

Fast and Faithful Scale-Aware Image Filters

Shin Yoshizawa and Hideo Yokota Image Processing Research Team, RIKEN

Shin Yoshizawa

shin@riken.jp

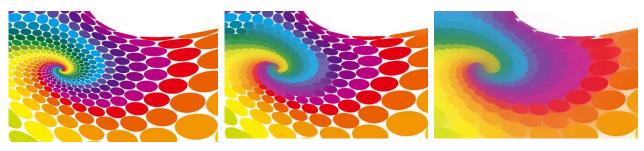
www.riken.jp/brict/Yoshizawa

Workshop in Homage to Prof. T. L. Kunii, September 2021 RIKEI

What's this talk about ?

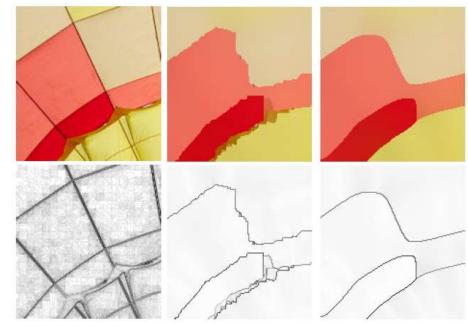
✓ Fast & accurate framework for scale-aware image filters.

- Idea: Domain Transform & Splitting \rightarrow joint (guided) Gaussian averaging.



Contributions & Benefits:

- Fast: linear complexity O(n) & O(1/ σ).
- Faithful: Gaussian scale-space.
- Accurate: stable & 525 σ truncation.
- \rightarrow Prevent ringing artifact/phantom edges.



Input Box-based Our

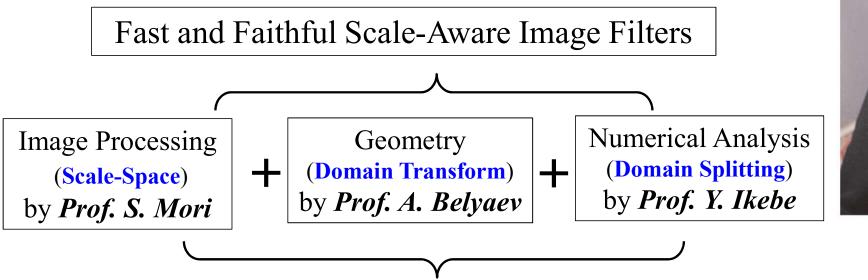
In memory of Prof. Toshiyasu Kunii

- \checkmark When he had been the president of University of Aizu,
 - I spent my undergraduate and master programs there.
- ✓ Also, when I had been the student of Prof. A. Belyaev in the Computer Science and Engineering Laboratory of Univ. Aizu, where Prof. Kunii was the head of laboratory.
 - Geometry Processing: e.g., Medial Axis.
 - Shape Modeling Int. and MPI-Inf. etc.
 - Research Philosophy and Passion.

Prof. T. Kunii, IEEE 2021.

In memory of Prof. Toshiyasu Kunii

 My paper in this research dedicated to Prof. Kunii's memory was inspired from their educations of the professors of University of Aizu.

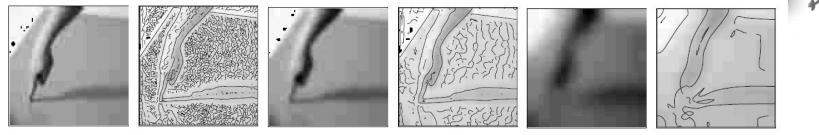


Prof. T. Kunii, IEEE 2021.

Hand picked/invited by Prof. Kunii for the founding University of Aizu.

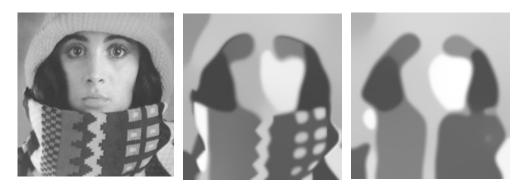
Scale-Space & Edge-Awareness

- ✓ Remove structures smaller than scale σ : multi-scales.
 - Linear (Gaussian) space–space: T. Iijima 1959, J. Stansfield 1980, A. Witkin, IJCAI 1983.



