(BEDT-TTF)2I3 is calculated.  The transfer integrals for θ-(BEDT-TTF)2I3

are taken from Ref. 13.  The obtained DOS curves are shown in Fig. 5.7.

The DOS values around the Fermi level of the two models for κ-(BEDT-

TTF)2I3 are in agreement with each other.  Just below the Fermi level, a

singular point appears, which comes from the degenerate states along the

Y-M line. Another singularity at the bottom of the θ-model band arises

from pseudo-one-dimensional character near the bottom of the θ-type

band structure.  This singularity is artificial, because the perturbation

theory cannot be applied around this energy region.  The DOS at the

Fermi level per formula unit for a single spin was calculated; ρ(EF)= 3.1

eV – 1 for κ-(BEDT-TTF)2I3 (from both models) and ρ(EF)= 2.2 eV – 1 for

θ-(BEDT-TTF)2I3.  The latter value match with that calculated from the

effective mass band model.

Two de Haas-van Alphen (dHvA) results have been reported for the

Fermi surface of κ-(BEDT-TTF)2I3 [40,41].  As explained in Chap. 3, the

cross-sectional area and cyclotron mass for the cyclotron orbit relevant to

the dHvA effect can be calculated from the band structure.  From the

present band structure, the area of the closed pocket around the Z-point is

estimated to be 14 % of that of the first Brillouin zone.  The corresponding

value from the dHvA results by Oshima et al. is 20 % [40] and that by

Wosnitza et al. is 15 % [41].  These are close to each other.  The cyclotron

masses for the pocket and for the whole Fermi surface are also calculated

to be 1.2 me and 2.7 me, respectively, from the band structure determined

in this study.  The latter is in accord with that reported by Oshima et al.

(2.7 me) [40], while Wosnitza et al. have stated that it is 3.9 me [41].
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Furthermore, we calculated the conductivity spectra in the framework



of the point-charge approximation using the parameter set (tb1, tb2, tp, tq).

As the DOS calculation shows, there is a peak just below the Fermi level

in the DOS curve.  The electrons here are thermally excited even at room

temperature, thus introducing vacant levels below EF.  Therefore, the

intensity of the interband transition from the lower band to the upper

band is expected to increase.  Consequently, the low energy portion of

the interband transition should grow on increasing temperature.  To examine

this effect, we take account of the temperature dependence of the Fermi-

Dirac distribution function in the calculation.  Small temperature depen-

dence of chemical potential is neglected.  The calculated spectra were

shown in Fig. 5.8 and the intensities were listed in Table 5.II.  The

position  of  the main  peak,  about 2500 cm –1  in the || c  spectra,  and the

growth of the low energy portion of the transition at room temperature

are reproduced by this calculation.  However, the overall intensities of the

interband transition are less than the observed ones.  The hump around

3500 cm –1 in the || b spectra cannot be given by the calculation.

Table 5.II.  Intensities of the interband transitions.

                                                                              
Polarization   T / K    Intensity  / eV 2

                                                                calc.        obs. a)

                                                                              
     // b 300 0.14 0.47 (295 K)

    0 0.086 0.42 (15 K)
// c 300 0.058 0.34 (295 K)

   0 0.032 0.24 (15 K)

                                                                              

a) ∑j fj , where the summation is taken over the
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e-mv mode and the interband transitions.
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Fig. 5.8.  Conductivity spectra calculated by use of the parameters: tb1 = – 0.15, tb2 = – 0.037,

tp = – 0.074 and tq = 0.027 eV.



5.4. Discussion

The comparison of the reflectance spectra of κ-, β-, and θ-(BEDT-

TTF)2I3 shows that there is a definite correlation between the dimeric

arrangement of BEDT-TTF and the appearance of the non-Drude mid-

infrared absorption.  In the light of the tight-binding band model, we

interpreted these mid-infrared features as the interband transitions across

the dimerization gap. This is consistent with the results for other BEDT-TTF

salts [5-15].  The calculations of the interband transitions of κ-(BEDT-

TTF)2I3 give preferable peak position.  On the other hand, an interdimer

charge-transfer [26] assisted by the electron-electron Coulomb repulsion

cannot explain the correlation between the spectra and the crystal structure.

The intensities of the interband transitions are calculated, taking

account of the temperature dependence of the Fermi-Dirac distribution

function.  Although the qualitative tendency of the observed spectra was

reproduced by this calculation, the absolute values of the observed intensity

could not be explained.  This discrepancy is conspicuous particularly at

room temperature. Similar result was found for β-(BEDT-TTF)2I3 [7].

The larger intensity of the interband transition requires a larger intradimer

transfer integral or smaller interdimer ones. However, the larger intradimer

integral gives too high transition energies and the smaller interdimer

integrals yield too small intraband plasma frequencies.  This is a dilemma.

Thus, in order to explain the large intensity of the interband transition, we

have to take other factors into consideration.

One of the possible reasons for the discrepancy is the inaccuracy of
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our simple point-charge approximation.  The point-charge approximation,



in which a molecule is treated as a point located at the center of each

molecule, is useful to predict the characteristics of the interband transition

dominated by the crystal symmetry.  However, the inter-molecular dipole

moments calculated from the point-to-point vectors in this approximation

are not very precise in the real crystal.

Many-body effect may influence the infrared property.  To the limit

of large intradimer Coulomb repulsion, we have one hole localized on

each dimer. Interdimer charge-transfer transition across  the  (extended)

Hubbard gap  occurs in this localized picture.  However, the observations

of the Shubnikov-de Haas effect in κ-(BEDT-TTF)2[Cu(NCS)2] [35], the

temperature dependence of thermoelectric power in β-(BEDT-TTF)2I3 and

κ-(BEDT-TTF)2[Cu(NCS)2] [37] and the de Haas-van Alphen effect in

θ-(BEDT-TTF)2I3 [38] suggest that in the metallic BEDT-TTF salts the

one-electron picture is preferable than the localized picture, at least at

low temperatures.  Thereby, we surmise that the qualitative structure of

the conduction band agrees with that predicted by the band calculation,

even if the renormalization effect [42] reduces the band width.

In this picture, the intensity and the energy of the interband transition

are probably affected by the electron-electron scattering or the Coulomb

attraction within the electron-hole pair created by the excitation.  Since

the metallic BEDT-TTF salts exhibit rather low dc conductivity, particularly

at room temperature, the screening effect is expected to be so insufficient

that the Coulomb interaction survives and coexists with the metallic con-

duction.  Since the strong dimerization causes the system to approach the

half-filled limit, the DOS around the Fermi level is sensitive to many-body
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effect.  As the present calculations show, the interband transition is sensitive



to DOS enhancement.  The hump around 3500 cm –1 on the || b spectra

may indicate additional transitions assisted by these effects.  Even if the

many-body effect influences the infrared transition, it should be noticed

that the transition energy does not necessarily indicate the Coulomb po-

tential energy as long as the one-electron picture holds. However, the

effect of the Coulomb interaction on the intensity of the inter-band transition

still remains unsettled.  To make it clear, we need further investigations

on the conduction mechanism of these materials at high temperatures.

Very short mean free path in many organic conductors [13,43] at room

temperature is also possibly in connection with the infrared properties.

The superconducting transition temperature of κ-(BEDT-

TTF)2[Cu(NCS)2], Tc = 10.4 K [2], is about three times as large as that of

κ-(BEDT-TTF)2I3, 3.6 K [1], though their donor sheet structures are quite

similar to each other.  Moreover, the dc conductivity of the I3 salt is

metallic between room temperature and Tc [1,44], while the [Cu(NCS)2]

salt exhibits a resistivity maximum [2] or shoulder [11] near 100 K.

Several studies have been made on the infrared properties of the [Cu(NCS)2]

salt [11,26,29,30,45-47].  The observed line shapes of the two salts resemble

each other; no evidence for a substantial difference in the band structure

is found in the shape of the observed spectra.  However, the plasma

frequencies of the I3 salt are somewhat higher than those of the [Cu(NCS)2]

salt.  The increase in the plasma frequency indicates increase in the band

width and decrease in the density of states.   In fact, the DOS at the Fermi

level per formula unit for a single spin is estimated to be 3.1 eV – 1 for the

I3 salt, while for the [Cu(NCS)2] salt the corresponding value is  deduced
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as 7.1eV – 1 [2] (from the static paramagnetic susceptibility at room tem-



perature) or 7.5 eV – 1 [11] (from reflectance spectra).  Therefore, the

higher plasma frequencies of the I3 salt can be related to the lower Tc.

The fact that the values of the cyclotron mass of the I3 salt [40,41] are

much smaller than those of the [Cu(NCS)2] salt [42] also supports this

interpretation.  A possible origin of the difference in the electronic structure

is the interlayer electron transfer with the help of the donor-anion interaction

[36].

