
Exploiting Temporal Coherence in Final Gathering for
Dynamic Scenes

T. Tawara, K. Myszkowski, and H.-P. Seidel

MPI Informatik Saarbruecken, Germany
{tawara, karol, hpseidel}@mpi-sb.mpg.de

Abstract

Efficient global illumination computation in dynamically
changing environments is an important practical problem.
In high-quality animation rendering costly “final gathering”
technique is commonly used. We extend this technique into
temporal domain by exploiting coherence between the subse-
quent frames. For this purpose we store previously computed
incoming radiance samples and refresh them evenly in space
and time using some aging criteria. The approach is based
upon a two-pass photon mapping algorithm with irradiance
cache, but it can be applied also in other gathering meth-
ods. The algorithm significantly reduces the cost of expen-
sive indirect lighting computation and suppresses temporal
aliasing with respect to the state of the art frame-by-frame
rendering techniques.

Keywords: Global illumination, photon mapping, tempo-
ral coherence, final gathering, irradiance cache.

Please note that this paper is accompanied by
electronic materials.

1. Introduction

Producing high quality animations featuring compelling
lighting effects is very time consuming using traditional ren-
dering approaches in which each frame is computed sepa-
rately. This means that a vast majority of computation must
be started from scratch for each frame, leading to unnec-
essary redundant computation. Since temporal coherence is
typically not exploited (some algorithms are based on pixel
reprojection from frame to frame [16]), temporal aliasing
problems are also more difficult to combat. Many small er-
rors in lighting distribution cannot be perceived by the hu-
man observer when they are coherent in the temporal do-
main, but when such a coherence is lost, the result will often
be unpleasant flickering effects. An efficient solution to re-
duce flickering for ray tracing was proposed by Martin [11].

In this paper we are concerned about the reduction of tem-
poral aliasing in the lighting function.

In the rendering of production quality animation, global
illumination computations† are usually performed using
two-pass methods. In the first (preprocessing) pass, the light-
ing distribution over scene surfaces is sparsely computed us-
ing radiosity [10, 15, 4] or photon mapping [8, 3] methods.
In the second (rendering) pass more exact global illumina-
tion computation is performed on a per pixel basis using the
results obtained in the first pass. To improve the spatial res-
olution of lighting details for a given camera view the so-
called final gathering [12, 10, 15, 4] is commonly used. Usu-
ally the direct lighting is explicitly computed for each pixel,
and the indirect lighting is obtained through the integration
of incoming radiances, which is computationally expensive.

More efficient versions of this final gathering recently
have been proposed specifically for Hierarchical Radios-
ity with Clustering [13, 14]. The final gathering costs also
can be reduced by using the irradiance cache data struc-
ture [19, 20] which is more suitable for ray tracing methods.
Within this method irradiance samples are lazily computed
and sparsely cached in object space for a given camera posi-
tion (a view-dependent process). The indirect illumination is
interpolated for each pixel based on those cached irradiance
values, which is significantly faster than the final gathering
computation for each pixel. The irradiance cache technique
efficiently removes shading artifacts which are very diffi-
cult to avoid if the indirect lighting is directly reconstructed
based on the radiosity mesh or the photon maps. However,
the price to be paid for this high quality lighting reconstruc-
tion is long computation times, which are mostly caused by

† For a more complete overview of global illumination techniques
developed specifically for animation rendering refer to a recent sur-
vey on this topic [5].

the irradiance integration that is performed for each cache
location in the scene.

The irradiance caches can be reused for the efficient ren-
dering of walkthrough animations in static environments
[19]. However, for dynamic environments such a simple
reusing may lead to invalid lighting. In this paper we address
this problem and we propose some extensions of irradiance
cache management into the temporal domain, specifically in
the context of a photon mapping technique. Whenever pos-
sible we try to re-use not only the irradiance cache locations,
but also we update the cache values required in dynamic en-
vironments. For each frame and each cache location, a cer-
tain percentage of stored incoming radiance samples is up-
dated, potentially for those scene regions in which lighting
changes are the most significant. Also, in response to chang-
ing lighting and camera positions, new cache locations are
lazily inserted and unnecessary cache locations are removed.
This results in a significant reduction in computation times
compared to frame-by-frame rendering. Also, an even better
animation quality can be obtained due to the temporal coher-
ence between cache locations and cached incoming radiance
samples.

