
Fast Large Scale Voxelization using a Pedigree

Takehiro Tawara1

Kenji Ono2

Functionality Simulation and Information Team,
RIKEN,
2-1, Hirosawa, Wako, Saitama, 351-0198, JAPAN.
1takehirotwr@riken.jp
2keno@riken.jp

Abstract

Fluid analysis is a necessary component for developing manufacturing products.
It is widely used in many areas: performance evaluation, shortening the develop-
ment period and cost reduction. Voxel based fluid simulationis often used to sim-
ulate actual industrial products because of the simplicityand robustness in terms
of grid generation. The method tends to demand a large scale analytical model
because a higher resolution of a voxel grid is required to increase the numerical
precision. Our goal is to generate large scale voxels from large scale polygon data
on a commonly used PC or workstation at short times. Our algorithm can handle
incomplete polygon data as an input, and generates an octreeas well as a regular
grid. We also take into account to compute volume and area ratios of fluids per
voxel in sub-voxel precision.

Keywords: Voxelization, Octree, Pedigree.

Introduction

Fluid analysis is a necessary component for developing manufacturing products.
It is widely used in many areas: performance evaluation, shortening a develop-
ment period and cost reduction. In a process of fluid analysisof product design,
generating grids is the most time consuming part because of handling a complex
geometry of actual products. To make things worse, input geometry data is often
incomplete: small gaps between vertices or edges, reversednormals, T-junctions
and others. Fixing such incomplete data requires a lot of time and labor, and it
becomes the bottle neck in the whole process of fluid analysis.

Voxel based fluid simulation is often used to simulate actualindustrial products
[12, 8, 1] because of the simplicity and robustness in terms of grid generation.
However, the analytical model tends to be a large scale because a higher resolution
of voxel grids is required to increase the numerical precision.

Therefore, a fast algorithm to generate a large scale voxel model is required. So
far, there are not so many algorithms to generate such large scale voxels in a short
amount of time. And it is also required to get reasonable approximation for an
incomplete input geometry. Our goal is to generate large scale voxels for large
scale polygon data on a commonly used PC or workstation at short times. Our
algorithm can handle incomplete polygon data as an input, and generates an octree
as well as a regular grid. We also take into account to computevolume and area
ratios of fluid per voxel in sub-voxel precision. In this paper, we propose such an
algorithm and a software developed by the authors.

Previous Work

Representation of 3D objects is roughly separated into boundary and volume rep-
resentations. The former is explicit representation by polygons or curved surfaces,
and the later is implicit one by implicit surfaces or other volume data. In this pa-
per, we consider voxel representation of a 3D shape defined bytriangle mesh,
which is the current mainstream representation of a surfacein Computer-Aided
Engineering (CAE). This Conversion from geometry data to voxel representation
is called voxelization. In this process, it is important to generate rational approx-
imation of original shapes. To voxelize 3D objects, rasterization algorithm in 2D
was extended to 3D by Kaufman et al. [10] and a fast algorithm using integer
arithmetic was also developed [9]. However, these scanlineconversion methods
couldn’t generate proper voxels when original polygons hadgaps.

Huang et al. [7] proposed an algorithm to generate possibly topologically accu-
rate voxels for polygons and planar meshes. This algorithm achieved good ap-
proximation taking into account surfaces with finite thickness and connectivity to
neighboring voxels in discrete voxel space.

Rueda et al. [13] proposed a simple and robust algorithm withno tessellation
and no sorting, and they implemented and evaluated on hardware using OpenGL
library. It is not sure to be able to handle million nodes, we need to handle, in
practice, because evaluation has been done for 100K nodes using Pentium3 PC.
In addition, this method limited to generate regular grids.

For acceleration of voxelization, several algorithms using GPU are reported. Fan
et al. [3] generated slices of 3D objects using a blending function of a frame
buffer and created voxel model from these slices using a 3D texture. Although
this algorithm was fast, the same problems remained as usingscanline conversion
methods. Harada et al. [6] achieved voxelization for a few million vertices in tens
of milli seconds using depth peeling and short ray casting. However, because this
method was based on ray casting, smaller polygons comparingto voxel resolution
were ignored.