5.5. Concluding Remarks

The band parameters describing the structure of the HOMO band of

κ-(BEDT-TTF)2I3 have been estimated from the Drude plasma frequencies

by the method based on the dimer approximation developed in this work.

The advantage of this method is that the procedure requires only the

intraband plasma frequencies and that the energy dispersion can be ex-

pressed by a simple and explicit formula. This approximation, which is

formulated by use of simple perturbation theory, can be easily generalized

and should be applicable to other dimeric organic metals: other κ-type

BEDT-TTF salts, β-(BEDT-TTF)2X, κ-(DMET)2AuBr2 [48,49], κ-(MDT-

TTF)2AuI2 [50], and so on.  It has been shown that the interband transitions

across the dimerization gap [12,15] are essential to the mid-infrared ab-

sorption observed for κ-(BEDT-TTF)2I3.  We pointed out the possibility

of many-body effect on the intensity of the optical transition.  Further

investigations will be necessary to elucidate the origin of the large intensity
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of the mid-infrared transitions.
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Chapter 6.

Reflectance Spectra of Me4N[Ni(dmit)2]2
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6.1. Introduction

The anion radical salt of [Ni(dmit)2], Me4N[Ni(dmit)2]2, is the first

example of a metallic molecular conductor based on π-radical anion and

closed-shell cation [1,2].  The reported temperature dependence of dc

resistivity of this salt is somewhat complicated [1]; it depends on the

cooling-heating cycles and is accompanied by a resistivity jump around

100 K with hysteresis or by non-metallic behavior at low temperatures.

These anomalies have been suggested to be a metal-semimetal transition

associated with the freezing of the rotational degrees of freedom of the

methyl groups [1].  The anomalies have been found to be suppressed by

application of pressure, and superconducting transition have been discov-

ered above 3 kbar, for the first time in the closed-shell cation salt of

[Ni(dmit)2] [1].  The superconducting transition temperature rises with

increasing pressure, up to 5 K at 7 kbar, which is in contrast to the case of

the salts of TTF derivatives [1].

In the crystal of Me4N[Ni(dmit)2]2, the conduction layers of [Ni(dmit)2]

and cation sheets are arranged alternately along the c-axis (Fig. 6.1) [1].

Two types of conduction layers are distinguished; the one has [Ni(dmit)2]

stacks elongated in the [110] direction, and the other has the equivalent

stacks in the [110] direction.  These two layers appear alternately along

the c-axis (Fig. 6.2).  Two pairs of quasi-one-dimensional Fermi surfaces

are expected, each pair arising from each type of layer.  Thus, the whole
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system  has a two-dimensional electronic structure.   In fact,  tight-binding
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Fig. 6.2.  Crystal structure of Me4N[Ni(dmit)2]2 [1].
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Fig. 6.3.  The tight-binding band structure and Fermi surface of Me4N[Ni(dmit)2]2 inferred

from the intermolecular LUMO overlap calculations [1, 2].  The primitive lattice,

(a ′, b ′, c ′), was adopted, where a ′ = (a + b) / 2, b ′ = –b and c ′= – c.  Dotted

lines indicate the Fermi surface of the adjacent conduction layer.



band calculations based on the LUMOs of [Ni(dmit)2] results in  such

features (Fig. 6.3) [1].  Similar structures have been found also for α- and

β-Me4N[Pd(dmit)2]2 [3,4], Me4N[Pt(dmit)2]2 [5], Cs[Pd(dmit)2]2 [6] and

Me4As[Pd(dmit)2]2 [3].

The main purpose of this study is an experimental examination of

this two-dimensional electronic band structure.  The observed spectrum

should correspond to a superposition of that of the two types of layers.

However, it is possible to derive each part of the contribution, by taking

account of the fact that the two types of layers are equivalent.  Furthermore,

introduction of a simplification of the molecular arrangement in the layers

affords an estimation of an approximate shape of the Fermi surface.

6.2. Experimental

The single crystal samples of Me4N[Ni(dmit)2]2 were provided by

Prof. H. Kobayashi (Toho Univ.), Prof. A. Kobayashi (Univ. of Tokyo)

and Prof. R. Kato (Univ. of Tokyo).  The black plate single crystals were

obtained by galvanostatic electrolysis of an acetonitrile solution of

Me4N[Ni(dmit)2] and Me4NClO4.  Polarized reflectance spectra were mea-

sured on the (001) crystal face, by the methods described in Sec. 3.1,

with the light polarization, E || a and E || b, which are the principal axes

within the (001) plane.  The crystal axes were identified by X-ray oscillation
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photographs.



6.3. Results and Discussion

Figure 6.4 shows the reflectance spectra measured at room temper-

ature, 150 K and 25 K.  The two-dimensionality is obvious, as is expected

from the crystal structure.  The reflectivities at low wavenumbers are

somewhat low, particularly for E || b.  However, they are remarkably

enhanced with lowering temperature, in accord with the metallic behavior

as expected for this material.  At low temperatures, the spectral shape is

basically metallic accompanied by the plasma edges around 4000 cm –1 in

the E || a spectra and 2000 cm –1 in the E || b spectra, though there are

small deviations from the Drude type dispersion, that is, the humps around

1100 and 1500 cm –1 in the E || a spectra and that around 3000 cm –1 in the

E || b spectra.  The Drude-like dispersion suggests that this salt is essentially

metallic even at ambient pressure in spite of the anomalies in behavior of

the dc resistivity, at least from the viewpoint of the optical properties.

This is consistent with the suggestion that the anomalous behavior of the

dc resistivity may be caused localization due to weak randomness such as

the rotation of the methyl groups.

The small humps indicate the presence of the contribution of the

interband transitions across band gaps.  In fact, weak broad maxima

corresponding to the humps can be recognized in the conductivity spectra

(Fig. 6.5) obtained by the Kramers-Kronig analysis of the reflectance

spectra.  Tails of the Drude contributions are evident at low temperatures.
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On the other hand, peaks of conductivity appear below 1000 cm –1 in both
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Fig. 6.4.  Reflectance spectra of Me4N[Ni(dmit)2]2.  Solid curves shows the fit to the

Drude-Lorentz model.
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Fig. 6.5.  Conductivity spectra of Me4N[Ni(dmit)2]2.



E || a and E || b spectra at room temperature.  However, they are due to

the inaccuracy of the extrapolation of the considerably low reflectivity

data towards zero wavenumber.  The extrapolation is required for the

Kramers-Kronig analysis.  But it is difficult for metals with low reflectivity,

because reflectivity should increase very rapidly towards zero wavenumber

outside the experimental region.  So that, the peaks should be regarded as

artificial ones, and do not necessarily imply the gap formation at room

temperature.

In order to extract the contribution of the intraband transitions (the

Drude terms), a curve-fitting analysis of the reflectance spectra was carried

out, on the basis of the Drude-Lorentz dielectric function,

                                                      1 or 2

ε (ω ) = ε C – ω P
2 / (ω 2 + iω  / τ) + ∑ f j / [(ω j

2–ω 2) – iγ jω ] .      (6.1)
                                                                j = 1

The first term in the right-hand side of Eq.(6.1), the Drude term, describes

the intraband transitions.  The second term stands for the interband transi-

tions corresponding to the conductivity maxima around 1600 cm –1 and

4000 cm –1 in the E || a spectra and that around 4000 cm –1 in the E || b

spectra.  The reflectivity is related to dielectric function by the equation,

    R = [1 + | ε | – √2(| ε | + Re(ε)) ] / [1 + | ε  | + √2(| ε | + Re(ε)) ] .   

(6.2)
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The obtained parameters are summarized in Table 6.I.  At room temperature,



the fitting results are not reliable because of the too damped Drude contri-

butions.

Table 6.I.  Drude parameters obtained by the

Drude-Lorentz fit of the reflectance

spectra

                                                                    
 Polarization T / K  εc   ωp / eV  τ  – 1 / eV

                                                                    
     // a 150 3.1 0.75 0.083

  25 2.8 0.69 0.040
// b 150 4.1 0.41 0.094

  25 4.1 0.41 0.038
                                                                    

The squares of the obtained plasma frequencies, ωp
2, are the sums of

the contributions of the two types of [Ni(dmit)2] layers with different

orientations.  Since the a- and b-axes are the principal axes of the crystal

and the two types of layers are equivalent, the sum is simply the twice of

ωp
2 of the one type of the layer.  In this way, the observed values of ωp

2

can be compared with those calculated from the band structure.

