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Abstract This paper proposes a fast and accurate computa-
tional framework for scale-aware image filters. Our frame-
work is based on accurately approximating L1 Gaussian con-
volution with respect to a transformed pixel domain repre-
senting geodesic distance on a guidance image manifold in
order to recover salient edges in a manner faithful to scale-
space theory while removing small image structures. Our
framework possesses linear computational complexity with
high approximation precision. We examined it numerically
in terms of speed, accuracy, and quality compared with con-
ventional methods.

Keywords Domain-splitting algorithm · Rolling guidance
filter · Domain transform · L1 Gaussian function

1 Introduction

Shape and texture structures in images are composed of vari-
ous scale sizes. Therefore, a multi-scale mathematical frame-
work called scale-space theory [18,33] to represent an im-
age with different scales has been thoroughly studied for
many years within pattern recognition and image process-
ing communities. Traditionally, linear convolution of an im-
age with the Gaussian function Gσ(·) has been employed to
obtain a scale-space representation that smooths out image
structures smaller than a given scale parameter σ ∈ R>0

1 as
the standard deviation of Gσ(·). See the seminal book [21]
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1 Strictly speaking, it is a high-frequency suppression filter in the
Fourier domain, and there is no closed-form relationship between σ
and the curvature of a geometric structure in the spatial domain. In con-
trast, because the fundamental solution of the linear diffusion equation
leads to a Gaussian scale-space for some boundary conditions [20], a
time variable of the (mean) curvature flow and σ are directly related in
continuous cases [23].
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Fig. 1 Top: linear smoothing (center) and scale-aware filtering (right,
RG [36]) results with a box and our L1 Gaussian kernels (top-left,
where the bottom-left graphs show their Fourier signals). Bottom im-
ages correspond to the magnitudes (square roots) of their gradients.

for the methodology and applications of scale-space theory.
The Gaussian convolution also rapidly flattens salient im-
age edges with a size greater than σ, but this is a highly re-
dundant representation of edges over the scale space. Com-
bining smooth image regions with salient edges is therefore
more compact and desirable [10].

It is often difficult to control the parameters of popu-
lar edge-preserving image filters such as bilateral filters [24]
and nonlinear diffusions (especially the number of iterations)
to achieve a filtering result with a target scale σ. More re-
cently, scale-aware filters [36,19,29,16], which remove im-
age structures smaller than a specific scale while preserv-
ing salient edges, have attracted considerable attention be-
cause of their stability and simplicity. These scale-aware fil-
ters can directly and intuitively specify the target scale σ,
and the convergence of their iterative filtering process is
very stable compared with conventional edge-aware filters.
These filters have therefore been widely used in applications
such as edge detection, detail enhancement, and image ab-
straction. The scale-aware concept has also been extended to
3D meshes [32,35]. Since scale-aware filters usually require
time-consuming computations, box-based averaging meth-
ods (e.g., [26]) have been employed for their fast approxi-
mation [36]. Unfortunately, a box-like averaging kernel that
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includes naive truncation of a Gaussian function often pro-
duces undesired artifacts because it leads to a sinc-like ker-
nel shape in its Fourier domain. Extension of these methods
[4,15,9] may therefore also cause artifacts. See Fig. 1 for
an example of artifacts caused by a box filter and its rela-
tionship to a scale-aware filter (RG: Rolling Guidance [36]).
Although a popular recursive Gaussian filter [6] has been
extended to non-uniform pixels [12] and could perhaps be
employed for a scale-aware filter, such recursive filters [6,
1,31] have non-trivial numerical issues (e.g., some σ and
boundary problems [30,5]) because they optimize their co-
efficients for fixed parameters. Developing not only a fast
but also an accurate approximation of scale-aware filters is
thus important because of recent advances in the use of im-
age data for science and engineering as well as images with
a high dynamic range (HDR) and high resolution.

In this paper, we propose a novel computational frame-
work for fast and accurate approximation of scale-aware im-
age filters. Our framework is based on adapting domain split-
ting [34,3] and transformation [11,12] techniques to con-
struct an average-based joint filter that produces a nonlin-
ear color averaging of a given image according to another
guidance image. Our scale-aware filters recursively apply
the constructed joint filter to recover edge features while re-
moving small image structures. The joint filter consists of a
separable implementation of L1 Gaussian convolutions on a
guidance-transformed domain that is equipped with a met-
ric of geodesic distance on an image manifold [26] com-
posed of the pixel coordinates and their corresponding guid-
ance image colors. The L1 Gaussian convolution is approx-
imated very accurately with linear computational complex-
ity by splitting the transformed domain into representative
regions where discrete convolutions can be efficiently per-
formed. Figure 2 gives an overview of the framework.