Our goal is to generate very large scale voxels for a few million triangles in short
time on a commonly used PC or workstation.

Algorithm Overview

Here, we briefly overview our algorithm. Triangle mesh is given as an input and
a regular grid or an octree is generated as an output. We assume that the scale of
an input is about a few million triangles and an output resolution is greater than or
equal to20483. For the fast intersection tests, all polygons are converted to a set
of triangles in advance. Our algorithm consists of the following four steps.

1. Voxelizing Surfaces
2. Smoothing Octree Levels
3. Filling Regions in Octree
4. Computing Volume and Area Ratios

In the following sections, we discuss our algorithm in details.

Voxelizing Surfaces

First, input triangle mesh is voxelized and triangle IDs arestored in an octree data
structure. An octree is a tree structure in 3D space. Becausetriangle mesh is a
surface representation and triangles non-uniformly existin 3D space, it is con-
vincing to choose such an adaptive space partitioning data structure for memory
efficiency. An octree is generated by a divide and conquer manner. So, 3D space
is recursively subdivided until no triangle is included in asubdivided space or a
recursive depth is reached to a user defined depth. For each interior node, a pointer
to a series of eight children is stored. For each boundary node, a representative
group ID of triangles in a node and a sequence of triangle IDs are stored. At the
same time of building tree, an octree position, leaf and boundary flags are stored
for every node. We discuss about an octree position in the next section.

The most time consuming part in this step is box-triangle intersections. We used
the fast intersection algorithm proposed by Möller [2], which is based on Separat-
ing Axis Theorem [5].

Pedigree

In this section, we introduce a general representation of positional information in
an octree to get better handling nodes in the later operations. An octal number of a
child in a octree node is represented asoct = x+2y+4z, where x, y, z are binary
numbers (i.e., 0 or 1). It is rewritten using bit operationsoct = x|(y ≪ 1)|(z ≪
2). A child position (x, y, z) in a node is restored as(x, y, z) = (oct&1, (oct ≫
1)&1, (oct ≫ 2)&1), vice versa. An octree node position is represented as an

0 1
0

0
0

1
1

1

15140

0
1
2
3

002

(0)4

102

(2)4

112

(3)4

10 11

00
10 11

00
10 11

00 01

0
0

0
0

1
1

1
1

0
1

15

0 1 2 3

Binary

Decimal

x

y

Figure 1: Quad tree index in decimal, binary and quad number. A shaded
index is represented as (14, 1) in decimal, (1110, 0001) in binary, and 1112 in
quad number.

series of octal numbers, each column represents the child position of each tree
depth. We call this octree node position as a pedigree [11]. Apedigree is written
as

∑
N

i=0
octi ≪ (N − i), where N is the tree depth (0 ≤ N ≤ 15). To simplify

finding neighbors, we store a pedigree decomposed into x, y, zaxises and an octree
depth in the form (x, y, z, d). Similar idea was reported as locational code [4].

Figure1 illustrates different representations of a position of a quad tree in the case
of 2D space.

Memory Layout

One of key points of our algorithm is the memory layout per octree node. Our
strategy is to compactly pack common data for each octree node and separates
boundary data from an octree node. Here, we show pseudo code of our data
structure.

class OctreeNode {
OctreeIPos m pos;
union {

OctreeNode* m children;
OctreeLeafData* m ldata;
OctreeBoundaryData* m bdata;

};
};

struct OctreeIPos {
unsigned short x, y, z, w;

};

Figure 2 shows a memory layout of OctreeIPos data which is a decomposed pedi-
gree data introduced in the previous section. Each octree node has 8 bytes of
OctreeIPos data and one pointer to children for an interior node or boundary data
for a boundary node. It costs only 12 bytes for a 32 bit system (16 bytes for a 64
bit system). Octree depth is stored in 4 bits. The maximum depth becomes 15
corresponding to215 = 32768 regular grid resolution for each axis. It is enough
large for our application. A medium ID is stored in 8 bits corresponding to 256
mediums. We also store one bit flags for filling, subdivision,boundary and leaf.

x y z w

levelid

leaf
boundarysubdiv

fill

16 16 16 16

8 41 1 1 1

Figure 2: Memory layout of OctreeIPos packed in 64 bits.