The calculations of inter-molecular overlap integrals of

Me4N[Ni(dmit)2]2 suggest the following features.  The amplitudes of the

two intrastack transfer integrals are almost equal to each other, and they

have opposite signs.  Only one type of transfer integrals is predominant

among the interstack ones, referring to that marked by the symbol p in
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Ref. 1.  Thereby, the band structure of this salt is approximately described



by the two transfer integrals, the intra- and interstack ones, t1 and t2,

respectively, as schematically illustrated in Fig. 6.6.  This approximation,

i.e., the assumption of no dimerization in a [Ni(dmit)2] stack, is also

supported by the weakness of the observed interband transitions.

The plasma frequencies can be calculated from the band structure by

the equations,

(ωp
2) a = 2 (e2 / π2h) (π / c sin β) ∫ | (vF)a | dkFb ,               (6.3)

(ωp
2)b = 2 (e2 / π2h) (π / c sin β) ∫ | (vF)b | dkFa ,                (6.4)

where the factor 2 stands for the sum over the two different [Ni(dmit)2]

layers, and (vF)a and (vF)b are the a- and b-components of the Fermi

velocity, vF, given by,

vF = h –1 grad k E(t1, t2; ka, kb) ;   E = EF                        (6.5)

The band filling, which determines the Fermi energy EF, is set to  be 1/4,

as inferred from the stoichiometry.  By use of these equations, the optimal

set of t1 and t2 which reproduces the observed plasma frequencies was

searched.  When the values of plasma frequencies at 25 K, (ωp)a = 0.69

eV and (ωp)b = 0.41 eV, together with the lattice parameters at 95 K, a =

13.675, b = 6.476, c = 36.048 Å and β = 94.74 , are used, the results t1 =

0.10 eV and t2 = 0.052 eV are obtained.

Figure 6.7 shows the band structure and Fermi surface estimated in
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this way.  The overall shapes of the band dispersion and the Fermi surface
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Fig. 6.7.  The band structure and the Fermi surface inferred from the optical results at 25 K.

The primitive lattice, (a ′, b ′, c ′), was adopted, where a ′ = (a + b) / 2, b ′ = – b

and c ′= – c.



are in agreement of those of the calculated ones (Fig. 6.3).  The optical

results give slightly larger corrugation of the quasi-one-dimensional Fermi

surface.  This comes from the larger ratio t2/t1 = 0.52; the corresponding

ratio is about 0.3 according to the band calculations.  This deviation may

stem partly from the simplification of the molecular arrangement introduced

in the analysis of the optical data.

In the light of this band structure, the interband transitions appear

around 4000 cm –1 are ascribable to the transitions from around the bottom

of the lower band to around the top of the upper band.  Such transitions

for zigzag stacks, as in this material, should have larger intensities for the

light polarization perpendicular to the stacks, which is consistent with the

observation.  The transition energy of them corresponds to the overall

width of the LUMO bands, which is slightly larger than 4t1.

6.4. Conclusion

The reflectance spectra of Me4N[Ni(dmit)2]2 suggest that this salt is

essentially metallic even at low temperature, in spite of the non-metallic

behavior of the dc resistivity.  The band structure and the Fermi surface

deduced from the Drude plasma frequencies are consistent with the tight-

binding calculations.
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Reflectance Spectra of αααα-Et2Me2N[Ni(dmit)2]2
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7.1. Introduction

The anion radical salt of [Ni(dmit)2], α-Et2Me2N[Ni(dmit)2]2, retains

metallic conductivity down to liquid helium temperature [1].  Three mod-

ifications, α-, β- and γ-types, have been hitherto identified in this compound

[2].  The β-type is semiconducting.  The α-type exhibits resistivity jump

at 240 K due to cracks of the crystals caused by the abrupt structural

phase transition, which has been revealed very recently [2].  The γ-type

crystal shows smooth decrease in resistivity down to low temperature [2].

The crystal of α-Et2Me2N[Ni(dmit)2]2 is composed of the conduction

layers of [Ni(dmit)2] and cation sheets, which are arranged alternately

along the a-axis [1].  In the [Ni(dmit)2] layers, all the molecular planes

are almost perpendicular to the c-axis and the molecules are packed in a

face-to-face fashion.  However, there is a special characteristic overlapping

mode in this crystal, which is called as the "spanning overlap" mode [1].

That is, a molecule overlaps with two molecules equivalently, in this

mode (Fig. 7.1).  As a result, molecular bridging array is formed.  Another

significant overlapping mode is a conventional face-to-face one to form a

dimeric packing of [Ni(dmit)2].  The calculations of the intermolecular

overlap integrals [1] have shown that these two overlaps are dominant.

These interactions afford a honey-comb-like two-dimensional network.

According to the tight-binding band calculations [1], this molecular ar-

rangement in fact yields two-dimensional Fermi surface (Fig. 7.2).  The

shape of the Fermi surface is similar to those of the typical two-dimensional

BEDT-TTF salts with the κ-type structure.  Therefore, this structure is an
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important example providing a way to construct a two-dimensional structure
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Fig. 7.1.  Top: Arrangement of [Ni(dmit)2] in the conduction layer of α-Et2Me2N[Ni(dmit)2]2

[1].  Bottom: Spanning overlap mode, designated as p1 in the top.
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Fig. 7.3.  The tight-binding band structure and Fermi surface of α-Et2Me2N[Ni(dmit)2]2

inferred from the intermolecular LUMO overlap calculations using the crystal

structure at 11 K [2].  The doubled periodicity along the b-axis is omitted for

simplicity.



only by the face-to-face overlapping most favored by planar π-molecules.

Similar molecular packing is also found for α-(C7H16N)[Ni(dmit)2]2, where

C7H16N
+ is piperidinium cation [3].

However, the recent low temperature X-ray study has revealed that

the crystal structure below the phase transition at 240 K is more complicated

than that at room temperature [2].  The phase transition is associated with

an ordering of Et2Me2N
+ cations and changes in the locations of [Ni(dmit)2].

The low temperature structure includes two independent [Ni(dmit)2] layers

arranged alternately along the a-axis.  Though the molecular arrangement

in each layer still includes the spanning overlap modes and is similar to

that of the room temperature structure, the band structure and the Fermi

surface are modified into those shown in Fig. 7.3 [2].  This low-temperature

band structure can explain several features of the recent measurements of

the magnetoresistance and the Shubnikov-de Haas effect [4,5].

The main purpose of this study is the experimental examination of

the two-dimensional electronic structure of this material and the estimation

of the transfer integral corresponding to the spanning overlap.  For this

purpose, the anisotropy of the intensities of intraband transitions can be

used.  The analysis of the optical properties may be involved due to the

complicated low temperature structure.  Nevertheless, it is interesting to

examine what information is provided by the optical measurements applied

to such a complicated situation.
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7.2. Experimental

The single crystals of α-Et2Me2N[Ni(dmit)2]2 are provided by Prof.

H. Kobayashi (Toho Univ.), Prof. A. Kobayashi (Univ. of Tokyo) and

Prof. R. Kato (Univ. of Tokyo).  Galvanostatic electrochemical oxidation

of Et2Me2N[Ni(dmit)2], in an acetonitrile-acetone (1:1) solution containing

Et2Me2NClO4 as supporting electrolyte, yielded black plate single crystals.

Polarized reflectance spectra were measured on the (100) crystal face, by

the methods described in Sec. 3.1, with the light polarization, E || b and E

|| c, which are the principal axes within the (100) plane.  The crystal axes

were identified by X-ray oscillation photographs.

7.3. Results and Discussion

Figure 7.4 shows the reflectance spectra measured at room temper-

ature, 200 K, 100 K and 25 K.  The spectra clearly show the two-

dimensionality of this salt, with the plasma edges appearing around 2000

cm –1 for E || b and 4000 cm –1 for E || c.  As is expected for metals, the

plasma edges become sharper with decreasing temperature accompanied

by the increase in reflectivity at low wavenumbers.  No significant change

was observed on the Drude-like spectral shape at low wavenumbers in

the cooling through the phase transition.  However, non-Drude features

grew around 4000 cm –1 with lowering temperature, which can be seen as

small humps in the reflectance spectra.
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Fig. 7.4.  Reflectance spectra of α-Et2Me2N[Ni(dmit)2]2.  Solid curves shows the fit to the

Drude-Lorentz model.
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Fig. 7.5.  Conductivity spectra of α-Et2Me2N[Ni(dmit)2]2.



