Fast Large Scale Voxelization using a Pedigree
Takehiro Tawara'
Kenji Ono?

Functionality Simulation and Information Team,
RIKEN,

2-1, Hirosawa, Wako, Saitama, 351-0198, JAPAN.
't akehirotw @i ken.jp

2keno@i ken. jp

Abstract

Fluid analysis is a necessary component for developing faatwring products.
It is widely used in many areas: performance evaluationstehing the develop-
ment period and cost reduction. Voxel based fluid simulagaften used to sim-
ulate actual industrial products because of the simplaitgt robustness in terms
of grid generation. The method tends to demand a large soalgtizal model
because a higher resolution of a voxel grid is required toeiase the numerical
precision. Our goal is to generate large scale voxels fragelacale polygon data
on a commonly used PC or workstation at short times. Our #hgorcan handle
incomplete polygon data as an input, and generates an @dreell as a regular
grid. We also take into account to compute volume and aréasraf fluids per
voxel in sub-voxel precision.

Keywords: Voxelization, Octree, Pedigree.

Introduction

Fluid analysis is a necessary component for developing faaturing products.
It is widely used in many areas: performance evaluationrtehing a develop-
ment period and cost reduction. In a process of fluid anabyfspoduct design,
generating grids is the most time consuming part becausarafling a complex
geometry of actual products. To make things worse, inputrgery data is often
incomplete: small gaps between vertices or edges, revaadals, T-junctions
and others. Fixing such incomplete data requires a lot of tand labor, and it
becomes the bottle neck in the whole process of fluid analysis

Voxel based fluid simulation is often used to simulate aciodlistrial products
[12, 8, 1] because of the simplicity and robustness in terfngrid generation.

However, the analytical model tends to be a large scale Iseaahigher resolution
of voxel grids is required to increase the numerical precisi

Therefore, a fast algorithm to generate a large scale vogelainis required. So
far, there are not so many algorithms to generate such laaje goxels in a short
amount of time. And it is also required to get reasonable @gpration for an
incomplete input geometry. Our goal is to generate largéesaaxels for large
scale polygon data on a commonly used PC or workstation at hees. Our
algorithm can handle incomplete polygon data as an inpdtganerates an octree
as well as a regular grid. We also take into account to comyitene and area
ratios of fluid per voxel in sub-voxel precision. In this papge propose such an
algorithm and a software developed by the authors.

Previous Work

Representation of 3D objects is roughly separated into éagynand volume rep-
resentations. The former is explicit representation bygohs or curved surfaces,
and the later is implicit one by implicit surfaces or otheturoe data. In this pa-
per, we consider voxel representation of a 3D shape definetmidngle mesh,
which is the current mainstream representation of a sulfac&omputer-Aided
Engineering (CAE). This Conversion from geometry data teel@epresentation
is called voxelization. In this process, it is important engrate rational approx-
imation of original shapes. To voxelize 3D objects, ragggion algorithm in 2D
was extended to 3D by Kaufman et al. [10] and a fast algoritsinguinteger
arithmetic was also developed [9]. However, these scamlim¥ersion methods
couldn’t generate proper voxels when original polygons ¢iapls.

Huang et al. [7] proposed an algorithm to generate possigplogically accu-
rate voxels for polygons and planar meshes. This algoritbhiesed good ap-
proximation taking into account surfaces with finite thieks and connectivity to
neighboring voxels in discrete voxel space.

Rueda et al. [13] proposed a simple and robust algorithm withessellation
and no sorting, and they implemented and evaluated on haedvging OpenGL
library. It is not sure to be able to handle million nodes, veed to handle, in
practice, because evaluation has been done for 100K noites Rentium3 PC.
In addition, this method limited to generate regular grids.

For acceleration of voxelization, several algorithms ggBPU are reported. Fan
et al. [3] generated slices of 3D objects using a blendingtfon of a frame
buffer and created voxel model from these slices using a e, Although
this algorithm was fast, the same problems remained as gsangine conversion
methods. Harada et al. [6] achieved voxelization for a fellioni vertices in tens
of milli seconds using depth peeling and short ray castinmvétver, because this
method was based on ray casting, smaller polygons comp@ariaxel resolution
were ignored.