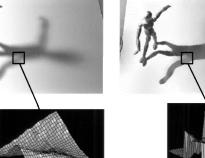
T. Lindeberg, Handb. Comput. Vis. Appl. 1999.

- ✓ Edge preserving filters: bilateral, nonlocal means, nonlinear diffusions, etc.
 - Difficult to control parameters: especially, its number of iterations.



Iterative Non-Local Means

+ salient edges

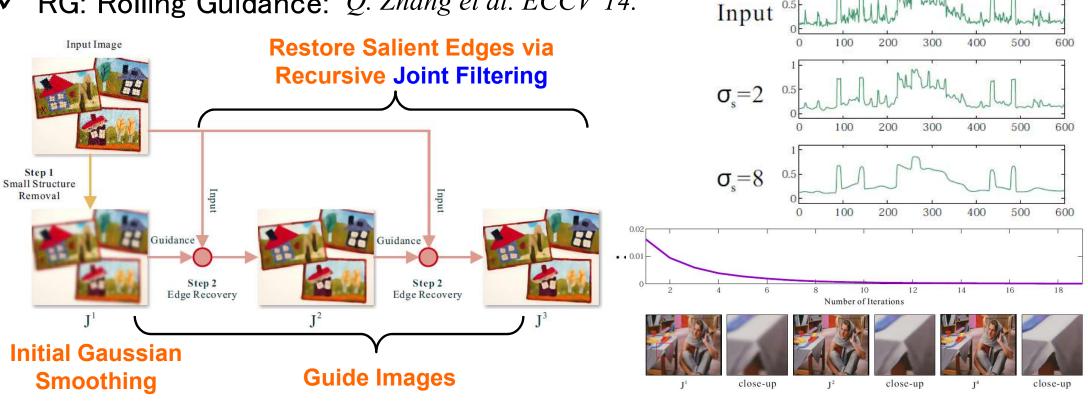


J. Elder, IJCV 1999.

RIKEN

Scale-Aware Filtering

RG: Rolling Guidance: Q. Zhang et al. ECCV'14. \checkmark



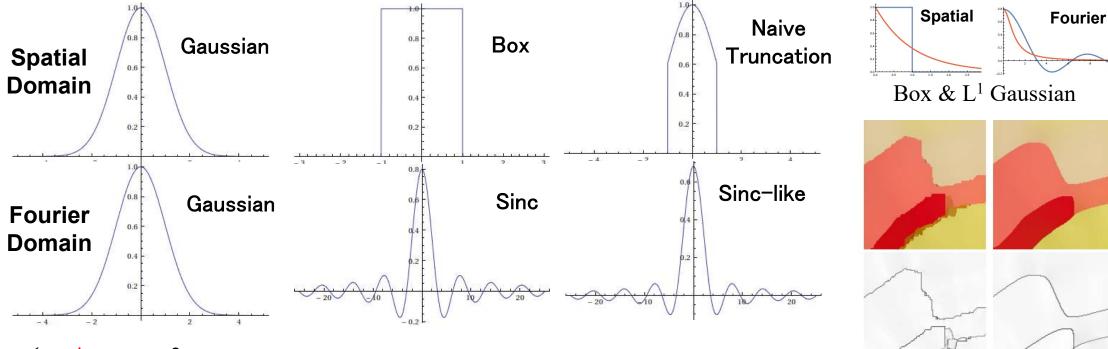
- ✓ Required a fast joint filter: Naive $O(n^2)$.
 - Conventional (e.g., box, recursive) \rightarrow Not enough accuracy \rightarrow artifacts !