The deviation from the Drude behavior indicates the presence of the

contribution of the interband transitions across band gaps.  In fact, broad

maxima corresponding to the humps can be recognized around 4000 cm –1

and around 7000 cm –1 for both polarizations in the conductivity spectra,

which were obtained by the Kramers-Kronig analysis of the reflectance

spectra (Fig. 7.5).  The contribution of the interband transitions is relatively

small, particularly at room temperature.  This is in contrast to the spectral

features of the dimeric κ-type BEDT-TTF salts (see Chap. 5) [6], in spite

of the resemblance of the shape of the Fermi surface (Fig. 7.2).  From this

it follows that the dimeric character in α-Et2Me2N[Ni(dmit)2]2 is not re-

markable from the viewpoint of the electronic structure.  In other words,

at least one of the interdimer transfer integrals, such as the spanning

overlap one, is comparable to the intradimer one.  The increase in the

intensities of the interband transitions with decreasing temperature, on

the other hand, suggests a gradual structural change such that modifies

the character of the electronic structure, and may be related to the relative

displacement of the [Ni(dmit)2] molecules shown by the low temperature

X-ray study [2].

In order to extract the contribution of the intraband transitions (the

Drude terms), a curve-fitting analysis of the reflectance spectra was carried

out, on the basis of the Drude-Lorentz dielectric function,

                                                     1 or 2

ε (ω ) = ε C – ω P
2 / (ω 2 + iω  / τ) + ∑ f j / [(ω j

2 – ω 2) – iγ jω ] .      (7.1)
                                                              j = 1
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The first term in the right-hand side of Eq.(7.1), the Drude term, describes



the intraband transitions.  The second term stands for the interband transi-

tions corresponding to the conductivity maxima.  The reflectivity is related

to dielectric function by the equation,

    R = [1 + | ε | – √2(| ε | + Re(ε)) ] / [1 + | ε  | + √2(| ε | + Re(ε)) ] .   

(7.2)

The obtained parameters are summarized in Table 7.I.  The solid curves

in Fig. 7.4 stand for the calculated spectra based on these parameters.

The fitting results are much less reliable for the room temperature data

because of the overdamped (small τ) shape of the plasma edges.

If we consider only the two dominant transfer integrals, t1 and t2,

within the [Ni(dmit)2] layer, the band structure can be explicitly expressed

as the form,

E(kb, kc) = ± [t1
 2 + 4t2

 2 cos 2(b ·kb / 2) ± 4t1t2 cos(c ·kc / 2) cos(b ·kb / 2)]1 / 2,

(7.3)

where t1 is the intradimer transfer integral and t2 is that corresponds to the

spanning overlap.  For the lower branches, which concern the Fermi

surface, only the case of E(kb, kc) < 0 should be considered.  The situation

described by this model is schematically illustrated in Fig. 7.6.  This band

model brings about the degeneracy at the boundaries of the first Brillouin

zone, in accord with the assumed high symmetry.

The squares of the obtained plasma frequencies, ωp
2, can be calculated

from this band structure described by t1 and t2.  That is to say,
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Table 7.I.  Drude parameters obtained by the Drude-

Lorentz fit of the reflectance spectra

                                                                    
 Polarization T / K  εc   ωp / eV  τ  – 1 / eV

                                                                    
     // b 295 4.0 0.51 0.27
     100 4.2 0.52 0.077

  25 4.1 0.52 0.061
// c 295 1.2 a) 0.67 0.26

100 3.1 0.73 0.082
  25 3.1 0.73 0.065

                                                                   

a)  In the fitting of this spectrum, the near-infrared

line-shape used is different from those of the other

cases.  This results in the small value of εc.

t2 t2

t2t2

t1

t1

t1t1

Fig. 7.6.  Schematic display of the two dominant intermolecular interactions in the

conduction layer of α-Et2Me2N[Ni(dmit)2]2. The spanning overlap
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corresponds to t 2.



(ωp
2) b = 2 (e2 / π2h) (2π / a sin β) ∫ | (vF)b | dkFc ,               (7.4)

(ωp
2) c = 2 (e2 / π2h) (2π / a sin β) ∫ | (vF)c | dkFb ,               (7.5)

where (vF)b and (vF)c are the b- and c-components of the Fermi velocity,

vF, given as

vF =  h –1 grad k E(t1, t2; kb, kc) ;   E = EF .                     (7.6)

Half-filling over the lower two branches, i.e., 1/4-filling for the overall

LUMO band, is assumed so as to satisfy the requirement of stoichiometry.

This determines the Fermi energy EF.  By use of these equations, the

optimal set of t1 and t2 which reproduce the observed plasma frequencies

were searched.  For example, when the values, (ωp)b = 0.67 eV and (ωp)c

= 0.52 eV, at room temperature are used together with the lattice constants

at room temperature, a = 38.95 Å, b = 6.494 Å, c = 13.835 Å and β =

99.63 , the transfer integrals are estimated to be t1 = 0.09 eV and t2 =

0.11 eV.  As was expected from the spectral features, the intra- and

interdimer interactions are comparable to each other.

Before applying this method to the low temperature spectra, the

effect of the structural phase transition [2] should be considered.  A

possible interpretation of the low temperature Fermi surface is as follows.

There are two independent [Ni(dmit)2] layers, between which only very

weak interlayer interactions are found.  Each layer, having a similar
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structural character, forms each two-dimensional band.  However, the



difference in the position and width between these bands split the degenerate

Fermi surface into the larger and smaller ones.  Moreover, the larger

Fermi surface changes its topology into the one open along the c-axis due

to the reconstruction around the Γ point, while the small one almost

retains its original topology.  This situation is depicted in Fig. 7.7, where

the solid and dotted lines show the smaller closed Fermi surface and the

larger open one, respectively, and the doubled periodicity along the b-axis

is omitted for simplicity.  The magnetoresistance and SdH results have

been interpreted in terms of the small Fermi surface [5].

It seems quite natural to regard the observed optical properties at

low temperatures as the average of the large and small Fermi surface.  If

this is the case, the analysis of the optical data should yield an intermediate

shape of the Fermi surface between the two.  By use of the values at 25

K, (ωp)b = 0.73 eV and (ωp)c = 0.52 eV, and the lattice constants at 11 K,

a = 37.499 Å, b = 6.444 Å, c = 13.718 Å and β = 92.69 , the transfer

integrals were estimated to be <t1> = 0.12 eV and <t2> = 0.10 eV from

the same method as above, where the brackets denote the average over

the two different [Ni(dmit)2] layers.  Figure 7.8 shows the band structure

and the Fermi surface based on these average values.

The validity of this estimation can be checked by the comparison

with the results of the SdH and magnetoresistance oscillations.  The

cyclotron mass for the small Fermi surface connected by the magnetic

breakdown effect has been reported to be m*c = 4.3 ± 0.2 me, with the

corresponding cross-sectional area of 85.9 % of the first Brillouin zone

[4,5].  The cyclotron mass can be calculated also for the average Fermi
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surface based on the optical results, by use of the relation,
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Fig. 7.8. The average band structure and Fermi surface inferred from the optical data at 25 K.



<m*c> = (h 2 / 2π) (dS / dE) ;         E = EF ,                     (7.7)

where S is the cross-sectional area.  This yields <m*c> = 4.3 me, which

coincides with the observed cyclotron mass for the smaller Fermi surface.

Note that the cross-sectional area is assumed to be 100 % in the analysis

of the optical data.  The optical results would give the cyclotron mass for

the smaller Fermi surface slightly less than <m*c> = 4.3 me, because the

smaller Fermi surface corresponds to the wider band according to Fig.

7.7.  Considering the simplicity of the approximation made for such a

complicated low temperature Fermi surface, this result does not seem to

be inconsistent with the observed cyclotron mass.  The origin of the

difference may be attributed to the modified topology of the large Fermi

surface around the Γ point (Fig. 7.7).

Next, the value of the Fermi wavenumber inferred from the angle

dependent magnetoresistance oscillation is considered.  For the diameter

of the closed portion of the small Fermi surface around the Z point, 0.29

b* along the c-axis, is suggested by the magnetoresistance results [5].

The corresponding value for the average Fermi surface should be slightly

larger, and calculated to be 0.32 b* from the optical results.  This result is

satisfactory.

7.4. Conclusion

The present results can be regarded as the estimation of the averaged
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geometry of the multiple Fermi surfaces emerging from the two independent



[Ni(dmit)2] layers.  The transfer integrals estimated from the low temper-

ature data should be the average of the corresponding ones over the

independent layers.  The present study well illustrates the nature of the

optical investigation of the Fermi surface using the intraband transitions.

The intraband transitions are less sensitive to the detailed features of the

Fermi surface as in the low temperature one in this case.  Nevertheless,

they efficiently reflect the global and overall geometry of the Fermi surface

and always afford the satisfactory estimation of the basic dimensionality

of a metal, whatever the detailed structure of the Fermi surface is.
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Chapter 8.