Our framework is faithful to scale-space theory because
it implies that the L1 Gaussian convolution never increases
the number of extrema for the one-dimensional continuous
case (mentioned as truncated exponential functions by [21]
[§6.2.3]). In other words, it does not produce any phantom
edges that do not exist in the original image for cases of lin-
ear filtering. It is also associated with the absence of ripples
in the Fourier domain of the L1 Gaussian function, as shown
in the bottom-left image of Fig. 1. We introduce the imple-
mentation of three conventional scale-aware filters [36,19,
29] via our framework in this paper and an assessment of
their performances versus the conventional box-based aver-
aging method.

The rest of the paper is organized as follows. We present
our scale-aware filters based on joint filters in Section 2.
Sections 3 and 4 describe the guidance domain transforma-
tion and the domain-splitting Gaussian convolution for the
joint filter, respectively. Our numerical experiments are ex-
plained in Section 5. We conclude the paper in Section 6.

Scale-Aware Filtering: Algorithm 1.

Recursive Filtering

Initial L1 Smoothing: 

Algorithm 6.
Domain Splitting: 

Algorithms 3 and 4.

Joint Filtering: Algorithm 2. 

Guidance Domain 

Transformation

L1 Gauss Transform: 

Algorithm 5.
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Fig. 2 An overview of our framework. Algorithms are described in the
following Sections.

2 Joint-Averaging Scale-Aware Filters

For a given image pixel x = {xp} on Rd, let I = I(x)
and Js = Js(x) on Rc be the input and the s-th filtered
image color of our framework, respectively, where d, c ∈ N
and s ∈ N ∪ {0}. Our scale-aware filter is then recursively
defined by

Js+1 = F(x, f ,Js), J0 ≡
∫
Gσ(x− y)I(y)dy∫
Gσ(x− y)dy

(1)

where σ ∈ R>0 is a user-specified scale parameter, Gσ(·) =
exp(− |·|

σ ) is a L1 Gaussian function (also known as a Laplace
distribution in statistics and probability theory), and F is a
functional of an average-based joint filter f defined in Eqs.
from (2) to (5). Here, J0 is an initial smoothed image for
removing small structures on the input I by using the nor-
malized Gaussian convolution in Eq. (1). The joint filter f
recovers salient image edges during the above recursive fil-
tering process.

Let f = f(x,g,h) : Rd+2c → Rc be a joint filter of
integrand h = h(x) and guidance g = g(x) on Rc, respec-
tively. The f is then given by a normalized convolution:

f(x,g,h) =

∫
W (σ, ϕ,x,y,g)h(y)dy∫

W (σ, ϕ,x,y,g)dy
, (2)

W (·) =
d∏

p=1

Gσ(Tp,λ(xp,x,g)− Tp,λ(yp,y,g)), (3)

λ =
√
σ/(σsϕ) (4)

where y = {yp} ∈ Rd, ϕ ∈ R>0 is a user-specified edge-
awareness parameter, σs is the standard deviation of the in-
tegrand h, and Tp,λ(·) : Rd+c+1 → R>0 denotes a do-
main transformation with respect to the p-th coordinate ba-
sis (described in Eq. (7) of Section 3). The transformation
Tp,λ(·) measures a geodesic distance on the image mani-
fold (xp, λg) ∈ Rc+1 in order to obtain an edge-recovering
effect according to the guidance g. Note that the Gaussian
convolution Gσ(·) in Eq. (3) uses only the scale parameter
σ for its variance, but both ϕ and σ characterize the trans-
formation Tp,λ(·) by λ.
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Algorithm 1: Scale-Aware Image Filtering
Input : Pixels {x} and their colors {I(x)}, scale σ and edge

ϕ parameters, and iteration number s.
Output: Filtered colors {Js+1}.

1 Set σs equal to the standard deviation of, for example, the
grayscale of {I(x)};

2 λ←
√

σ/(σsϕ); // Equation (4)

3 J0 ← GaussianFilter({x}, {I(x)}, σ); // Algorithm 6.

4 for i← 0 to s do
5 Ji+1(x)← F(x, f ,Ji) with σ and λ for all x;

// Equation (5) with Algorithm 2.