Box-based

Our

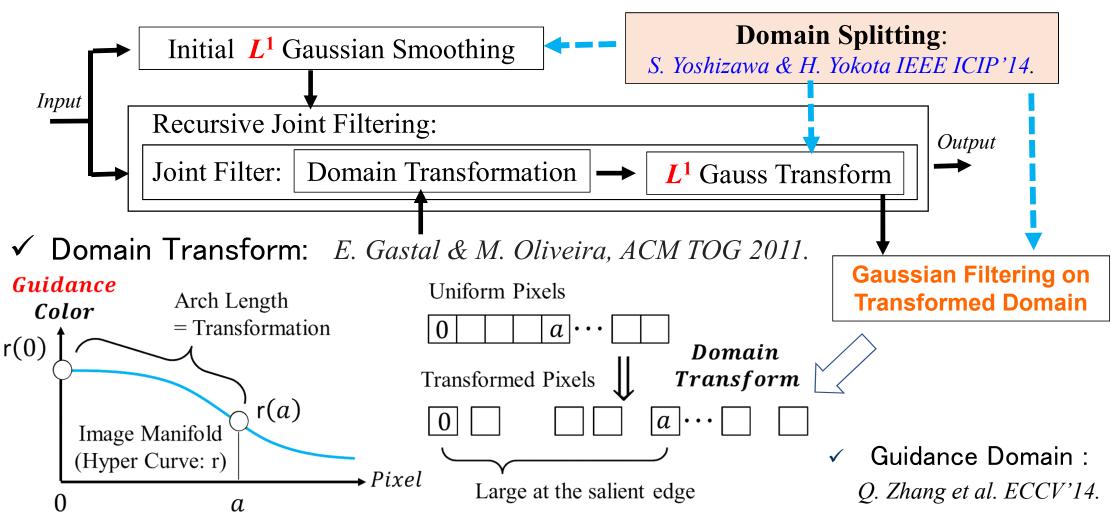
Why artifacts & how to avoid them ?

 ✓ Inaccurate (and/or non-Gaussian) linear convolutions produce phantom edges (Ringing artifacts) because of the ripples in Fourier domain.



✓ L¹ and L² Gaussian convolutions do not increase extrema. *T. Lindeberg, in Gaussian Scale-Space Theory 1997.*

Our Framework



i

Domain Splitting

n

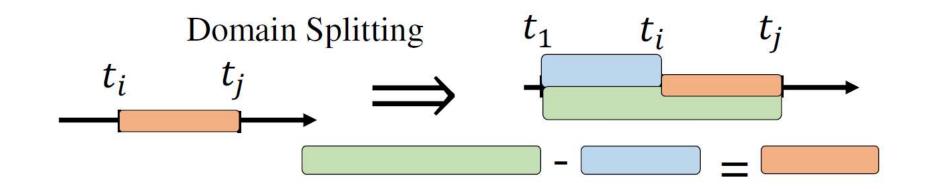
✓ Approximation technique for L¹ Gaussian convolution: S. Yoshizawa et al., IEEE ICIP'14.

- Decomposing the integral domain by parts via the representative points $\{\alpha_k\}$ (*poles*) to resolve dependency of *i* and *j* indexes of the Gauss transform:

Basic Decomposition Concept

✓ Splitting L¹ norm by introducing an anchor point t_1 : $t_1 \le t_2 \le ... \le t_n$, Pixel Coordinates

$$|t_{j} - t_{i}| = \begin{cases} |t_{i} - t_{1}| - |t_{j} - t_{1}| & \text{if } t_{1} \le t_{j} \le t_{i} : t_{j} \in D_{1} \\ -|t_{i} - t_{1}| + |t_{j} - t_{1}| & \text{if } t_{1} \le t_{i} \le t_{j} : t_{j} \in D_{2} \end{cases}$$



 $|\gamma|$

Basic Decomposition Concept

✓ Splitting L¹ norm by introducing an anchor point t_1 : $t_1 \leq t_2 \leq ... \leq t_n$,

 $\exp(x+y) = \exp(x)\exp(y)$

Pixel Coordinates

$$G_{\sigma}(x) = \exp(-\frac{|x|}{\sigma}) \qquad \exp(x-y) = \frac{\exp(x)}{\exp(y)}$$