Reflectance Spectra of κκκκ-(DMET)2AuBr2
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8.1. Introduction

An organic π-donor, DMET (dimethyl(ethylenedithio)diselenadithia-

fulvalene) is the hybrid molecule between TMTSF and BEDT-TTF as

shown in Fig. 8.1.  The TMTSF salts are the first family of organic

superconductors [1,2].  They favor a quasi-one-dimensional structure and

have spin-density-wave phase at low temperature [2,3].  In contrast to

them, a variety of two-dimensional molecular pickings are found in the

BEDT-TTF family [4].  The DMET family salts were synthesized with

the expectation that they can fill the gap between the TMTSF and BEDT-

TTF families [5].  In fact, the DMET family includes both a quasi-one-

dimensional conductor similar to the TMTSF salts and a two-dimensional

conductor similar to the BEDT-TTF salts [6-12].  The DMET family has

afforded 7 superconductors, for the first time as radical salt based on a

non-symmetric molecule.

The salts, (DMET)2AuBr2, crystallizes at least in two different mod-

ifications [13,14].  The crystals of κ-(DMET)2AuBr2 can be categorized

into two groups, r1 and r2, by the difference in the electric properties (Fig.

8.2) [14].  Both show a resistivity maximum around 150 K (= Tmax).

Around this maximum, only the r1 crystals exhibit an "anti-hysteresis"

[14].  The r2 crystal is an ambient pressure superconductor with the

transition temperature Tc = 1.9 K, while the r1 ones are metallic down to

0.5 K without superconductivity [14].  In spite of these differences, the

crystal structures of the r1 and r2 samples are substantially the same.  A

crystal of the r2 type is picked up in this study.  The crystal structure is
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the so-called κ-type one,  with the space group P21/a,  in which dimers of
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Fig. 8.2.  Temperature dependence of electric resistivity of the three types of (DMET)2AuBr2.

The types, p1 and p2, belong to κ-(DMET)2AuBr2.
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Fig. 8.3.  Crystal structure of κ-(DMET) 2AuBr2 projected on to the ab-plane.



DMET molecules are arranged to form a two-dimensional packing within

the ab-plane (Fig. 8.3) [14].  In the dimer, molecules are related to each

other by the inversion symmetry.

In this study, the difference between the optical properties above

Tmax and those below Tmax is first focused on.  Second, the intensities of

the intraband transitions at low temperature are analyzed in order to

estimate the electronic structure.  The results are compared with the dHvA

experiments.  A comparison with the BEDT-TTF salts is also given.

8.2. Experimental

Single crystals of κ-(DMET)2AuBr2 were provided by Prof. Kikuchi

(Tokyo Metropolitan Univ.).  The crystals were grown by electrochemical

oxidation of DMET in chlorobenzene with (n-C4H9)4NAuBr2 as a supporting

electrolyte [13].  The most developed crystal face is the (001) one, with a

rhombus-like shape.  The reflectance spectra were measured on this face,

with the light polarization E || a and E || b, i.e., parallel to the two

principal axes within the ab-plane.  The crystal axes were identified by

X-ray oscillation photographs.  The measurements of the spectra were

carried out by following the method described in Sec. 3.1.

8.3. Results
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8.3.1. Spectral Aspects
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Fig. 8.4. Reflectance spectra of κ-(DMET)2AuBr2.



Figure 8.4 shows the reflectance spectra measured at room temper-

ature, 160 K, 80 K, 50 K and 20 K.  The overall spectral shapes are

similar to those of the κ-type BEDT-TTF salts [15]; there are remarkable

deviations from the Drude behavior, i.e., the humps around 3000 cm –1

and the prominent peaks at about 1300 cm –1.  As we have pointed out in

the cases of dimeric BEDT-TTF salts [15], this non-Drude behavior is

ascribable to the strong interband transitions stemming from the dimeric

structure of the donor molecule.  The structures around 3000 cm –1 is

attributable to the interband transitions, whose character is close to that of

the intradimer transitions.  The peaks at about 1300 cm –1 are considered

to be due to the electron-molecular-vibration coupling corresponding to

C=C stretching modes.  This can be induced by the interband transitions.

At room temperature and 160 K, that is, above Tmax, the reflectivity

is constant or slightly decreasing below 1000 cm –1 towards low wavenum-

ber.  This suggests that the intraband transitions are considerably sup-

pressed.  On the other hand, at 80 K, 50 K and 20 K, the reflectivity

increases below 1000 cm –1 towards low wavenumber, indicating the con-

tribution of the intraband transitions.  Figure 8.5 shows the conductivity

spectra obtained by the Kramers-Kronig analysis of the reflectance spectra.

Above Tmax, the conductivity seems to decrease rapidly towards zero when

zero wavenumber is approached, indicating the absence of the intraband

transitions.  Below Tmax, the conductivity value extrapolated to zero wave-

number does not seem to drop to zero.  Thus, the optical properties above

and below Tmax are in remarkable contrast.  These features are consistent

with the dc resistivity behavior.  This indicates that the change in the
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electronic properties through the resistivity maximum  concerns  not only
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Fig. 8.5.  Conductivity spectra of κ-(DMET)2AuBr2.



the states just near the Fermi level but also those lying over the energy

width of, at least, 0.1 eV.

Another noticeable point is the splitting of the broad peaks of the

interband transitions below Tmax (Fig. 8.5).  This is observed both for the

E || a and E || b spectra, and is evident also in the reflectance spectra (Fig.

8.4).  The splitting width seems to increase with decreasing temperature.

A similar splitting was reported also for α-(BEDT-TTF)2I3 [16].  However,

the origin should be different, because the splitting in α-(BEDT-TTF)2I3

accompanies the transition to the low temperature insulating phase; the

splitting in κ-(DMET)2AuBr2 appears when the material becomes metallic.

Moreover, as is noticed by the first order character of the metal-insulator

transition of α-(BEDT-TTF)2I3, the appearance of the splitting can be

related to the structural change, whereas no structural phase transition has

been found in κ-(DMET)2AuBr2.  Further discussion about this splitting

will be given below in connection with the non-metallic resistivity behavior

above Tmax.

8.3.2. Estimation of Band Structure

In order to extract the intensities of the interband transitions at low

temperature, a curve-fitting analysis based on the Drude-Lorentz model,

                                                     3 or 4

ε (ω ) = ε C – ω P
2 / (ω 2+iω  / τ) + ∑ f j / [(ω j

2 – ω 2) – iγ jω ] .      (8.1)
                                                              j = 1

was carried out.  The reflectivity is related to dielectric function by the
equation,
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Table 8.I.  Drude parameters at 20 K obtained by the

Drude-Lorentz fit of the reflectance spectra.

                                                                    
Polarization      εc       ωp / eV    τ  – 1 / eV

                                                                    
     // b 3.3 0.72 0.035
     // a 3.2 0.48 0.061
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Fig. 8.6.  Reflectance spectra at 20 K.  Solid curves shows the fit to the Drude-
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Lorentz model.



   R = [1 + | ε | – √2(| ε | + Re(ε)) ] / [1 + | ε  | + √2(| ε | + Re(ε)) ] .   

(8.2)

The first term in the right-hand side of Eq.(8.1) stands for the constant

contribution from the higher energy transitions outside the experimental

spectral region. The second term, the Drude term, gives the contribution

of the intraband transition. The third term describes the contribution of

other transitions: the interband transitions, the e-mv coupling modes.  We

empirically expressed the interband transition as a superposition of two

Lorentzian oscillators to describe the split shape of the interband transition.

The relatively small contributions of the intraband transitions, as compared

with those of the interband ones, result in less satisfactory convergence of

the fitting, particularly for the 80 K and 50 K data.  For the 20 K spectra,

the curve-fitting results were shown as the solid curves in Fig. 8.6, together

with the observed data points.  The obtained parameters related to the

intraband transitions were compiled in Table 8.I.

The same method which was applied to the case of κ-(BEDT-TTF)2I3

(see Chap. 5) [15], is applicable again to the estimation of the band

structure of this material, because of the symmetry of the packing of

dimers.  This method is based on the two effective interdimer transfer

integrals, ta and tb , which describe the band structure near the Fermi

surface.  The definition of them is given in Fig. 8.7.  In this method, the

conduction bands are regarded as those formed from the anti-bonding

state of the dimer; the effective Hamiltonian, which is derived by treating

the interdimer transfer integrals as perturbation to the energy splitting due
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to the strong intradimer interactions, is used to describe the band structure.
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The band structure is expressed as,

E(ka, kb) = 2 t b cos (b ·kb) ± 4 ta cos(a ·ka / 2) cos(b ·kb / 2) .     (8.3)

When the intraband plasma frequency values at 20 K given in Table 8.I

are used together with the lattice parameters at room temperature, a =

11.542, b = 8.238, c = 16.168 Å and β = 90.99 , the two transfer

integrals are estimated to be ta = 0.024 eV and tb = 0.031 eV.  The band

structure and the shape of the Fermi surface calculated by use of these

parameters are displayed in Fig. 8.8.