It should be pointed out that our space-time approach pre-
sented in this paper focuses only upon efficient computation
of soft indirect lighting. Direct illumination and caustics as
well as all directional effects such as specular reflections and
refractions are computed from scratch for each frame.

2. Photon Mapping

In the newly developed temporally coherent animation ren-
dering we use the photon mapping algorithm proposed by
Jensen [7, 8]. The method works well even for complex en-
vironments, and can easily simulate all possible light paths.
In particular, the method outperforms all other techniques in
high quality rendering of caustic effects. The method con-
sists of two passes: (1) lighting simulation through photon
tracing and (2) rendering with the re-computation of direct
lighting and view-dependent specular effects.

In the first stage of this method, photons are traced from
light sources toward the scene and photon hit points are reg-
istered in a kd-tree structure, the so called photon map. This
stage is so fast (when compared to the second pass) that pho-
tons can be easily recomputed for each frame. To our best
knowledge the only attempt at reusing photons for several
frames was done to perform motion blur [1] for caustics.
In our approach the photon map is computed from scratch
for each frame, which guarantees that selectively updated in-
coming radiance samples in the final gathering computation
are correct.

Soft indirect lighting is usually reconstructed using the ir-
radiance cache technique [19, 20, 8]. For each cache loca-
tion, irradiance is integrated over the scene by sampling in-
coming energy for selected directions as illustrated in Figure

Symbol Quantity Unit

E Irradiance Wm−2

Li Incident radiance Wm−2sr−1

E

Li

Li

Li
Li

Li

Figure 1: Irradiance E and incoming radiance samples
Li (one sample per strata) at an irradiance cache location
marked by the black dot.

2. To reduce the variance of such sampling, the hemisphere
of all possible directions is split into strata and a small num-
ber of sample directions (usually one) are randomly chosen
for each stratum. Each sample involves a costly intersection
computation performed by tracing a ray and the estimate of
energy incoming from the point hit by the ray. The photon
map is used for the incoming lighting reconstruction using
the nearest neighbor density estimation method [6]. To re-
duce the density estimation cost Christensen [3] proposed
to precompute irradiance and store the resulting values at
sparsely selected photon locations on diffuse surfaces. When
the final gather ray hits some object, a precomputed irradi-
ance value for the nearest photon location is simply used.

In the following section we extend the concept of irra-
diance cache into the temporal domain, in which case the
cached irradiance value may change from frame to frame
due to dynamic changes in the scene.

3. Temporally Coherent Gathering

In this section we describe our approach to updating irradi-
ance cache values for the subsequent animation frames. Our
goal is to exploit temporal coherence of incoming radiance
samples contributing to each cache value. This requires shar-
ing information on the samples between neighboring frames
and selectively replacing those samples that become invalid
due to changes in the dynamic environment.

In Section 3.1 we describe data structures used for the in-
coming radiance samples. Then in Section 3.2 we present
our strategies to update those samples selectively. In Sec-
tion 3.3 we discuss the problem of choosing the ratio of sam-
ples to be updated and we propose an algorithm for adaptive
selection of such a ratio for each cache.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 1 2 2

2 2 2 1

2 2 1 2

1 2 2 2

16 8 1 2

4 1 2 8

1 16 8 4

8 2 4 16

frame 1 frame 2 frame 5

 0

 4

 8

 12

 16

 0 4 8 12 16

C
u

m
u

la
tiv

e
 V

a
lu

e

Direction

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16

C
u

m
u

la
tiv

e
 V

a
lu

e

Direction

 0

 20

 40

 60

 80

 100

 120

 0 4 8 12 16

C
u

m
u

la
tiv

e
 V

a
lu

e

Direction

Figure 2: Sampling scheme for the irradiance cache. Upper row: Internal cache structure with 16 stratified sampling directions
in the upper hemisphere for frames 1, 2, and 5. The values in the grid cells are computed as 2age. Lower row: The corresponding
cumulative distribution functions (c.d.f.).