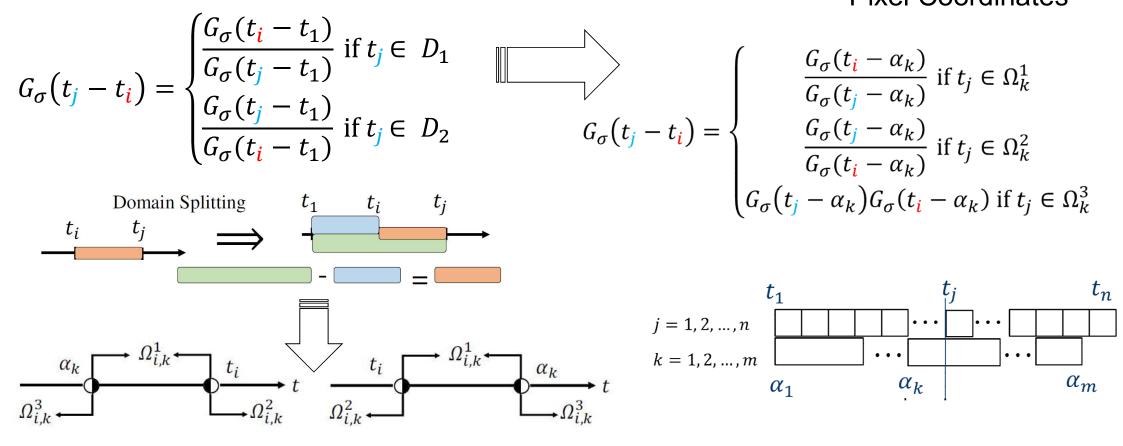
$$\stackrel{t_{i} \quad t_{j}}{\longrightarrow} \quad \Rightarrow \quad f_{i} \quad f_{i} \quad f_{j} \quad \Rightarrow \quad f_{i} \quad f_{i} \quad f_{j} \quad \Rightarrow \quad f_{i} \quad f_{i}$$

One Anchor to Multi-poles

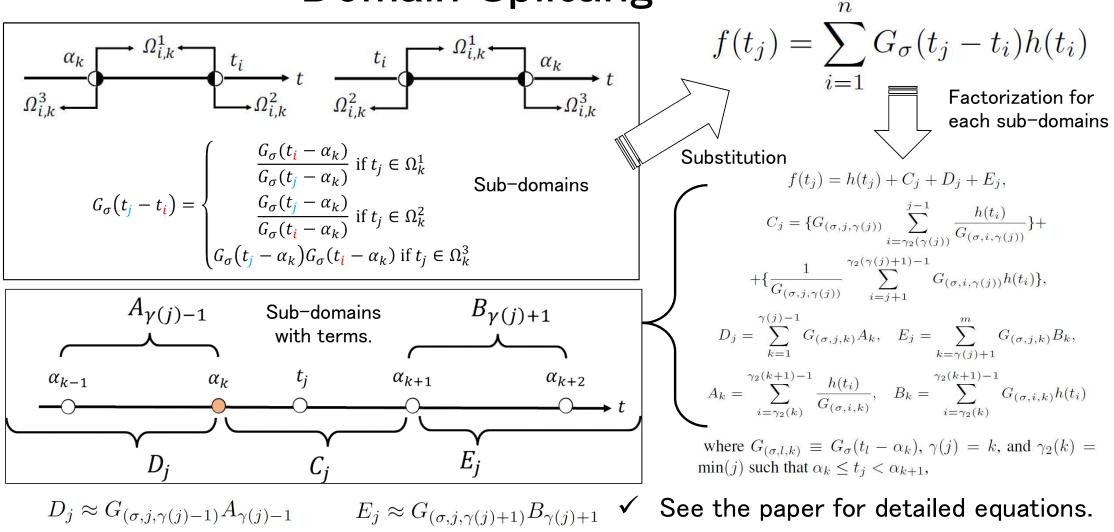
 \checkmark To solve the numerical instability, { α_k } is introduced.

 $t_1 \le t_2 \le \dots \le t_n,$

Pixel Coordinates



Domain Splitting



Domain Splitting

 $\exp(\frac{|\alpha_{k+1} - \alpha_k|}{\sigma}) < \delta$

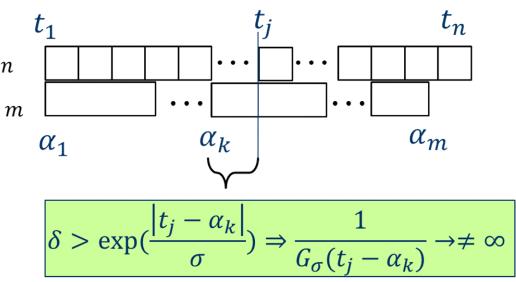
Stable condition

 δ : maximum of double (64 bit C++: DBL_MAX)

 $w = t_n - t_1$

 $\{\alpha_k\} = t_1 + \{0, 1, ..., m-1\}\frac{w}{m}, \quad m = \left[\frac{w}{\varphi\sigma\log(\delta)}\right]$ leads to the representative points $\{\alpha_k\}$:

- Applicable to non-uniform j = 1, 2, ..., npixels \rightarrow transformed domain.
 - k = 1, 2, ..., m
- Theoretically guarantee its stability and precision: approx. 525 σ radius truncation.