The results are compared with the those of the dHvA experiments

[17], in order to check the validity.  From the above band structure

inferred from the optical data, the values of the cyclotron mass and the

cross-sectional area can be calculated both for the large and small cyclotron

orbits (marked by the α and β, in Fig. 8.8) detected in the dHvA experiments.

The cyclotron masses for the α and β orbits are calculated to be m*α
opt =

3.4 me and m*β
opt = 5.6 me, respectively, from the optical results.  The

corresponding values deduced from the dHvA results are, m*α
dHvA = 3.8

me and m*β
dHvA = 6.0 me [17].  The agreement is satisfactory.  The cross-

sectional area for the β orbit should be 100 % of the first Brillouin zone,

in both results.  The α orbit has the cross-sectional area of 26 % of the

first Brillouin zone according to the dHvA optical results [17], while the

corresponding value from the optical results is 21 %, which is slightly

underestimated probably due to the simplification of the band structure

using the dimer-based model.  However, it can be concluded that the
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band structure derived from the optical data is consistent with the dHvA



results upon the whole.

It should be noted that the values of the cyclotron mass in

κ-(DMET)2AuBr2 are larger than those of κ-(BEDT-TTF)2I3.  There are

several reports which point out the correlation between the mass-

enhancement and high Tc in a series of BEDT-TTF superconductors [18].

The mass-enhancement involves the enhancement of the density of states

at the Fermi level.  As the origin of the mass-enhancement, the role of the

electron correlation has been suggested [18].  The cyclotron mass of

κ-(DMET)2AuBr2 is as heavy as those of a class of BEDT-TTF salts with

Tc = ca. 10 K.  However, Tc of κ-(DMET)2AuBr2, 1.9 K, is lower than

those of the 10 K class BEDT-TTF superconductors.  The mass of

κ-(DMET)2AuBr2 is about twice as heavy as that of κ-(BEDT-TTF)2I3,

though Tc of the former is about half as low as that of the latter, 3.6 K.

From these facts, it follows that not only the mass (and density of states)

but also the nature of the molecule is responsible for Tc.  This means that

the argument on the correlation between the mass and Tc cannot be applied

over systems based on different molecules.

8.4. Discussion

Let us return to the temperature dependence of the spectral shape.

Usually the absence of the intraband transitions is evidence for the gap

opening around the Fermi level.  On the other hand, from an ESR study,

it is concluded that the spin susceptibility is Pauli-like and insensitive to
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temperature above 50 K and that the temperature dependence of the ESR



line width well corresponds to that of the dc resistivity [19].  It is suggested

from the ESR results that the anomalous non-metallic behavior has a

dynamical origin such as some unusual molecular vibrations [19].  In

fact, a simple band picture of a metal cannot explain both the absence of

the intraband transitions and the Pauli-like susceptibility.  It is, therefore,

likely to think that the intraband transitions disappear due to some dynamical

disorder above Tmax.  In this picture, the coherence of the Bloch wavefunc-

tions is considered to be destroyed by strong inelastic scattering due to

the dynamical disorder.  Consequently, the mobility and the mean free

path of the charge carriers would be suppressed, without drastic change

in long-time average of the band structure.  The conduction in such a

situation should resemble to the hopping one.  The seeming optical gap

width, below which the optical intraband transitions are suppressed, has

been found to amount to about 0.1 eV.  Roughly speaking, this is a

measure of the characteristic energy of the disorder or of the inelastic

scattering.  The order of magnitude seems to support the suggestion that

the origin of the dynamical effect may be some molecular vibration [19].

In this connection, the broadening of X-ray diffraction peak aroundTmax is

also suggestive [20].

The splitting of the interband transitions is next focused on.  The

interband transitions occur mainly across the gaps between the lower

doubly split band and the highest branch.  Therefore, the splitting in the

spectra observed below Tmax may reflect the splitting of the lower band.

If this is the case, the disappearance of the spectral splitting above Tmax

can be explained as follows.  According to the uncertainty principle, the
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dynamical effect above Tmax removes the physical meaning of the detailed



band structure; only coarse-grained features with the scale of about 0.1

eV can remain.  The splitting of the lower band is thus obscured, as well

as the spectral splitting.

It should be noted that even the other molecular conductors with no

resistivity maximum are close to such a dynamically disordered situation.

This is based on the fact the mean free path of the charge carriers is very

short.  However, an exact and explicit treatment of such a dynamically

disordered state of metals has not been established yet.  Thus, detailed

quantitative analysis of the anomalous behavior is not available.

8.5. Conclusion

The optical properties of κ-(DMET)2AuBr2 correlate with the anom-

alous resistivity behavior.  The correlation appears not only in low wave-

number region but also the in the spectral shape in the mid-infrared

region.  This suggests the dynamical origin of the non-metallic behavior

of dc resistivity at high temperature.  The analysis of the intraband transitions

at low temperature yields the band structure and Fermi surface consistent

with the dHvA results.
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In this study, the intermolecular transfer integrals have been derived

from the optical data in the five organic π-molecular conductors.  Thus, it

has been shown that the band structures and Fermi surfaces are essentially

understandable in the framework of the simple tight-binding model, al-

though there remain some subtle discrepancies between the optical results

and the transport results.  This is the first demonstration of the determination

of the Fermi surface by the optical experiments, which can be compared

with the transport results.  The findings of the materials having rather

high symmetries of the molecular arrangements have enabled this study.

It may be surprising that the conduction bands of these materials are

composed only of one frontier molecular orbital on each molecule.  This

has made the analysis of intraband transitions very easy, in spite of the

complicated structure of the materials.  The strong correlation between

the interband transitions and the dimeric structure also supports this view

(see Chap. 5 and Appendix A.).  Except for a few examples such as

[Pd(dmit)2] salts [1-3], the intramolecular electronic degrees of freedom

play only a minor role in the conduction.  Only other kinds of flexibility,

such as molecular vibrations, can contribute to subtle features of the

electronic properties in most cases.

From this point of view, a molecule having degenerate frontier levels

or another molecular level very close to the frontier level is of great

interest.  The carbon cluster, C60, belongs to this class of molecules.  The

high symmetry of the molecule is essential for such a situation.  Such

kind of molecules have attracted attentions mainly from the magnetic

point of view, because the degeneracy of molecular levels should induce
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the local magnetic interactions.  However, the donor or acceptor molecule



with high symmetry would afford also some novel features in molecular

conductors, because the electronic flexibility of the molecule can directly

affect the conduction in such a case.  This strategy would be also useful

in controlling the dimensionality and the electron correlation by the mo-

lecular degrees of freedom.  In this connection, the finding of the very

small three-dimensional Fermi surface in θ-(BEDT-TTF)2I3 [3] (Sec. 4.7)

is a suggestive result.
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A.   Disappearance of Interband Transition                

due to Symmetry of Molecular Arrangement

In the following, a rule for disappearance of the optical interband

transition due to crystal symmetry is shown.    The conventional selection

rule for interband transtitions concerns the transition probability at a special

k-point.  On the other hand, this rule states that the optical interband

transition disappears over the whole region in the first Brillouin zone, if

the light polarization and the crystal structure satisfy the following condi-

tions:

i) The crystal has an n-fold non-symmorphic symmetry operation

along the x-direction (principal axis).

ii) The light polarization is parallel to the x-direction.

iii) All the molecular orbitals (MOs) relevant to the conduction bands

are equivalent to each other.

iv) The number of the MOs relevant to the conduction bands in the

unit cell is not more than n.

The non-symmorphic symmetry operation is defined as the symmetry

operation accompanied by the translation by 1 / n of the unit lattice

vector, where n = 2, 3, 4, or 6.  This category comprises the screw and

glide mirror operations.  The condition iii) is satisfied, at least approx-

imately, for wide range of the molecular conductors based on radical

salts.  The tight-binding approximation is applied here; the MOs are the

Wannier functions for the conduction bands.  The rule is analogous to the

extinction rules in the diffraction crystallography, and illustrates the role
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of the interband transition as a probe to the symmetry of molecular packing.



The interband optical spectra for the light polarized in the x-direction

with the frequency, ω, is described by the optical conductivity (see Sec.

2.4.),      

σ x (ω) =  (2 / iV h 3)   ∑ < j | [H, Px ] | j′ ><j′ | [H, Px ] | j >
                                            j, j ′

              × f(E j) [1– f(Ej ′ )] (ω / ω j j ′) / (ω
 2– ω j j ′

 2+iγ ω)  ,     (A.1)

where V is the crystal volume, j and j′ are the electronic states of the

crystal, and

h ω j j ′ = (E j– Ej  ′ )  ,                                   (A.2)

is the energy of the transition from the state j to j'.  The function f(E)

stands for the Fermi distribution, and,

H  =  ∑ t m m ′ a
 †

m a m ′  ,                                (A.3)
                                                  m, m′

and,

Px = e ∑ (R m) x a
 †

m a m ,                                (A.4)
                                          m, m′

are the Hamiltonian and the x-component of the electronic dipole, respec-

tively, where tm m′  is the transfer integral between the molecules m and m′,

(R m) x the x-component of the position vector pointing the molecular site
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m.  And a† and a are the creation and annihilation operators of electron,



respectively.  These are corresponding to the MOs on the sites m and m ′.