3.1. Cache Data Structures

In the traditional irradiance cache algorithm [19, 20] posi-
tioning each cache is a view-dependent process. Then the
numerical integration of incoming radiance is performed by
tracing rays towards the environment and gathering lighting
information. To produce high quality images a huge num-
ber of rays is traced, and the incoming radiance samples are
immediately discarded after each cache value is computed.

In this research we show that storing incoming radiance
samples is not only feasible, but also offers many advan-
tages for efficient animation rendering. For each sampling
direction, we store incoming radiance packed in four bytes
using the common exponent method [18] which reduces the
storage to one third of that when using the standard floating-
point format. The error of the irradiance estimation caused
by the inaccuracy of this format is negligible because an irra-
diance value is the sum of a large number of incoming radi-
ance samples. The distance to the nearest intersection point
is stored to reevaluate the harmonic mean distance [19] (the
reciprocal of the sum of reciprocal distances) in upper hemi-
spherical directions, which is required to compute optimal
cache locations. The age of each sample, which is a function
of the number of frames since the sample was computed,
is stored in a flag. This value is used to create an approxi-
mated probability density function which is used to decide
in which order directions should be replaced (refer to Sec-
tion 3.2). To save storage, we use the same flag to indicate
whether the sample hits a moving object. This information is

used to adaptively estimate the number of rays to be updated
(refer to Section 3.3). The data structure for the incoming
radiance sample is as follows:

struct RadianceSample {
RGBE Li; // incoming radiance

// packed in 4 bytes
float16 Di; // distance to the nearest

// intersection point
// packed in 2 bytes

ushort flag; // number of frames and
// the flag of hitting on
// dynamic objects

};

Each incoming radiance sample occupies 8 bytes. Usually,
200–1,000 samples per cache are required to remove arti-
facts for a still image and the number of irradiance values
varies in each scene. We store the incoming radiance sam-
ples in a hard disk. The overhead of the disk IO is negligible
because the samples are accessed only once per frame when
they are updated. In Section 5 we provide information on
storage requirements for our test scenes.

We use the kd-tree data structure to store cache locations
in the object space.

3.2. Age Driven Cache Update

In this section we describe our solution for updating incom-
ing radiance samples based on their age. For the purpose
of illustration we show in Figure 2 our sampling scheme

for a simple cache, which is composed of 16 samples. The
grid depicts the stratified sampling directions over the upper
hemisphere. The number in each cell shows the correspond-
ing sample age which is measured using the exponential
function 2age, where the age value is stored in the structure
RadianceSample. The graphs in the bottom row show
the corresponding cumulative distribution functions (c.d.f.)
of the sampling direction based on the value of 2age. This
value for the updated cells is reset to zero for the current
frame. Because all directions are computed from scratch for
frame0 (the first frame in each animation) the age values are
set to 0 for all cells. The age of all cells is increased when
the subsequent frame is processed. Shaded cells in the grid
in Figure 2 indicate the selected cells for which incoming ra-
diance value as well as other records in the structure Radi-
anceSample (refer to Section 3.1) are updated by shooting
a new random ray within the cell for that frame.

Our purpose is to pick a number of sampling directions
and replace the old samples by re-shooting the ray for each
selected direction. The random permutation algorithm that
randomly changes the order of elements is well suited to our
goals because we want to randomly pick directions with the
constraint that they should not be the same for each frame.
When we have m elements v0,v1, . . . ,vm−1, a random inte-
ger value X in 0 ≤ X ≤ m−1 is chosen and the last element
vm−1 is swapped with vX . This process is repeated for the
remaining elements v0,v1, . . . ,vm−2 until the size of the re-
maining elements becomes one. Figure 3 shows the pseudo-
code of the random permutation algorithm.

randomperm ()
elements v[size]
m = size
while (m > 1)

X = uniform random integer number
in the range of 0 and m-1

swap v[m-1] and v[X]
m--

Figure 3: Pseudo-code of the random permutation algo-
rithm

It is straightforward to apply this algorithm to the ele-
ments which have non-uniform probability. Each time a ran-
dom cell is selected, the c.d.f. is rebuilt and the uniform ran-
dom value X in 0 ≤ X ≤ total_cumulative_value is mapped
to the cell in the grid.