6 end for
7 return {Js+1};

Filter Models: We have implemented the following three
conventional filters in our framework: RG [36], SiR (Smooth
and iteratively Restore [19]), and AG (Alternating Guided
[29]). The RG literature [36] first proposed a scale-aware
filtering framework based on a recursive process involving
average-based joint filters such as joint/cross bilateral [25,
8], guided [17], and domain transformation [11] filters. The
RG filter smooths the curvature of large-scale edges, whereas
the SiR filter preserves curvature by exchanging the use of
the integrand and guidance images in the joint filter. The AG
filter also improves two SiR drawbacks: reducing intensity
and restoring small structures around large-scale edges. Fig-
ures 3 and 4 demonstrate the different effects of these filters
on the same parameters via our framework, and their sta-
ble convergence rates are shown in Fig. 5. Four iterations
(s = 4) have been recommended for fast results [36], and
20 iterations (s = 20) are enough for high-quality results.

RG, SiR, and AG filters in our framework are given by
F = F(x, f ,h) ∈ Rc in Eq. (1) such that

F(x, f ,h) ≡


f(x,h, I) : RG [36],

f(x, I,h) : SiR [19],

Mx(f(x, I, f(x,h, I))) : AG [29]

(5)

where Mx = Mx(·) ∈ Rc is a vector median filter [2]
(only one-link neighbor pixels, i.e., a 3 × 3 pixel window
for a 2D image). Note that the integrand and guidance (h
and I) are exchanged in F of the RG and SiR filters on the
right-hand side of Eq. (5) and that the AG filter applies the
RG and SiR filters alternatively. In contrast to conventional
filters [36,19,29], our framework is restricted to use of the
domain transformation for the joint filter f , as in Eq. (3), in
order to apply the fast and accurate Gaussian convolutions
described in Section 4. Algorithm 1 shows the pseudocode
of our scale-aware filters.

3 Guidance Domain Transformation

The domain transform technique [11,12] provides edge-aware
image smoothing efficiently, and it can be utilized for scale-

Fig. 3 RG (top), SiR (middle), and AG (bottom) results of filtering
the Balloon image [27] via our framework, where ϕ = 1.5 and σ ∈
{16, 32, 64} (left to right).

Input RG SiR AG

Fig. 4 Zoomed images of the rightmost panels of Fig. 3: σ = 64.
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Fig. 5 Convergence rates of our scale-aware filters demonstrated in
Fig. 3. Horizontal and vertical axes are the number of iterations s and
the normalized MAE (Mean Absolute Error divided by the product of
c and max(I)) between Js+1 and Js.
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Fig. 6 Uniform pixels are transformed with respect to the geodesic
distance of the image manifold to perform convolutions efficiently.

aware image filters, as demonstrated in the RG filter [36].
The basic idea of this technique is to apply fast linear con-
volutions on the transformed domain representing the mag-
nitude of the image edge as a metric of the domain (length)
by using geodesic distance on an image manifold instead of
performing expensive nonlinear convolutions, as illustrated
in Fig. 6. We describe here the guidance domain transfor-
mation Tp,λ(·) in Eq. (3) adapted to our framework in order
to efficiently perform Gaussian convolutions of f in Eqs. (2)
and (3).

For a given pixel x = {xp} on Rd, the same pixel as
in Section 2, consider its one-dimensional local coordinate
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system S parallel to the p-th coordinate basis. The following
straight line up = up(t,x) ∈ Rd passing through x then
reparameterizes S by t ∈ R:

up = up(t,x) ≡ {

{
xl if l ̸= p,

t Otherwise
} (6)

where the origin of S is located on up(0,x).
For a given image color h(x) = {hq(x)} on Rc at x,

the (λ-scaled) locus of image color h(up) on the joint space
of the p-th pixel coordinate and its color form a hyper curve
Cp, i.e. a one-dimensional image manifold,

Cp : rp(t) = (t, λh(up)) ∈ Rc+1

where λ, defined in Eq. (4), controls the ratio of the metrics
between pixel and color spaces. Note that {xl} : l ̸= p of
Cp characterizes a (d− 1)-parameter family of hyper curves
corresponding to each l-th pixel coordinate basis. The con-
volutions in Eq. (2) are thus performed separately in terms
of varying the coordinate element p (see Eq. (3)).