Our goal is to generate very large scale voxels for a few amiltriangles in short
time on a commonly used PC or workstation.

Algorithm Overview

Here, we briefly overview our algorithm. Triangle mesh isagivas an input and
a regular grid or an octree is generated as an output. We asthanthe scale of
an input is about a few million triangles and an output resofuis greater than or
equal to20483. For the fast intersection tests, all polygons are condeden set
of triangles in advance. Our algorithm consists of the fwilg four steps.

1. Voxelizing Surfaces

2. Smoothing Octree Levels

3. Filling Regions in Octree

4. Computing Volume and Area Ratios

In the following sections, we discuss our algorithm in detai

Voxelizing Surfaces

First, input triangle mesh is voxelized and triangle IDsstared in an octree data
structure. An octree is a tree structure in 3D space. Bectizsgle mesh is a
surface representation and triangles non-uniformly exi®2D space, it is con-
vincing to choose such an adaptive space partitioning datatsre for memory
efficiency. An octree is generated by a divide and conquemearso, 3D space
is recursively subdivided until no triangle is included isabdivided space or a
recursive depth is reached to a user defined depth. For e@ctoimode, a pointer
to a series of eight children is stored. For each boundargnadepresentative
group ID of triangles in a node and a sequence of triangle IDs#red. At the
same time of building tree, an octree position, leaf and dauwnflags are stored
for every node. We discuss about an octree position in thegestion.

The most time consuming part in this step is box-trianglersegctions. We used
the fast intersection algorithm proposed bylr [2], which is based on Separat-
ing Axis Theorem [5].

Pedigree

In this section, we introduce a general representation sitipoal information in
an octree to get better handling nodes in the later opematian octal number of a
child in a octree node is representethas= x + 2y + 4z, where X, y, z are binary
numbers (i.e., 0 or 1). It is rewritten using bit operatiens = z|(y < 1)|(z <
2). A child position (X, y, z) in a node is restored @s v, z) = (oct&1, (oct >

1)&1, (oct > 2)&1), vice versa. An octree node position is represented as an

. 10, 11
(24) (3:)
10 11
00:
0 10 11
(4) 00
00

[o] Decimal

Binary

Figure 1: Quad treeindex in decimal, binary and quad number. A shaded
index isrepresented as (14, 1) in decimal, (1110, 0001) in binary, and 1112 in
guad number.

series of octal numbers, each column represents the chdiigro of each tree
depth. We call this octree node position as a pedigree [11jedigree is written
ast\io oct; < (N — 1), where N is the tree deptli (< N < 15). To simplify
finding neighbors, we store a pedigree decomposed into »a%ises and an octree
depth in the form (X, y, z, d). Similar idea was reported astimnal code [4].

Figurel illustrates different representations of a poritf a quad tree in the case
of 2D space.

Memory Layout

One of key points of our algorithm is the memory layout pereetnode. Our
strategy is to compactly pack common data for each octree aod separates
boundary data from an octree node. Here, we show pseudo dooler aata
structure.

class OctreeNode {
Octreel Pos m_pos,
union {
OctreeNode* m.children;
OctreeleafData* m_ldata;
OctreeBoundaryData* m_bdata;
b
b

struct Octreel Pos {
unsigned short x, y, z, w;

s

Figure 2 shows a memory layout of OctreelPos data which icardposed pedi-
gree data introduced in the previous section. Each octrele has 8 bytes of
OctreelPos data and one pointer to children for an intemalenor boundary data
for a boundary node. It costs only 12 bytes for a 32 bit systeénbftes for a 64
bit system). Octree depth is stored in 4 bits. The maximunttdbpcomes 15
corresponding t@'® = 32768 regular grid resolution for each axis. It is enough
large for our application. A medium ID is stored in 8 bits @mponding to 256
mediums. We also store one bit flags for filling, subdivisiboyundary and leaf.