Figure 4 illustrates how the random value is mapped to the
index of a cell for frame 5 in Figure 2. Because the c.d.f. is
already sorted, the binary search can be efficiently exploited
for this complete balanced data. After one cell is selected,
this cell is excluded from the c.d.f. and a new c.d.f. is built
for the remaining cells as shown in the bold dashed line in
Figure 4. This process is repeated until a sufficient number

 0

 20

 40

 60

 80

 100

 120

 0 4 8 12 16

C
um

ul
at

iv
e

V
al

ue

Direction

X

(2,2)

Figure 4: A random number X is mapped to the index of a
cell (2, 2) and a new c.d.f. (the bold dashed line) is rebuilt
after the selected cell (the shaded area) is removed.

of directions are chosen. The pseudo-code in Figure 5 sum-
marizes the overall algorithm.

This scheme makes sample directions uniformly dis-
tributed in space and time. The recently selected cells are
less likely to be selected than others in the subsequent
frames.

render_animation ()
render the first frame using traditional
irradiance cache
for all remaining frames

photon tracing
update_irradiance_cache()
render the current frame

update_irradiance_cache ()
for every irradiance cache E

create a cdf
n = the number of updated samples

(refer to Equation (2))
update_incoming_samples(E, cdf, n)

update_incoming_samples (E, cdf, n)
while (n > 0)

pick a cell based on the cdf
shoot a gathering ray to the cell
delete the entry of the selected cell
from the cdf and rebuild it
n--

evaluate irradiance values

Figure 5: Pseudo-code of the overall algorithm

3.3. Adaptive Cache Update

So far we described in which order directions should be re-
placed. Another question is how many rays should be re-
placed for each cache. Intuitively, this should depend on the
magnitude of changes in lighting: More rays should be re-
placed when and where lighting quickly changes and less
rays may be enough for slowly changing environments. We
tried both uniform and adaptive number of replacement rays.
The uniform number approach is very intuitive and leads to
refreshing the same number of rays for every cache. For ex-
ample, when we set the number of replacement rays to 10%
of the total number of strata, the rendering speed is roughly
ten times faster. Moreover, it ensures that every direction is
likely to be refreshed after about 10 frames (the reciprocal of
10%). This means that temporal error propagation by reusing
invalid samples for more than 10 frames is not very likely.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

A
ge

Frame

avg age
max age

Figure 6: The average and maximum age of samples mea-
sured for an animation composed of 100 frames. The total
number of considered sample directions for each cache was
500 and 10% of samples were replaced for each frame. The
average age is about 5.6 frames and the maximum age is 14
frames.

Figure 6 shows the graph of the average and maximum
age of all directions when 10% of samples is replaced. We
assumed that 500 directions are stored for each cache and 50
directions are updated per frame. The average age of about
5.6 frames is obtained experimentally for an animation com-
posed of 100 frames and it differs only slightly from the the-
oretical average age 5.5 frames computed as:

50∑10
x=1 x

500
= 5.5 (1)

The graph of the maximum age indicates that every ray
is refreshed at most after 14 frames compared with the opti-
mal 10 frames case. These experimental data show that our
algorithm works well in practice.

The reason of the low average and maximum age at the

leftmost part of the graph is that all directions at frame0 are
computed from scratch.