The geodesic distance between two points on Cp indi-
cates the amount and magnitude of the image edges within
its corresponding range of t, because the arc length of Cp in-
creases when its corresponding color h(up) changes rapidly
with respect to t. The arc length of Cp within the interval
t ∈ [0, a] is given by integrating the magnitude of its tan-
gent vector [28]:

∫ a

0
||∂rp(t)∂t || dt =

∫ a

0
||(1, λ∂h(up)

∂t )|| dt.
Simple computations then yield our guidance domain trans-
formation Tp,λ(·) (employed in Eq. (3)), as follows:

Tp,λ(a,x,h) =

∫ a

0

√√√√1 + λ2

c∑
q=1

|∂hq(up)

∂t
|2 dt. (7)

The above transformation (7) is performed on the image
manifold (x, λg) as Tp,λ(xp,x,g) in order to incorporate
edge information provided by the guidance g into the joint
filter f in Eqs. (2) and (3).

Discrete Implementation: As recommended in [11], the first-
order partial derivative of hq(up) with respect to t in Eq. (7)
is approximated by using the forward difference scheme:

∂hq(up)

∂t
≈ hq(up(t+ 1,x))− hq(up(t,x)).

The joint filter f is also implemented iteratively with the
scale variable

σi = σ
√
3(2Nite−i)/

√
4Nite − 1 (8)

where Nite is the number of iterations (Nite = 3 in our nu-
merical experiments). The pseudocode in Algorithm 2 illus-
trates a separable implementation of our joint filter f based
on the above domain transformations, where np ∈ N is
the number of pixels in the p-th coordinate basis (i.e., the

Algorithm 2: Joint Filtering via Domain Transform
Input : Pixels {x ∈ Rd} with side sizes {np} ∈ Nd, their

integrand {h(x)} and guidance {g(x)} colors on
Rc, and scale σ and metric λ parameters.

Output: Joint filtered colors {f(x)} as f(x,g,h).
// (c+ 1)-th channel for the denominator of Eq. (2).

1 X(x)← {h(x), 1} for all x;
/* Transformation (7) can be computed here: a

tradeoff between speed and memory usage. */

2 for i← 1 to Nite do
3 Update σi by Eq. (8);
4 for p← 1 to d do
5 for any 1D pixel array of X parallel to its p-th basis

do
6 t[·]← DomainTransform(g, np, c, λ);
7 X[·]← GaussTransform(t,X, c+ 1, np, σi);

// Algorithm 5.

8 end for
9 end for

10 end for
11 for q ← 1 to c do
12 fq(x)← Xq(x)/Xc+1(x) for all x;
13 end for
14 return {f(x) := {fq(x)}};

/* Domain transformation by Eq. (7): */

15 Function DomainTransform({g[·] = {gq[·]}}, n, c, λ):
16 t[1]← 0;
17 for j ← 1 to n− 1 do
18 Y ←

∑c
q=1 | gq[j + 1]− gq[j] |2 ;

19 t[j + 1]← t[j] +
√
1 + λ2Y ;

20 end for
21 return t[·];

image size of the p-th dimension). Its one-dimensional L1

Gaussian convolution on the non-uniform pixel coordinates
(transformed domain) is also accurately performed by using
our domain-splitting technique described in Section 4.

4 Domain-splitting Gaussian Convolution

Using conventional fast methods such as the well-studied
FFTs [7] and recursive filters [6,1,31] to perform Gaussian
convolutions on a transformed domain is not trivial, because
these methods have usually been designed for use with only
uniform-image pixels. See [13] for an excellent review of
fast Gaussian convolution methods. In contrast, a domain-
splitting technique [34,3] approximates a discrete analogue
of a Gaussian convolution (known as a Gauss transform
[14]) very accurately (without ringing artifacts) and quickly,
even for a non-uniformly sampled variable of the Gaussian
function. The key feature of this technique is decomposi-
tion of the integral domain of Gaussian convolution into sub-
domains centered at each representative point on the domain
by using the L1 norm for a metric instead of the popular
L2 norm. We explain here the domain-splitting technique
adapted to our framework in order to accurately compute
the Gaussian convolutions of the initial smoothed image J0
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in Eq. (1) and the joint filter (defined in Eqs. (2) and (3)) on
the transformed domain Tp,λ(xp,x,g).