X y z w
| 1. | 1. | 1.6 | 16 |
L8 iafald] o |
id level
fill || leaf

subdiv boundary

Figure 2: Memory layout of Octreel Pos packed in 64 bits.

Octree Traverse using a Pedigree

Another key point of our algorithm is a fast octree traversechanism using a
pedigree. An octree data structure can be considered agar&mresentation of
regular grids. Similarly, a pedigree is an octal represiaof a grid position. A

set of the three left most bits of grid indices of three axasasponds to an octal

position of a child in the first level of an octree (See; in Figure 3). In the same
way, a set of the next bits becomes an octal position of a ahilde second level

of an octree (i.e.9cts). Using this mechanism we can traverse an octree from the
root node without any branching statement. There are twesad@ne is thaict

is not used because the zero level is defined as the root nane imctree. The
root node does not have an octal position representingd.itdabther note is the
significant bits are depend on the tree depth of a node. Soasiggn of the left
most bit differs for each node.

X y z w

il

octq octis

Figure 3: Pedigree composed from grid indices. An octal number oct; in-
dicates the position of a child of the root node. Subsequent octal numbers
octsy, octs, - - -, octys correspond positions of a child for each level.

Finding Neighbors in Octree

Finding neighboring nodes in an octree is a most repeategiguted function in

smoothing and filling steps discussed in the following sexti We decides to
have no explicit pointers to neighboring nodes becausesityeaxplodes mem-
ory consumption and needs to reorganize connections whenteee structure is
changed. Alternatively, we traverse in an octree using égpee as shown in the
previous section. In fact, this search is further simplifiedsibling nodes which

are children of the same parent node. Three nodes of six beiglfpositive and
negative X, Y and Z directions) are always siblings. Moreasiblings are al-

located on consecutive memory space. Therefore, neigidpeearch for three
directions can be done by a simple lookup table and shiftipgiater.

Smoothing Octree Levels

For better computation in fluid simulation, octree levels amoothed so that the
difference of levels of neighboring nodes is less than ormétmone. To make
this condition, six neighboring directions are investeght If we find a two level
deeper node, the current node is marked to subdivide. Akaedcept the last two

octree levels are processed because nodes in the two legais\aer subdivided.
It reduces the number of processing nodes to one-64th figrfubdivided octree.
This process is repeated until all nodes have no subdivitagn

Filling Regions in Octree

It is necessary to identify continuous regions for puttinigial and boundary con-
ditions in fluid simulation. For this purpose, we clusteriogg in an octree. In
painting applications, flood fill algorithm is well known. &halgorithm first pick
a start pixel, then the connected pixels with the same cdltimestart pixel are
filled by a new color. We extend this algorithm to an octreadtire.

First of all, boundary nodes are marked for filling regionsantsurfaces are vox-
elized. In the next, a non-marked node is chosen and filled ftos node. Using

a pedigree, our general positioning representation in areealata structure, a
continuous non-marked region is filled by an unique mediumE use a queue,
which is a First-In-First-Out (FIFO) structure, to manageqessing nodes for
memory efficiency.

Computing Volume and Area Ratios

For accurate computation in fluid simulation, volume of fljitOF) and/or area
of fluid (AOF) are required. To compute volume and area ratasistly and
accurately, we supersample a boundary voxel. This is plessilour case because
we store a sequence of triangle IDs including in a boundarghAlternatively,
we can estimate ratios by a plane approximating a surfacéouadary voxel.

Results

We summarize the results of our voxelizer which has threegutares: building
an octree, smoothing octree levels, labeling with mediura. IDur software is
executed on a workstation which consists of AMD Opteron ZR@lual-core
2.8GHz x2, 16GB memory, 64 bit SUSE Linux Enterprise Sengr Note that
current our software does not utilize multi core processthsrefore only one
core is used for computation. We tested two models: a Buddigehof 200,000
triangles and an automobile model of 3,815,564 triangles (Sgure 4). Each
octree is split up to 12 and 11 levels respectively. It cqroesis1096° and20483
regular grids each other. Table 1 shows memory consumptidrtimnings. An
automobile model requires more memory and times than a Budtidel because
its geometry is more complex. In fact a Buddha model only pezsione-fourth
of an entire region (2048x4096x2048 regular grids). As alltesve achieved
generating a large scale voxels at very short times on a wdaykstation.