We also tried an empirical adaptive approach which ad-
justs the number of the replacement rays based on the num-
ber of rays which hit dynamic objects. We estimate the num-
ber of directions to be updated as:

Nupdate(x) = (τmax − τmin) · x+ τmin ·N (2)

where N is the total number of gathering rays, the τmin and
τmax are user specified percentages of the minimum and the
maximum of updated rays and, x is the number of rays which
hit on the dynamic objects. This simple empirical strategy
works very well, especially in the scene regions near moving
objects. Figure 7 shows an example where a red ball leaves
the corner and is rolling on the floor. Figure 7a represents the
reference solution of the soft indirect illumination. Figure 7b
is rendered using a uniform number of refreshing rays for
every cache. This solution leads to incorrect results at the
corner near the red moving ball due to a too small number
of refreshing rays in this region. Figure 7c shows the result
of the adaptive scheme which is very similar to the reference
solution.

4. Handling Irradiance Caches

In the previous section we discussed the issues of single
cache update and the goal of this section is the problem of
cache locations. We focus on two issues specific to our ap-
proach that arise when the irradiance cache data structures
are reused between frames. In Section 4.1 we discuss how
to handle caches located on moving objects. Then in Sec-
tion 4.2 we present our solution to remove redundant caches
as camera and lighting change.

4.1. Transforming Caches on Animating Objects

Separating the irradiance cache data structure from the geo-
metric one is advantageous because optimal cache locations
can be independently selected from the geometry. However,
it is cumbersome in dynamic scenes because caches on the
moving objects may no longer lay in the same position on
a given surface for subsequent frames. To solve this prob-
lem, we store the object ID for each cache. This allows us
to move caches to different locations in the next frame. This
requires transformation of a local coordinate system for each
cache to preserve the directional distribution of incoming ra-
diance samples. Although the sampling coordinates on the
moving objects are not precisely the same, artifacts were not
visible in our test scenes if a reasonable number of refresh-
ing rays is chosen (e.g., 10% of total gathering rays) even
for the scene in which the ball is rolling and the normals on
the ball change quickly (refer to Figure 7). For fast moving
objects a complete update of all incoming radiance samples
can be also considered.

a) b) c)

Figure 7: Adaptive cache update for scene regions in which indirect illumination changes rapidly: a) reference frame-by-frame
solution, and temporal update solutions for b) uniform and c) adaptive number of refreshing rays. Notice the incorrect shadow
which is cast by the ball in the corner in b). This shadow mostly disappears in c).

4.2. Removing Redundant Caches

When objects are moving, the optimal distribution of cache
locations is changing. If an object approaches another sur-
face the value of a harmonic mean distance becomes small
and the valid domain of the irradiance cache is decreased,
which leads to denser cache locations in such regions. Be-
cause irradiance cache algorithm has a unique lazy construc-
tion mechanism, new caches are simply inserted when valid
caches are not found near the query location. The problem
occurs when the object moves away from a surface. In this
case, the harmonic mean distance of each cache becomes
large and the valid cache domain increases. In such regions,
some caches become redundant. This problem is illustrated
in Figure 8a where the red rolling ball leaves along its mo-
tion trajectory many redundant caches.

It is difficult to find an optimal layout of caches which
completely covers all visible surfaces and leads to a mini-
mal number of caches without affecting image quality. Our
solution is inspired by neighborhood-based stratification ap-
proach [17] developed in point-based rendering to remove
superfluous points. We simply remove caches when too
many valid caches are found at some locations. For each
cache location, a nearest neighbor search is done. If the num-
ber of found neighbors is bigger than some threshold number
(for example 10), this cache is removed. Figure 8b shows the
result of applying this procedure and as can be seen many re-
dundant caches are successfully removed. Updating the data
structure for each cache to be removed is not efficient, so
at first we mark all redundant caches and hide them for the
subsequent cache density queries. After all caches are exam-
ined, marked caches are removed and the kd-tree is balanced
in a packed heap data structure.

a) b)

Figure 8: Irradiance cache locations: a) redundant irradi-
ance caches resulting from the ball motion on the floor, b)
result of removing the redundant caches.