For a given pixel x = {xp} on Rd, consider a set of n
points P : {ti} on R representing the transformed pixels of
x with respect to its p-th coordinate basis and corresponding
color h = {hq(x)} ∈ Rc such that

ti ≡ Tp,λ(i,x,h), t1 ≤ t2 ≤ ... ≤ tn,

h(ti) ≡ hq(up(i,x)), i = {1, 2, ..., n}
where h(ti) ∈ R is a q-th channel color at ti, n ∈ N is
the number of pixels, and the transformation Tp,λ(·) with its
straight line up are defined in Eqs. (7) and (6), respectively.
The L1 Gauss transform f(·) ∈ R with h(·) at tj ∈ P is
given by

f(tj) =
n∑

i=1

Gσ(tj − ti)h(ti) (9)

where naively computing f(tj) for all j = {1, 2, ..., n} re-
quires quadratic computational complexity O(n2).

Basic Decomposition Concept: For a fixed point t1, split-
ting the domain of the L1 norm distance between ti and tj
with respect to their order yields

|ti − tj | =

{
|ti − t1| − |tj − t1| if t1 ≤ tj ≤ ti,

−|ti − t1|+ |tj − t1| if t1 ≤ ti < tj .

This process is illustrated conceptually in Fig. 7. Substitut-
ing the above equation into an L1 Gaussian Gσ(ti−tj) leads
to

Gσ(ti − tj) =


Gσ(ti − t1)

Gσ(tj − t1)
if t1 ≤ tj ≤ ti,

Gσ(tj − t1)

Gσ(ti − t1)
if t1 ≤ ti < tj

where the dependency of the two indices i and j within the
Gaussian is resolved such that a two-variable function can
be replaced by a combination of two one-variable functions.
The L1 Gauss transform f(·) consequently becomes

f(tj) = h(tj)+Gσ(tj − t1)ξ(j−1)+
η(j + 1)

Gσ(tj − t1)
, (10)

ξ(j) =

j∑
i=1

h(ti)

Gσ(ti − t1)
, η(j) =

n∑
i=j

Gσ(ti − t1)h(ti)

where ξ(0) ≡ 0 ≡ η(n + 1). Note that Eq. (10) depends
on only the index j, and ξ(·) and η(·) can be pre-computed
(with linear computational time) for all j = {1, 2, ..., n} at
once before calculating f(tj). Linear computational com-
plexity O(3n) is hence required to calculate f(tj) for all
indices j by the decomposition (10). However, some numer-
ical instability makes it difficult to compute Eq. (10) accu-
rately. For instance, 1

Gσ(ti−t1)
may cause an overflow for

very large values of |ti − t1|.

Domain Splitting

�� ��
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- =

Fig. 7 A basic domain decomposition concept that enables measure-
ment of the distance between ti and tj by subtraction of two distances
via an anchor coordinate t1.
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Fig. 9 Indexing functions γ(·) and γ2(·).

Accurate Approximation: To avoid the above-mentioned nu-
merical problem, consider a set of m representative poles
{αk} on R instead of using the fixed point t1. Assuming
that α1 < α2 < ... < αm, the domain splitting of |ti − tj |
around the pole αk is given by

|ti − tj | =


|ti − αk| − |tj − αk| if tj ∈ Ω1

i,k,

−|ti − αk|+ |tj − αk| if tj ∈ Ω2
i,k,

|ti − αk|+ |tj − αk| if tj ∈ Ω3
i,k

where the domains Ω1
i,k, Ω2

i,k, and Ω3
i,k are defined by

Ω1
i,k = {z ∈ P : αk ≤ z ≤ ti, or ti ≤ z ≤ αk},

Ω2
i,k = {z ∈ P : αk ≤ ti < z, or z < ti ≤ αk},

Ω3
i,k = {z ∈ P : z < αk ≤ ti, or ti ≤ αk < z},

as shown in Fig. 8. This domain splitting with the poles
{αk} thus makes the Gauss transform f(·) in Eq. (9) be-
come

f(tj) = h(tj) + Cj +Dj + Ej , (11)

Cj = {G(σ,j,γ(j))

j−1∑
i=γ2(γ(j))

h(ti)

G(σ,i,γ(j))

}+

+{
1

G(σ,j,γ(j))

γ2(γ(j)+1)−1∑
i=j+1

G(σ,i,γ(j))h(ti)},

(12)