Octree Traverse using a Pedigree

Another key point of our algorithm is a fast octree traverse mechanism using a
pedigree. An octree data structure can be considered as an octal representation of
regular grids. Similarly, a pedigree is an octal representation of a grid position. A
set of the three left most bits of grid indices of three axes corresponds to an octal

position of a child in the first level of an octree (Seeoct1 in Figure 3). In the same
way, a set of the next bits becomes an octal position of a childin the second level
of an octree (i.e.,oct2). Using this mechanism we can traverse an octree from the
root node without any branching statement. There are two notes. One is thatoct0
is not used because the zero level is defined as the root node inour octree. The
root node does not have an octal position representing itself. Another note is the
significant bits are depend on the tree depth of a node. So the position of the left
most bit differs for each node.

x y z w

oct oct1 15

Figure 3: Pedigree composed from grid indices. An octal number oct1 in-
dicates the position of a child of the root node. Subsequent octal numbers
oct2, oct3, · · · , oct15 correspond positions of a child for each level.

Finding Neighbors in Octree

Finding neighboring nodes in an octree is a most repeatedly executed function in
smoothing and filling steps discussed in the following sections. We decides to
have no explicit pointers to neighboring nodes because it easily explodes mem-
ory consumption and needs to reorganize connections when anoctree structure is
changed. Alternatively, we traverse in an octree using a pedigree as shown in the
previous section. In fact, this search is further simplifiedfor sibling nodes which
are children of the same parent node. Three nodes of six neighbors (positive and
negative X, Y and Z directions) are always siblings. Moreover siblings are al-
located on consecutive memory space. Therefore, neighboring search for three
directions can be done by a simple lookup table and shifting apointer.

Smoothing Octree Levels

For better computation in fluid simulation, octree levels are smoothed so that the
difference of levels of neighboring nodes is less than or equal to one. To make
this condition, six neighboring directions are investigated. If we find a two level
deeper node, the current node is marked to subdivide. All nodes except the last two

octree levels are processed because nodes in the two levels are never subdivided.
It reduces the number of processing nodes to one-64th for fully subdivided octree.
This process is repeated until all nodes have no subdivisionflag.

Filling Regions in Octree

It is necessary to identify continuous regions for putting initial and boundary con-
ditions in fluid simulation. For this purpose, we cluster regions in an octree. In
painting applications, flood fill algorithm is well known. The algorithm first pick
a start pixel, then the connected pixels with the same color of the start pixel are
filled by a new color. We extend this algorithm to an octree structure.

First of all, boundary nodes are marked for filling regions when surfaces are vox-
elized. In the next, a non-marked node is chosen and filled from this node. Using
a pedigree, our general positioning representation in an octree data structure, a
continuous non-marked region is filled by an unique medium ID. We use a queue,
which is a First-In-First-Out (FIFO) structure, to manage processing nodes for
memory efficiency.

Computing Volume and Area Ratios

For accurate computation in fluid simulation, volume of fluid(VOF) and/or area
of fluid (AOF) are required. To compute volume and area ratiosrobustly and
accurately, we supersample a boundary voxel. This is possible in our case because
we store a sequence of triangle IDs including in a boundary voxel. Alternatively,
we can estimate ratios by a plane approximating a surface in aboundary voxel.

Results

We summarize the results of our voxelizer which has three procedures: building
an octree, smoothing octree levels, labeling with medium IDs. Our software is
executed on a workstation which consists of AMD Opteron 2220SE dual-core
2.8GHz x2, 16GB memory, 64 bit SuSE Linux Enterprise Server 10. Note that
current our software does not utilize multi core processors, therefore only one
core is used for computation. We tested two models: a Buddha model of 200,000
triangles and an automobile model of 3,815,564 triangles (See Figure 4). Each
octree is split up to 12 and 11 levels respectively. It corresponds40963 and20483

regular grids each other. Table 1 shows memory consumption and timings. An
automobile model requires more memory and times than a Buddha model because
its geometry is more complex. In fact a Buddha model only occupies one-fourth
of an entire region (2048x4096x2048 regular grids). As a result, we achieved
generating a large scale voxels at very short times on a today’s workstation.