5. Results

We tested our algorithm for three different scenes BOX,
LIGHT and ROOM (refer to Figures 9, 10 and 11, respec-
tively). For the BOX scene indirect lighting changes signifi-
cantly in the proximity of regions traversed by the object. As
a result of the motion of the red box towards the light source,
strong color bleeding effects can be seen on the ceiling. For
the LIGHT scene the light source turns toward the left red
wall, which results in strong color bleeding from that wall.
The ROOM scene is substantially more complex and we con-
sider both the motion of light (sun position) and of objects
(rotating fan) simultaneously. In all our test scenes indirect
lighting changes quickly and those changes affect either a
large portion of the scene, so these test scenes are very dif-
ficult cases for our algorithm. We expect that in many prac-
tical applications the indirect lighting changes will be more
moderate.

The animation sequences were rendered by our experi-
mental renderer on a Pentium 4 Xeon 1.7 GHz, 1 GB mem-
ory, Debian GNU/Linux. In both BOX and LIGHT scenes 192
incoming radiance samples are considered for each cache,
and 768 samples are used in the ROOM scene. Incoming ra-
diances are refreshed using the aging method. The τmin and

a) b) c)

d) e) f)

Figure 9: Selected frames for the BOX animation sequence. In the upper row the final frames are shown while the bottom row
shows the corresponding indirect lighting solutions computed using temporally coherent gathering.

a) b) c)

d) e) f)

Figure 10: Selected frames for the LIGHT animation sequence. In the upper row the final frames are shown while the bottom
row shows the corresponding indirect lighting solutions computed using temporally coherent gathering.

τmax parameters for adaptive control in Equation (2) are set
to 0.05 and 1.0, respectively. The image resolution for both
animations BOX and LIGHT is 320 × 240 and the one for
ROOM is 564 × 240.

Detailed timings are shown in Table 1. The photon tracing
and the precomputation of irradiance [2] (refer to the timings
in column Tpt) are repeated for each frame. The precompu-
tation of irradiance is time consuming (about 40–60 % of

Tpt), but it vastly accelerates the computation of the indi-
rect illumination in both the reference solution and ours. So
we used this technique to render all animations. Column Td
shows timings for the direct lighting computation which is
repeated for each frame from scratch. Tpt and Td are usually
a small fraction of the total computation time for complex
scenes. We did not optimize our experimental code to speed
up those computations. Column Ti shows timings for indi-

a)

b)

Figure 11: Selected frames for the ROOM animation sequence.

rect lighting reconstruction including the overhead of tem-
poral processing. Significant speedup 3–9 times with respect
to the reference frame-by-frame solution was achieved. Col-
umn T summarizes the overall processing time per frame.
Note that our algorithm performs much better for the more
complex ROOM scene.

The number of irradiance samples and the resulting stor-
age requirements are shown in Table 2. Since the irradiance
cache data are stored in the object space the storage require-
ments weakly depend on the frame resolution. For example,
in the ROOM scene the number of irradiances becomes 1.7
times bigger size when the image resolution is quadrupled.

The visual quality of an animation produced by our tech-
nique is better than for the reference solution (obtained with
traditional irradiance cache) because temporal flickering is
significantly reduced. When single frames are compared
they look almost perfectly the same as the reference solu-
tion (the RMS errors are 0.6%, 0.5% and 2.7% for the BOX,
LIGHT and ROOM scenes respectively). All frames are of

similar quality because our algorithm does not accumulate
error and refreshes all gathering rays. Table 3 summarizes
changes of the RMS error as a function of τmin for the BOX

scene. Similar results have been also obtained for the other
test scenes.

Figure 12 depicts the values of incident radiance samples
over the hemisphere for a selected cache location. The sam-
ples are captured in the middle of an animation sequence in
order to check whether errors in their value do not accumu-
late as a function of time. As can be seen the directional dis-
tribution of samples is very similar for the frame-by-frame
computation and our method. The graphs in Figure 13 show
changes of the irradiance value as a function of time for both
approaches. The irradiance is measured for 90 subsequent
frames. The same cache location as in Figure 12 is consid-
ered. Again, the correspondence between the two graphs is
good. A small time lag between the two graphs can be ob-
served because samples are reused only in the “chronologi-
cal” order.