Dj =

γ(j)−1∑
k=1

G(σ,j,k)Ak, Ej =

m∑
k=γ(j)+1

G(σ,j,k)Bk,

Ak =

γ2(k+1)−1∑
i=γ2(k)

h(ti)

G(σ,i,k)

, Bk =

γ2(k+1)−1∑
i=γ2(k)

G(σ,i,k)h(ti)

(13)
where G(σ,l,k) ≡ Gσ(tl − αk), γ(j) = k, and γ2(k) =

min(j) such that αk ≤ tj < αk+1, as illustrated in Fig. 9.
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Fig. 10 Stable domain splitting by {αk}, where the indices j and k
are chosen such that |αk+1−αk| ≥ |tj−αγ(j)| ≥ |tγ2(·)−αγ(·)|
in Eqs. (12) to (13). It implies δ > exp(

|tj−αk|
σ

) in this figure.

For a given upper bound of computational precision δ,
the inequality exp( |αk+1−αk|

σ ) < δ should be held to avoid
the above-mentioned numerical instability. Satisfying this
condition leads to a stable choice of distances between poles
by using the relationship |αk+1 − αk| = φσ log(δ), where
φ ∈ (0, 1) is a parameter. In our framework, we use φ = 0.5
and a double floating-point precision format for δ (i.e., 64bit
DBL MAX of the C++ programming language). Since the
range of P is defined by w = tn − t1 > 0, the number of
poles and their coordinates are automatically determined by

{αk} = t1+{0, 1, ...,m−1}w
m
, m = [

w

φσ log(δ)
] (14)

where [·] is the ceiling function and m ≪ n in general cases.
Although t1 is always equal to zero in our framework, shift-
ing the first pole (α1 = t1), as in Eq. (14), guarantees that
Eq. (11) is numerically stable because of how the poles {αk}
are chosen (see Fig. 10).

If |αk − tj | > σ log(δ), then Gσ(αk − tj) becomes nu-
merically zero where αk is located far from tj . Therefore,
Dj and Ej are approximated by

Dj ≈ G(σ,j,γ(j)−1)Aγ(j)−1, Ej ≈ G(σ,j,γ(j)+1)Bγ(j)+1

(15)
where Dj ≈ 0 if γ(j) < 2, and Ej ≈ 0 if γ(j) > n − 1.
The approximation error at tj is given by

γ(j)−2∑
k=1

Gσ(tj − αk)Ak +
m∑

k=γ(j)+2

Gσ(tj − αk)Bk.

The above approximation of f(tj) thus possesses accuracy
equivalent to truncation of a sum within a 3φσ log(δ) re-
gion. Such a truncation is very accurate2 and equivalent to
naive truncation with a radius of about 525σ, where φ = 0.5
and log(DBL MAX) ≈ 700. Also, this approximation algo-
rithm requires only O(4n + 2m + max(n,m)) operations
(O(1/[σ]) with respect to σ).

2 In statistics and its application to the empirical sciences, a 3σ ra-
dius is often used and considered sufficient to approximate normally
distributed data (i.e., an L2 Gaussian function). However, a Gaussian
convolution with naive truncation within a 3σ radius produces some
undesired ringing artifacts around sharp image edges [34].

Algorithm 3: Initialization of Domain Splitting
Input : n points t[·] on R≥0, and scale σ.
Output: The number of poles m, index set γ[·], and

coefficients C1[·], C2[·], Df [·], and Ef [·].
1 Function DSInit(t[·], n, σ):
/* Computing γ(·), m, and αk by Eq. (14). */

2 φ← 0.5; δ ← DBL MAX; // Precision: φ ∈ (0, 1).

3 w ← t[n]− t[1]; // Range of P.

4 m← ceil(w/(φσ log(δ))); // Number of poles.