B g HEET

Figure 4: Screenshots of voxelization of Buddha and automobile foreside

models.

leaf | boundary interior total time
Buddha 898.6 MB 1.2GB| 202.3MB | 2.2 GB || 134.66 sec
40963 58,891,057| 33,896,450 13,255,358
Automobile 1.1GB 19GB| 265.0MB | 3.2GB || 221.73 sec
20483 71,259,831| 50,293,560 17,364,770

Table 1: Memory consumption and Timings. The number of nodesis shown
in the lower part of each cell.

Conclusions

We proposed a novel voxelization algorithm using a pedigriean octree data
structure. A presented method generates large scale Vioxédsge scale polygon
data on a commonly used PC or workstation at short times. @oarithm can

handle incomplete polygon data as an input, and generatestae as well as a
regular grid. We also take into account to compute volumeaaad ratio of fluids
per voxel in sub-voxel precision.

Acknowledgement

This study was partially supported by Industrial Techngl&gsearch Grant Pro-
gram in '04 from New Energy and Industrial Technology Deyefent Organi-
zation (NEDO) of Japan. Automobile data was provided by &tisklotor Co.,

Ltd.

References

[1] M.J. Aftosmis, M.J. Berger, and J.E. Melton. Robust affitient cartesian
mesh generation for component-based geomeiiA Journal, 36(6):952—
960, 1998.

[2] Tomas Akenine-Nbller. Fast 3D Triangle-Box Overlap Testindournal of
Graphics Tooals, 6(1):29-33, 2001.

[3] S. Fang and H. Chen. Hardware accelerated voxelizatiGomputers &
Graphics, 24(3):433-442, 2000.

[4] S. Frisken and R. Perry. Simple and efficient traversahmes for quadtrees
and octreesJournal of Graphics Tools, 7(3), 2003.

[5] S. Gottschalk, M.C. Lin, and D. Manocha. OBBTree: A Hietsdcal Struc-
ture for Rapid Interference Detection. @omputer Graphics (ACM S G-
GRAPH ' 96 Proceedings), pages 171-180, August 1996.

[6] T. Harada and S. Koshizuka. Fast Solid Voxelization gsBraphics Hard-
ware. InJapan Computational Engineering, No.20060023, 2006.

[7] Jian Huang, Roni Yagel, Vassily Filippov, and Yair Kusai An Accurate
Method for Voxelizing Meshes. IHEEE Symposium on Volume Visualiza-
tion, pages 119-126, 1998.

[8] S.L. Karman Jr. Splitflow: A 3d unstructured cartesiaigmatic grid cfd
code for complex geometries. AIAA-95-0343, 1995.

[9] A. Kaufman. An Algorithm for 3D Scan-Conversion of Polygs. InProc.
Eurographics’87, pages 197-208, August 1987.

[10] A. Kaufman and E. Shimony. 3D Scan-Conversion Algarighfor Voxel-
Based Graphics. IRroc. ACM Workshop on Interactive 3D Graphics, pages
45-76, October 1986.

[11] T. Ogawa. An efficient numerical algorithm for the trdata based flow
solver. InComputational Fluid Dynamics 2000, pages 337-342, 2000.

[12] Kenji ONO, Hiroyuki AOKI, Sanae SATO, and Hiroyuki SHEAWA. Con-
struction of rapid simulation tool for automotive cfd. 8th International
Conference on Numerical Grid Generation in Computational Field Smula-
tion, pages 81-90, 2002.

[13] Antonio J. Rueda, Rafael J. Segura, Francisco R. Faéitan Ruiz de Miras,
and Carlos Ogayar. Voxelization of solids using simplicialerings. In
WSCG, 2004.