Scene Tpt Td Ti T total

BOX Ref 21.6 1.0 19.3 41.9 1 h 3 min
Our 21.6 1.0 6.7 (x2.9) 29.3 (x1.4) 45 min

LIGHT Ref 24.3 1.1 34.3 59.8 1 h 31 min
Our 24.4 1.1 6.6 (x5.2) 32.2 (x1.9) 49 min

ROOM Ref 34.6 11.6 674.6 720.9 18 h 14 min
Our 34.6 11.6 74.3 (x9.1) 120.8 (x6.0) 3 h 14 min

Table 1: Timings for scenes BOX, LIGHT and ROOM shown in Figures 9, 10 and 11, respectively. All timings except the last
column are given in seconds. The row “Ref” presents timings of the reference solution, in which all frames are computed inde-
pendently. The row “Our” presents timings of our solution. The columns show the average time per frame for each component:
Tpt - photon tracing and precomputation of irradiance [2], Td - direct illumination, Ti - indirect illumination. The column T
is the average time per frame for all components, i.e. T = Tpt + Td + Ti. The values in the parentheses show the scale factors
of speeding up compared to the corresponding reference solution. The last column shows the total timings for rendering all
frames.

Scene N #E Size

BOX 192 4,009 6.2 MB
LIGHT 192 4,377 6.7 MB
ROOM 768 11,599 71.3 MB

Table 2: The size of the irradiance cache: N - the number
of incoming radiance samples per an irradiance E (refer to
Equation 2), #E - the number of irradiance values, Size - the
storage requirement of incoming radiance samples.

τmin RMS Error Ti

10 % 0.5 % 7.3
5 % 0.6 % 6.7

2.5 % 0.8 % 6.1
1.25 % 1.1 % 5.9

Table 3: The RMS Error measured in respect to the refer-
ence frame-by-frame animation for the BOX scene for vari-
ous settings of τmin which decides upon the minimal number
of updated rays (refer to Equation 2). τmax = 100% was as-
sumed. As in Table 1 Ti denotes the average time per frame
(measured in seconds) for the indirect illumination compu-
tation during rendering.

6. Conclusions

We presented a simple, general, and effective method for
computing soft indirect illumination in dynamic scenes. Our
algorithm requires to build a cumulative distribution func-
tion (c.d.f.) for each irradiance cache to decide the order
of directional incoming radiance samples updates based on
their age. The gathering rays are updated taking into account

the probability in the c.d.f. within the limits of user-set min-
imum and maximum refreshing sampling ratios (τmin and
τmax). By contrast to traditional approaches which com-
pute global illumination for every frame from scratch, our
algorithm updates a rather small number of incoming radi-
ances. It speeds up expensive indirect illumination computa-
tion 3–9 times compared to the currently fastest rendering al-
gorithm. Also, temporal flickering of indirect lighting com-
ponent is substantially reduced due to the use of temporal
coherence. This is achieved by sharing the same cache lo-
cations and incoming radiance samples between subsequent
frames. Our algorithm can handle general animations includ-
ing light source motion. Camera animation does not affect
cached indirect illumination and new irradiance caches are
inserted only when occluded parts become visible for subse-
quent frames. Our algorithm fits well to the photon mapping
algorithm [8] in which direct illumination, caustics, specu-
lar reflections and refractions are computed on a frame-by-
frame basis while diffuse interreflections can be accelerated
using our technique.

As future work we plan to experiment with more com-
pact representations for incoming radiance using wavelets
or spherical harmonics. Also, we plan to investigate the ap-
plicability of our technique to render moderately glossy sur-
faces using directional information which we store in our
cache data structure. This will require the development of
new criteria controlling the density of cache locations, which
will be sensitive to surface glossiness. To reduce the number
of caches required for high quality rendering of moderately
glossy surfaces we plan to use the final gather reprojection
technique [9].

References

1. M. Cammarano and H.W. Jensen. Time dependent pho-
ton mapping. In Proceedings of the 13th Eurographics

a) b)

Figure 12: Distribution of incoming radiance samples over
the hemisphere for a selected cache location at the floor
which is shown as the green dot in the bottom image: a)
the frame-by-frame computation and b) our method (10% of
samples is refreshed for each frame according to the aging
criterion).