Shin Yoshizawa: shin@riken.jp

Speed & Accuracy: 1D Convolutions

Method	PSNR	E_{\max}	Time: $n \in 10^{\{4,5,6\}}$		
EBox	55.79	1.03e-02	0.014	1.77	18
SII	38.88	5.509e-02	0.092	0.86	9.4
Box	31.34	1.535e-01	0.039	0.32	34
Deriche	96.37	1.184e-04	0.165	1.62	18
VYV	74.8	1.294e-03	0.167	1.46	14.9
AM	53.6	1.438e-02	0.495	3.8	38.4
Our	291.6	2.842e-14	0.325	3.58	43.2
Our NU	298.7	3.12e-14	0.43	3.57	43

E-Box: P. Gwosdek et al., SSVM'11.
SII: A. Bhatia et al. IEEE ICRA'10.P. E. Elboher & M. Werman, ISDA'12.
Box: N. Sochen et al. IEEE TIP, 1998.
Deriche: R. Deriche, INRIA-TR, 1993.
VYV: L. Vliet et al. ICPR, 1998.
AM: L. Alvarez & L. Mazorra, SIAM JNA, 1994.
Our & Our NU (Non-Uniform): S. Yoshizawa & H. Yokota. IEEE ICIP'14.

Time: Millisecond, PSNR (Peak Signal to Noise Ratio), E_{max}: maximum error, n is the number of 1D pixels.

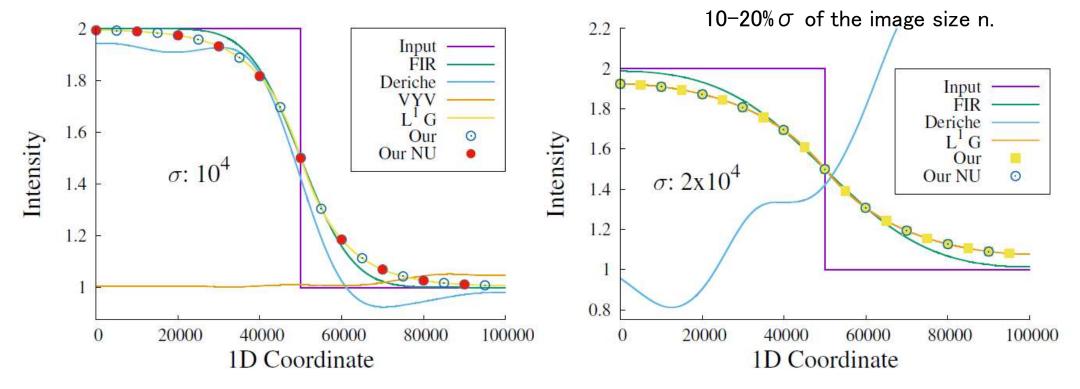
 $\sigma \in \{5, 10, ..., 100\}$

✓ This table shows the results with small σ such as 0.05–1% of image size (n).
 ✓ Our method achieved very accurate approximation (about 10¹⁰ times better in Emax) for both uniform and non-uniform cases.

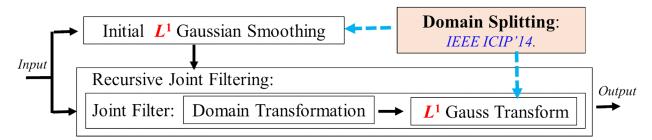
 \checkmark Little bit slower than the accurate conventional methods (Deriche and VYV).

Not Trivial: 1D Convolutions

 Deriche and VYV (also most of the box/recursive methods) behave nonlinearly and may fail w.r.t. varying parameters because they optimize their coefficients for fixed parameters (linearly scaled σ and n examples):



Implemented Scale-Aware Filters



- *I*: Input Image J^0 : Initial Gaussian J^s : Filtered Image *S*: Number of Iterations $f(\cdot, \cdot) \equiv f(\text{Guide, Integrand})$: Joint Filter
- ✓ RG: Rolling Guidance: *Q. Zhang et al. ECCV'14.*
 - Dynamic Guide and Static Integrand: $J^{S+1} = f(J^S, I)$.