5 α[1]← t[1]; k ← 1; αdist ← w/m;
6 for j ← 1 to m− 1 do
7 α[j + 1]← α[j] + αdist;
8 end for
9 for j ← 1 to n do

10 if k < m then
11 while t[j] > α[k + 1] do
12 if k < m then k ← k + 1;
13 else Break;
14 end while
15 end if
16 γ[j]← k;
17 end for

/* Coefficients of Cj, Dj, and Ej in Eqs. (12),

(15): C1[·], C2[·], Df [·], and Ef [·]. */

18 for j ← 1 to n do
19 Df [j]← Ef [j]← 0;
20 C1[j]← exp(−(t[j]− α[γ[j]])/σ); C2[j]← 1/C1[j];
21 if γ[j] > 1 then Df [j]← exp(− t[j]−α[γ[j]−1]

σ
);

22 if γ[j] < m then Ef [j]← exp(−α[γ[j]+1]−t[j]

σ
);

23 end for
24 return {m, γ[·], C1[·], C2[·], Df [·], Ef [·]};

Algorithm 4: Integration of Domain Splitting
Input : n colors h[·], numbers of poles m, index set γ[·] and

coefficients: C1[·], C2[·], Df [·], and Ef [·].
Output: Gauss transform f [·] of h[·].

1 Function DSSum(t[·], n,m, γ[·], C1[·], C2[·], Df [·], Ef [·]):
/* Calculating Ak and Bk in Eq. (13), which are

also used to obtain Cj. */

2 for k ← 1 to m do
3 A[k]← B[k]← 0;
4 end for
5 for j ← 1 to n do
6 A[γ[j]]← A[γ[j]] + C2[j]h[j]; S2[j]← A[γ[j]];
7 end for
8 for j ← n to 1 do
9 B[γ[j]]← B[γ[j]] + C1[j]h[j]; S1[j]← B[γ[j]];

10 end for
/* Integrating Dj, Ej, and Cj in Eq. (11). */

11 f [1]← h[1] + S1[2]C2[1];
12 if γ[1] < m then f [1]← f [1] + Ef [1]B[2];
13 for j ← 2 to n− 1 do
14 X ← Y ← 0; Z ← h[j];
15 if γ[j] > 1 then X ← Df [j]A[γ[j]− 1];
16 if γ[j] < m then Y ← Ef [j]B[γ[j] + 1];
17 if γ[j] = γ[j + 1] then Z ← Z + S1[j + 1]C2[j];
18 if γ[j] = γ[j − 1] then Z ← Z + S2[j − 1]C1[j];
19 f [j]← X + Y + Z;
20 end for
21 f [n]← h[n] + S2[n− 1]C1[n];
22 if γ[n] > 0 then f [n]← f [n] +Df [n]A[γ[n]− 1];
23 return f [·];
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Complexity Mult. Add. exp(·)
DSInit O(n+m+max(n,m)) 4 3 3
DSSum O(3n+m) 6 6 0

Table 1 Complexities and costs: numbers of multiplications (Mult.),
additions (Add.), and exponential functions (exp(·)) per pixel.

Algorithm 5: Guided L1 Gauss Transform
Input : n points t[j] on R≥0 and their c-channel colors

h[j] = {hq[j]}, and scale σ.
Output: Transformed h[·] with non-uniform coordinates t[·].

1 Function GaussTransform(t[·],h[·], c, n, σ):
2 Coef ←DSInit(t, n, σ); // Algorithm 3.

3 for q ← 1 to c do
4 hq[·]←DSSum(hq, n, Coef); // Algorithm 4.

5 end for
6 return h[·];

Efficient Implementation: The above domain-splitting tech-
nique is efficiently implemented in our framework by using
the following initialization (DSInit) and integration (DSSum)
procedures described in the pseudocodes of Algorithms 3
and 4, respectively. DSInit(·) computes the poles {α} in Eq.
(14) and some of the coefficients Cj , Dj , and Ej in Eqs. (12)
and (15). DSSum(·) then calculates the L1 Gauss transform
{f(tj)} in Eq. (11) with respect to the given colors {h(tj)}
by using the coefficients determined by DSInit(·) : Coef .
Since Coef depends on only the pixel (transformed) coor-
dinates P : {tj} and scale σ, it can be reused for different
color channels, as in Algorithm 5 (GaussTransform in the
joint filter: Algorithm 2), as well as for the uniform pixel
coordinates, as in Algorithm 6 (GaussianFilter in the scale-
aware filter: Algorithm 1, i.e., J0 in Eq. (1)). Note that the
terms

∑
i h(ti)/Gσ(ti − α·) and

∑
i Gσ(ti − α·)h(ti) ap-

pear in the equations for Ak, Bk, and also Cj . The results
of computing Ak and Bk are therefore reused to obtain Cj

in DSSum(·) (see Algorithm 4). We also employed a fast li-
brary [22] for the exponential function exp(·) in DSInit(·).
Ignoring substitutions and indexing, the complexities and
costs of DSInit(·) and DSSum(·) are listed in Table 1.