Workshop on Rendering, pages 135–144, 2002. 2

2. P.H. Christensen. Faster photon map global illumina-
tion. In Journal of Graphics Tools, volume 4, pages
1–10, 1999. 7, 9

3. P.H. Christensen. Photon mapping tricks. In Sig-
graph 2002, Course Notes No. 43, A Practical Guide to
Global Illumination using Photon Mapping organized
by Jensen, H.W., pages 93–121, 2002. 1, 2

4. P.H. Christensen, D. Lischinski, E.J. Stollnitz, and D.H.
Salesin. Clustering for glossy global illumination. ACM
Transactions on Graphics, 16(1):3–33, 1997. 1

5. C. Damez, K. Dmitriev, and K. Myszkowski. State of
the art in global illumination for interactive applications
and high-quality animations. Computer Graphics Fo-
rum, 22(1):55–78, 2003. 1

6. P. Heckbert. Adaptive radiosity textures for bidi-
rectional ray tracing. In Computer Graphics (ACM
SIGGRAPH ’90 Proceedings), pages 145–154, August
1990. 2

7. H.W. Jensen. Global illumination using photon maps.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 10 20 30 40 50 60 70 80 90

Ir
ra

di
an

ce

Frame

Figure 13: Changes of irradiance value as a function of
time for the BOX animation at the cache location shown in
Figure 12. The graph for the frame-by-frame approach is
drawn as the solid line, while the dashed line is used for our
approach.

In Eurographics Workshop on Rendering, pages 21–30,
1996. 2

8. H.W. Jensen. Realistic Image Synthesis Using Photon
Mapping. A. K. Peters, Natick, MA, 2001. 1, 2, 9

9. T. Kato. Photon mapping in kilauea. In Siggraph 2002,
Course Notes No. 43, A Practical Guide to Global Illu-
mination using Photon Mapping organized by Jensen,
H.W., pages 122–191, 2002. 9

10. D. Lischinski, F. Tampieri, and D. P. Greenberg. Com-
bining hierarchical radiosity and discontinuity mesh-
ing. In Proc. of Siggraph’93, pages 199–208, 1993. 1

11. William Martin, Erik Reinhard, Peter Shirley, Steven
Parker, and William Thompson. Temporally coher-
ent interactive ray tracing. Journal of Graphics Tools,
2002. 1

12. M.C. Reichert. A Two-Pass Radiosity Method to Trans-
mitting and Specularly Reflecting Surfaces. M.Sc. the-
sis, Cornell University, 1992. 1

13. A. Scheel, M. Stamminger, and H.-P. Seidel. Thrifty fi-
nal gather for radiosity. In Rendering Techniques 2001:
12th Eurographics Workshop on Rendering, pages 1–
12. Eurographics, June 2001. 1

14. A. Scheel, M. Stamminger, and H.-P. Seidel. Grid based
final gather for radiosity on complex clustered scenes.
In Eurographics, 2002. 1

15. B. Smits. Efficient Hierarchical Radiosity in Complex
Environments. Ph.D. thesis, Cornell University, 1994.
1

16. Bruce Walter, George Drettakis, and Steven Parker. In-
teractive rendering using the render cache. In Euro-
graphics Rendering Workshop 1999, June 1999. 1

17. M. Wand and W. Straßer. Multi-resolution rendering of
complex animated scenes. volume 21, pages 483–491,
2002. 6

18. G. Ward. Real pixels. In Graphics Gems II, pages 80–
83, 1991. 3

19. G. Ward, Rubinstein F., and R. Clear. A ray tracing so-
lution to diffuse interreflection. In Computer Graphics
(SIGGRAPH 88 Conference Proceedings), pages 85–
92, 1988. 1, 2, 3

20. G. Ward and P. Heckbert. Irradiance gradients. In Euro-
graphics Workshop on Rendering, pages 85–98, 1992.
1, 2, 3