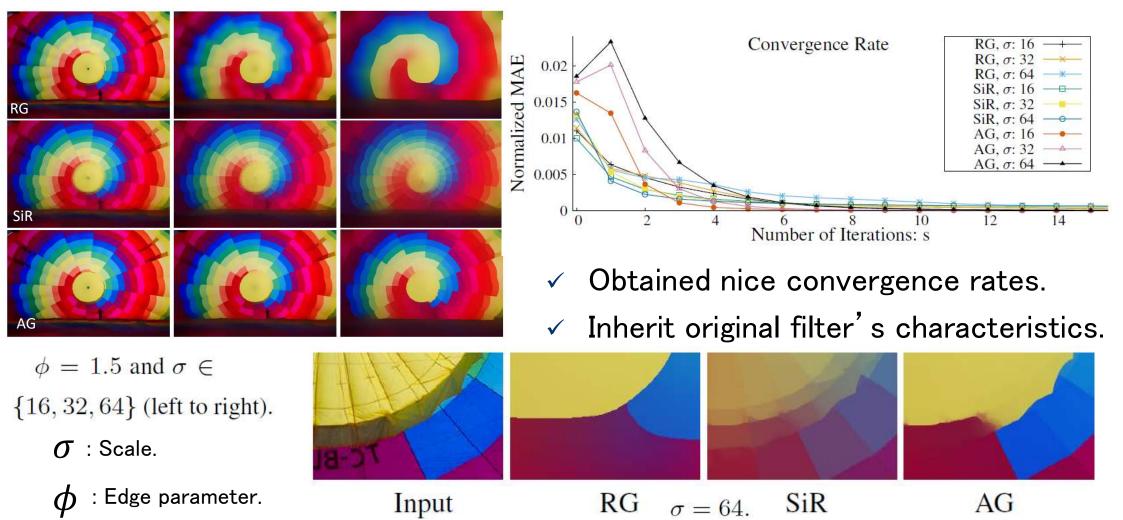
✓ SiR: Smooth & iteratively Restore: P. Kniefacz & W. Kropatsch, CoRR 2015.

- Static Guide and Dynamic Integrand: $J^{S+1} = f(I, J^S)$.

✓ AG: Alternating Guided: A. Toet, PeerJ Comput. Sci. 2016.

$$J^{s+1} = \text{Median}_{3x3}[\text{SiR}(\text{RG}(J^s))].$$

Filtering Results

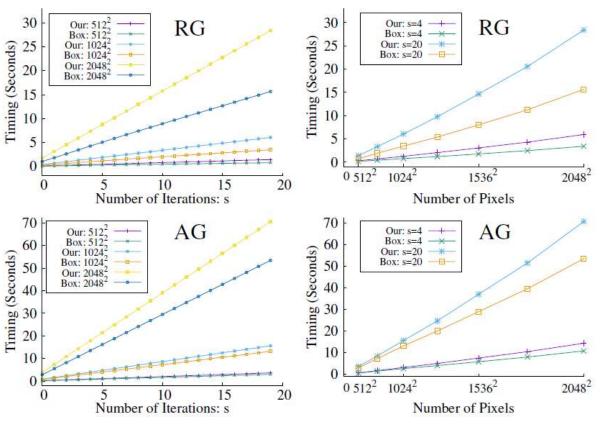


Speed: 2D Scale-Aware

- ✓ Achieved fast & linear speed w.r.t. the pixel & iteration numbers.
- ✓ Slower than box-based (moving average: *N. Sochen et al. IEEE TIP, 1998*) method: less than 2 times.
- ✓ Average performance:

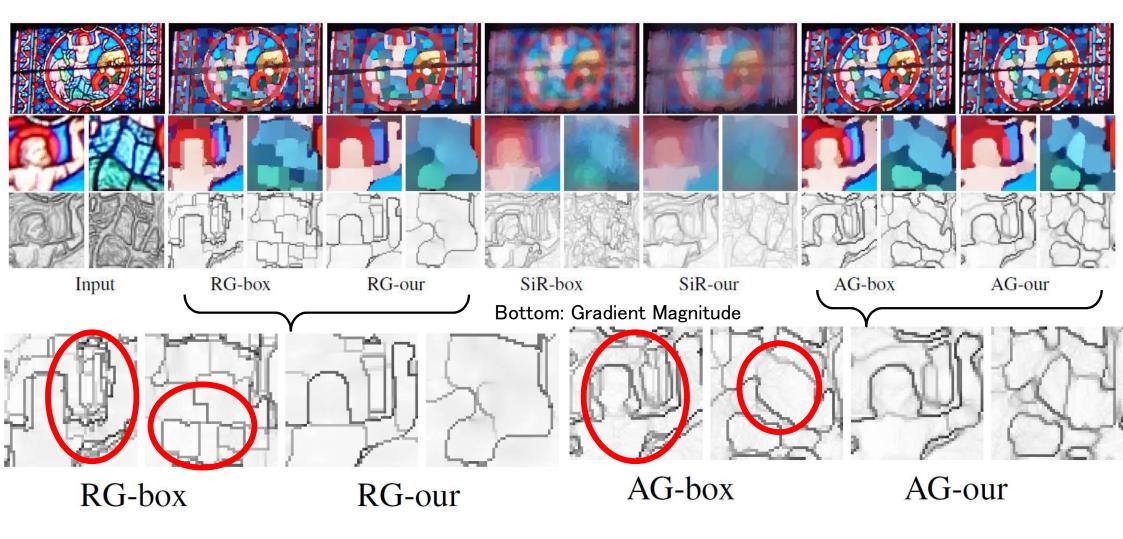
 $\sigma = \{5, 10, \dots, 50\}$ for 10 times with s= $\{1, 2, \dots, 20\}$.

RG-box	RG-our	SiR-box	SiR-our	AG-box	AG-our
5.41/s	3.072/s	3.902/s	3.014/s	1.597/s	1.244/s



Mega pixels per second: s is the iteration number.

Visual Quality Comparison

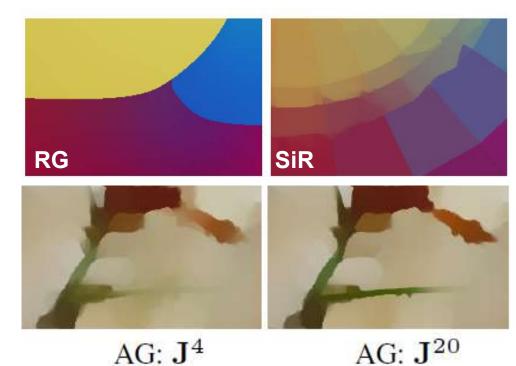


Limitations & Future Work

✓ Inherits original filter's limitations:

Shin Yoshizawa: shin@riken.jp

- e.g., smoothing curvature of edges
 (RG) & reduced intensity (SiR).
- ✓ Slow convergence of elongated regions:
 - because of separable (x-y) domain transformations.
 - → Guided filter: K. He et al. TPAMI 2013.
- ✓ Comparison with non-uniform Deriche: E. Gastal et al. EG'15.
- ✓ Applications to computational photography, engineering, and science.



RIKEI

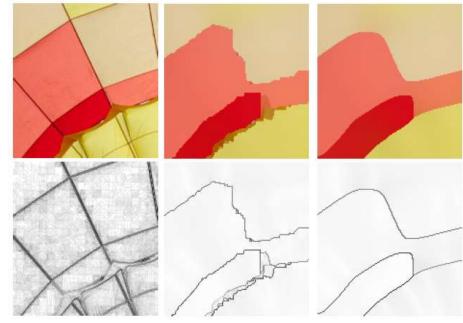
Conclusion

✓ Fast & accurate framework for scale-aware image filters.

- Idea: Domain Transform & Splitting \rightarrow joint (guided) Gaussian averaging.

Contributions & Benefits:

- Fast: linear complexity O(n) & O(1/ σ).
- Faithful: Gaussian scale-space.
- Accurate: stable & 525 σ truncation.
- \rightarrow Prevent ringing artifact/phantom edges.



Input RG-Box RG-Our

The End

Thank you very much for your attention !