Figure 4: Screenshots of voxelization of Buddha and automobile foreside
models.

leaf boundary interior total time
Buddha 898.6 MB 1.2 GB 202.3 MB 2.2 GB 134.66 sec
40963 58,891,057 33,896,450 13,255,358
Automobile 1.1 GB 1.9 GB 265.0 MB 3.2 GB 221.73 sec
20483 71,259,831 50,293,560 17,364,770

Table 1: Memory consumption and Timings. The number of nodes is shown
in the lower part of each cell.

Conclusions

We proposed a novel voxelization algorithm using a pedigreeof an octree data
structure. A presented method generates large scale voxelsfor large scale polygon
data on a commonly used PC or workstation at short times. Our algorithm can
handle incomplete polygon data as an input, and generates anoctree as well as a
regular grid. We also take into account to compute volume andarea ratio of fluids
per voxel in sub-voxel precision.

Acknowledgement

This study was partially supported by Industrial Technology Research Grant Pro-
gram in ’04 from New Energy and Industrial Technology Development Organi-
zation (NEDO) of Japan. Automobile data was provided by Nissan Motor Co.,
Ltd.

References

[1] M.J. Aftosmis, M.J. Berger, and J.E. Melton. Robust and efficient cartesian
mesh generation for component-based geometry.AIAA Journal, 36(6):952–
960, 1998.

[2] Tomas Akenine-M̈oller. Fast 3D Triangle-Box Overlap Testing.Journal of
Graphics Tools, 6(1):29–33, 2001.

[3] S. Fang and H. Chen. Hardware accelerated voxelization.Computers &
Graphics, 24(3):433–442, 2000.

[4] S. Frisken and R. Perry. Simple and efficient traversal methods for quadtrees
and octrees.Journal of Graphics Tools, 7(3), 2003.

[5] S. Gottschalk, M.C. Lin, and D. Manocha. OBBTree: A Hierarchical Struc-
ture for Rapid Interference Detection. InComputer Graphics (ACM SIG-
GRAPH ’96 Proceedings), pages 171–180, August 1996.

[6] T. Harada and S. Koshizuka. Fast Solid Voxelization using Graphics Hard-
ware. InJapan Computational Engineering, No.20060023, 2006.

[7] Jian Huang, Roni Yagel, Vassily Filippov, and Yair Kurzion. An Accurate
Method for Voxelizing Meshes. InIEEE Symposium on Volume Visualiza-
tion, pages 119–126, 1998.

[8] S.L. Karman Jr. Splitflow: A 3d unstructured cartesian/prismatic grid cfd
code for complex geometries. InAIAA-95-0343, 1995.

[9] A. Kaufman. An Algorithm for 3D Scan-Conversion of Polygons. InProc.
Eurographics ’87, pages 197–208, August 1987.

[10] A. Kaufman and E. Shimony. 3D Scan-Conversion Algorithms for Voxel-
Based Graphics. InProc. ACM Workshop on Interactive 3D Graphics, pages
45–76, October 1986.

[11] T. Ogawa. An efficient numerical algorithm for the tree-data based flow
solver. InComputational Fluid Dynamics 2000, pages 337–342, 2000.

[12] Kenji ONO, Hiroyuki AOKI, Sanae SATO, and Hiroyuki SHIOZAWA. Con-
struction of rapid simulation tool for automotive cfd. In8th International
Conference on Numerical Grid Generation in Computational Field Simula-
tion, pages 81–90, 2002.

[13] Antonio J. Rueda, Rafael J. Segura, Francisco R. Feito,Juan Ruiz de Miras,
and Carlos Ogayar. Voxelization of solids using simplicialcoverings. In
WSCG, 2004.