Here it is assumed that each molecule has only one MO (Cf. the condition

iii)).  It follow that

[H, Px ] = e ∑ t m m′ (R m, m′ ) x a
 †

m a m′ ,                 (A.5)
                                                  m, m′

where,

(R m, m′ ) x =(R m– R m′ ) x .                             (A.6)

Since [H, Px ] is an anti-Hermitian, [H, Px ] j ′ j =0 when [H, Px ] j j  ′ .

Suppose that the unit cell contains µΜ molecules.  In the reduced

zone scheme, this results in µΜ bands.  The vertical optical transition

form the M 'th band to M ′ 'th band at wavevector k is prescribed by the

matrix element,

<Ψ  M, k | X |Ψ M  ′, k > ≡ <Ψ M, k | [H, Px ] |Ψ M  ′, k > .             (A.7)

The wavefunction is given by

                                                      µΜ

Ψ M, k (r) = ∑ C M, µ, k  ψ µ, k (r) ,                           (A.8)
                                                    µ =1

 ψ µ, k (r) = N –1 / 2 ∑ exp(– ik  ·R l ) χ µ (r – R l ),             (A.9)
                                                   l
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where N denotes the number of unit cells in the crystal, and R l  the

position of the unit cell, l.  The summations in Eqs. (A.8) and (A.9) are

taken over the unit cell and the crystal, respectively.  The coefficient in

Eq. (A.8), C, is determined by the band calculations.  It is assumed here

that all the MOs, χ µ , are equivalent to each other (Cf. the condition iii)).

Since

exp(– i G · R l ) = 1 ,                               (A.10)

holds for any reciprocal lattice vector, G,

                                                   

ψ µ, k + G = ψ µ, k ,                                    (A.11)

follows from Eq. (A.9).  At the same time, we obtain,

ψ µ, k + G  = ∑  CM, µ, k + G ψ µ, k  ,                     (A.12)
                                                          µ

by substituting k with k + G.  This means that CM, µ, k + G , as well as CM, µ, k ,

is the eigenvector of the Hamiltonian in the (M, k) space.  Therefore, we

can label each state by (G, k) as well as by (M, k).  This is, namely, the

extended zone scheme.  The M 'th band in the reduced zone scheme

corresponds to the M 'th Brillouin zone in the extended zone scheme.  We

have only to consider up to the µΜ'th zone, because M ≤ µΜ.  By use of

CM, µ, k + G  instead of CM, µ, k , Eq.(A.8) is expressed as,
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Ψ  k + G (r) = ∑ CM, µ, k + G ψ µ, k (r).                 (A.13)
                                                            µ

From now on, we are referring to the representation on the basis of

the plane waves propagating along the x-direction,

| k >  =  exp(– i k · x),                             (A.14)

namely, k x-representation.

Application of Bloch's theorem to Ψ k + G (r)  for the x-direction, that

is, the Fourier expansion of Ψ k + G (r) with respect to x, yields,

Ψ  k + G (r) = ∑ φ (k + G, G ′x; y, z)  exp[– i(k x+Gx+G ′x) · x]. (A.15)
                         G  ′x

The matrix element of the Hamiltonian in the kx-representation is given

by,

            < Kx | H | K′x > = ∑ < Kx | m > < m | H | m ′ > < m ′ | K′x >
                                         m, m′

           = ∑ < Kx | m >  < m ′ | K′x > t m m′ ,                 (A.16)
                                         m, m′

where | m > stands for the molecular orbital at site m, χ (r – R m), and the

summation is taken over all the molecular pairs in the crystal.  It should

be noted that  < Kx | m >  is the Fourier transform of the molecular orbital,

| m >.

Next let us examine the effect of a crystal symmetry operation, α.
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Since all the MOs are equivalent to each other, | m ′ > may be obtained by



operating a certain α on | m >:

| m ′ > = | α n m >.                                   (A.17)

So that, Eq. (A.16) can be rewritten in the form,

< Kx | H | K′x > = ∑ t m m′  ∑ < Kx | α
 n m > <α n  m ′ | K′x > ,   (A.18)

                                    (m, m  ′ )          n

where (m, m  ′ ) runs over all the molecular pairs in which the molecules

are not related by α.  The Fourier transform of an MO, | α n m >, is,

< Kx | α
 n m > = ∫ exp(iKx x) χ  m [ρα

– n (r – n ττττα)] dx ,       (A.19)

where ρ α and ττττ α represent the rotation operator and translation vector of

α, respectively.  The integration is taken over the crystal.  For a non-

symmorphic operation with translation along the x-direction (Cf. the con-

dition i)), ρ α does not affect the x-component, and ττττ α is parallel to the

x-direction.  Taking account of these facts, we obtain,

                 < Kx | α
 n m > = ∫ exp[iKx (x + n τα)] χm (r) dx

               = exp (iKx  n τα) < Kx | m > ,                        (A.20)

for a non-symmorphic operation, α.

Equation (A.18) thus becomes,

                 < Kx | H | K′x >

               =  ∑ t m m′  <Kx | m > < m ′ |K′x>  ∑ exp[i(Kx – K′x ) n τα] ,
                   (m , m  ′ )                                                           n                         (A.21)
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The summation over n is equivalent to the Laue function appears in the

theory of X-ray diffraction, because n runs up to a very large integer

number.  It is known that this function vanishes if Kx– K′x ≠ (2π /τα)I , for

any integer I .

Therefore, in the expansion (A.15), only the terms with

G ′x = 2πI  / τα ≡ I gx  ,                               (A.22)

is required for the evaluation of the matrix elements.  The expansion

(A.15) is rewritten in the form,

Ψ k + G (r) = ∑ φ (k + G,  Igx ; y, z)  exp[–i(kx+Gx+Igx ) · x].   (A.23)
                        I

The matrix element (A.7) is, then, given by

              <ΨM, k | X |ΨM  ′, k > = <Ψk +G  | X | Ψk + G  ′ >

              = ∑ ∫ ∫ φ *(k + G,  Igx ; y, z) φ (k + G′, I′ gx ; y, z) dy dz
                 I, I  ′

     × ∫ exp[i(kx+Gx+ Igx ) · x] X  exp[–i(kx+Gx′+I′gx ) · x] dx  ,

 (A.24)

                                              

where it is used that X concerns only the x-coordinate.  The x-integration

is modified into,
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                   < k x+Gx+Ig x | X | k x+Gx′+I ′g x > = ∑ < m | X | m ′>
                                                                                                      m, m  ′

                                                       × < k x+Gx+Ig x | m > < m ′ | k x+Gx′+I ′g x >

       × ∑ exp[i{Gx –Gx′ + (I – I ′) g x}n τ α]  ,     (A.25)
                                            n                  

by an analogous treatment from Eq. (A.16) to (A.21).  Again the Laue-like

factor becomes negligible unless there is an integer J satisfying

Gx – Gx′ + (I – I ′)g x = J g x ,       

Gx – Gx′ = J g x ,                                      (A.26)

Here it should be reminded that both Gx and Gx′ are limited within the

µΜ'th Brillouin zone, that is,

| Gx – Gx′  | < 2 π µΜ / ξ ,                              (A.27)

where ξ is the lattice constant in the x-direction.  There is no such integer

J that satisfies (A.26), unless Gx =Gx′.  Hence, (A.25) and thus (A.24) are

negligible, if,

µΜ ≤ ξ  / τ α ,                                      (A.28)

and
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Gx ≠ Gx′  .                                        (A.29)



This is equivalent to the condition iv).  So that, the interband optical

transition (M  ≠ M ′, i.e., Gx ≠ Gx′ .) for the x-polarized light disappears at

any k.

In what follows, several comments are given in connection with this

rule.

Let us consider the matrix element of the Hamiltonian (A.21) at the

zone boundary, where both K x and K ′x  are the x-components of reciprocal

lattice vectors.  It is readily noticed that the matrix element may become

zero in the presence of non-symmorphic symmetry operation.  This cor-

responds to the degeneracy of the bands at the zone boundary.

The rule obtained here implies an analogy to the extinction rules for

X-ray diffraction, i.e., the character of the Laue function.  Both are the

generalization of the law of conservation of the crystal momentum.  For a

system with no non-symmorphic symmetry, the present rule reduces to

the simple law of conservation of crystal momentum, i.e., only the vertical

transitions are allowed.  It is possible and useful to regard the interband

optical transition as the scattering of the electron Bloch wave by the

radiation field.  The analogy to the diffraction phenomena turns out to be

obvious in this way.  For instance, the extinction of the (1 0 0) diffraction

corresponds to the disappearance of the interband transitions with Gx –

Gx′  = 2π / ξ.

As anticipated from this analogy, it is possible to show a similar rule

for multiple primitive cell systems, such as body-centered and face-centered

lattices, because these systems have the symmetry operations with transla-

tions shorter than the lattice constants.  However, if the band structure is
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calculated for the corresponding primitive cell, such a rule is trivial.



It is interesting to rewrite the matrix element of the transition moment

(A.7) in terms of the structure factor and the phase factor (the Laue

function).  The calculation is straightforward and  we obtain,

<Ψ  M, k | X |Ψ M  ′, k > =  ∑    ∑ < k + G + G ″ | X | k + G ′ + G ″′ >
                                     G ″      G  ″′

                               × φ *k +G ,G ″  φ  k + G ′ , G ″′

 =   ∑      ∑ < m  | X | m′>< k + G +G ″ | m > < m′ | k +G ′ +G ″′>
      m, m ′     G  ″, G ″′   

                             × φ*k +G ,G ″  φ  k + G ′ , G ″′

 =          ∑′           ∑   t m m′ (R m – R m′ ) x

               m ≠ m ′                  m  ′  

    × ∑ < k + G + G ″ | m > < m′ | k +G ′ + G ″′> φ*k +G ,G ″  φ  k + G ′ , G ″′

     G ″, G  ″′

                     × ∑  exp[i(G + G ″ – G ′– G ″′ ) · R l ].         (A.30)
                                 l          

where the Fourier coefficient φ k +G ,G ″  is defined by,

Ψk + G (r) = ∑ φk +G ,G ″   exp[-i(k + G + G ″) · r].           (A.31)
                                 G ″

Thus the matrix element can be expressed in terms of the factors

related to the intermolecular interactions (t), structure factors (Fourier

transforms) and the Laue function.
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The present discussion is based on the assumption that the conduction



bands are formed from equivalent MOs.  It is easily found that the interband

transition never disappears if two or more MOs are relevant to the conduc-

tion bands, as in [Pd(dmit)2] salts.  Furthermore, the rule can be broken

by strong short-range electron correlation.  In the presence of very large

on-site Coulomb repulsion, the state of a molecule distinctly depends on

the number of electrons on the molecule.  Therefore, the equivalent MO

picture no longer holds, even if the MOs themselves are equivalent.  In

other words, the present rule is useful to probe not only the symmetry but

also the composition of the conduction bands and the effect of strong

correlation.

B. Interplay of Interband Transitions                            

   and Electron-molecular-vibration (e-mv) Coupling

In Sec. 5.3.1, the role of the e-mv coupling peaks as a probe to the

interband transitions has been mentioned from an experimental point of

view.  Here, some general features of the e-mv coupling are briefly

discussed.

The origin of the e-mv coupling is the dependence of the relevant

molecular level on the molecular conformation.  In other words, it is the

interaction between the occupation of the MO and the normal modes of

the molecular vibration.  A Hamiltonian describing this interaction is,

H e-mv =  ∑  ∑ g v a
†
l, m  a l, m (b†

l, m, v + b l, m, v ) ,              (B.1)
                              l, m    v
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where g v is the linear coupling constant for the normal mode, v, a†
l, m  a l, m

denotes the number of electrons on the m 'th molecule in the l 'th unit

cell, and the operator, b†
l, m, v + b l, m, v  is the second-quantization expression

for the normal mode coordinate.  It is well known that the major contribu-

tions arise from the (nearly) totally symmetric modes, which are infrared

inactive.  With the unperturbed Hamiltonian, He + Hmv, the Hamiltonian

of the system is given as, H = He + Hmv + He-mv, where He and Hmv stand

for the unperturbed electronic and vibrational states, respectively.

Let us look at the role of the intraband transitions here, before

turning to that of the interband transitions.  As mentioned in Sec. 2.3., the

intraband transitions are the collective transverse motions of the electrons.

Such motions are accompanied by no change in distribution of electrons

over the molecules, because it corresponds to a longitudinal mode.  In

other words, a continuous flow of electronic current does not involve any

change in charge density distribution, as far as the principal axis components

concern.  Therefore, the intraband transitions do not contribute to the

e-mv coupling, in principle.  One the other hand, the distinction between

the transverse and longitudinal motions loses its physical meaning for the

interband transitions.

The e-mv coupling with regard to the intermolecular charge-transfer

excitations have been treated mainly on the basis of the dimer model [1],

or similar local models [2].  Since dimeric packing is often found in

molecular crystals, it is convenient to refer to such a framework.  However,

from the viewpoint of the conduction band electrons, it is not necessarily

efficient to stick to the treatment based on an isolated dimer or to the
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localized picture.



Generally speaking, the e-mv coupling should be regarded as the

interference between the continuum spectrum of the interband transitions

and the discrete one of the vibrational excitation.  A general theory by

Fano [3] is available for such kind of problem, and this phenomenon is

known as the Fano resonance.  For simplicity, we refer only to the case of

the interference between one discrete level and one continuum.

The discrete level is given in terms of the diagonal elements of Hmv,

as,

< φ | Hmv | φ > = Eφ   .                                          (B.2)

The continuum spectrum of purely electronic excitations is described by

He, that is,

<ψ E ″ | He | ψ E ′ > = E′ δ(E ″ – E′)  .                           (B.2)

where the continuum states, | ψ E ′ >, are normalized with respect to energy

as noted by the δ-function.  The cross terms arise from He-mv:

<ψ E ′  |He-mv | φ  > = He-mv (E′) .                               (B.3)

The eigenstates of the total Hamiltonian, H, should have the form,

Ψ E = aφ  (E)  +  ∫ b E ′(E) ψ E′ d E ′  .                          (B.4)
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where E is the corresponding eigenvalues and aφ  and b E ′ are the coefficients.



The solution of this eigenvalue problem is given by Fano [3].  The results

are,

aφ (E) = sin ∆(E) / πHe-mv (E) ,                                       (B.5)

b E′(E) = H e-mv (E′) sin ∆(E)  P / π (E – E′)He-mv (E)

 – δ(E– E′) cos ∆(E),                                          (B.6)

where P means that Cauchy's principal value should be taken when inte-

grated, and,

tan ∆(E) = – π | He-mv (E) | 2 / [E – Eφ + F(E)] ,                (B.7)

F(E) = P ∫ | He-mv (E′) | 2 dE′ / (E – E ′)  .                  (B.8)

Let H ′ be the interaction between the system and the radiation field.

The transition moment matrix corresponding the transition from the initial

state, |i >, to  | Ψ  E > is,

<Ψ  E | H′ | i > = aφ *(E)  < φ  | H′ | i >

 + ∫ b E ′∗(E)  <ψ E ′  | H′ | i >dE ′.   (B.9)

The first term vanishes, because the direct transition to | φ > is not
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allowed.  From the second term and Eq. (B.6), we obtain,



        <ΨE | H′ | i > =  [sin ∆(E) /π He-mv*(E)]

                     × P ∫ < φ  | He-mv | ψ E ′ ><ψ E ′ | H′ | i > dE′/(E – E′)

 – cos ∆(E) <ψE | H′ | i > .                                     (B.10)

The second term corresponds to the interband transitions to the purely

electronic excited states | ψE >.  On the other hand, the first term describes

the transitions to the vibrational state, | φ >, which are forbidden in the

case of no perturbation.  Clearly, this stems form the presence of He-mv,

and corresponds to the appearance of the e-mv peaks in the optical spectrum.

The formulation of the transition moment taking account of the band

structure is a too involved subject to be treated here explicitly in detail.

Rather, two significant characteristics emerging from the above discussion

are pointed out in the following.  First, the divergence of tan ∆(E) occurs

at the energy which satisfies, E = Eφ  – F(E).  Since F(E) can be regarded

as independent of E over a sufficiently narrow range, the shift of resonance

energy is approximately F(E).  According to the expression of F(E), Eq.

(B.8), this indicates that the shift of an e-mv peak is nearly proportional

to the square of the coupling constant, g 2, which is consistent with the

dimer case [4].  Second, the first term in (B.10) is linear to <ψ E ′ | H′ | i>.

This means the linear dependence of the intensity of the e-mv peaks on

that of the interband transitions.  This character enables us to judge the

intensity of the interband transitions by that of the e-mv peaks, as pointed
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out in Sec. 5.3.1.
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