5 Numerical Experiments

All numerical experiments in this paper were performed on
an i9-10980XE CPU (3.0 GHz, 36 core, and no paralleliza-
tion was used) PC with 128 GB RAM and a 64-bit OS with
a GNU C++ 9.3 compiler.

We first examined the accuracy and computational speed
of our domain-splitting approximation (Our: uniform and
Our NU: non-uniform pixels) described in Section 4 (Al-
gorithms 6 and 5) by numerically comparing their accu-
racy and computational speed with those of the popular box
and recursive filters such as the Box (moving average) [26],
EBox (extended box) [15], SII (stacked image integral) [4,
9], Deriche [6], VYV [31], and AM [1] filters. Their imple-
mentations and boundary conditions were based on the open

Algorithm 6: Uniform L1 Gaussian Image Filtering
Input : Pixels {x := {xp} ∈ Rd} with side sizes

{np} ∈ Nd, their colors {I(x) ∈ Rc}, and scale σ.
Output: Filtered colors {Z(x)}.

1 Function GaussianFilter({x}, {I(x)}, σ):
2 for p← 1 to d do
3 X[·]← {1, 2, ..., np}; // Pixel coordinates.

4 Coef [p]←DSInit(X,np, σ); // Algorithm 3.

5 Yp[·]←DSSum({1}, np, Coef [p]); // Algorithm 4.

6 end for
7 Z(x)← I(x) for all x;
8 for p← 1 to d do
9 for any 1D pixel array of Z parallel to its p-th basis do

10 Z[·]←DSSum(Z, np, Coef [p]); // Algorithm 4.

11 end for
12 end for
13 Z(x)← Z(x)/

∏d
p=1 Yp[xp] for all x;

14 return {Z(x)};

library of [13] with 10−15 tolerance (4th order recursion).
Table 2 shows the peak signal-to-noise ratio (PSNR) [24,
34] and the maximum error Emax [34] of one-dimensional
Gaussian filtering (d = 1 for J0 in Eq. (1) and convolutions
in the joint filter) for relatively small σ (0.05% to 1% of im-
age size w = n), where the exact Gauss transform (Eq. (9))
and FIR (Finite Impulse Response) [13] were employed for
comparison with their approximations. Our approximations
were slightly slower than those with the conventional meth-
ods but significantly more accurate (about 1010 times).

Figure 11 demonstrates a typical error profile of Table 2
parameter settings, where some ripple-shaped errors, which
cause undesired artifacts and phantom edges, are observed
for all conventional methods. At first glance, the VYV and
Deriche filters look preferable for use in computer graph-
ics applications because the magnitudes of their errors are
small, as shown in Table 2 and Fig. 11. However, applying
these methods stably and accurately for variable parameters
is not trivial. During our experiments, we easily encountered
cases of artifacts that could not be ignored or that resulted in
complete failure. Figure 11 (top-right) shows a boundary ar-
tifact caused by use of the Deriche filter for large σ (10% of
the image size, which is not irrelevantly large). This artifact
may have been the result of one of the causes discussed in
[30,13,5]. Moreover, the errors of these methods, including
the AM and EBox filters, behave in a nonlinear manner with
respect to not only σ but also the image size w (number of
pixels n as well) because their formulations (e.g., coefficient
optimization) rely on these parameters. Despite the fact that
both σ and n were linearly scaled from the case in Fig. 11,
the VYV and Deriche filters generated the results with the
large errors, as shown in Fig. 12. In contrast to these con-
ventional methods, our theoretical formulations guarantee
the high stability and accuracy of our approximations, which
were numerically confirmed by our experiments. Since the
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Method PSNR Emax Time: n ∈ 10{4,5,6}

EBox [15] 55.79 1.03e-02 0.014 1.77 18
SII [4,9] 38.88 5.509e-02 0.092 0.86 9.4
Box [26] 31.34 1.535e-01 0.039 0.32 3.4
Deriche [6] 96.37 1.184e-04 0.165 1.62 18
VYV [31] 74.8 1.294e-03 0.167 1.46 14.9
AM [1] 53.6 1.438e-02 0.495 3.8 38.4
Our [34,3] 291.6 2.842e-14 0.325 3.58 43.2
Our NU [34,3] 298.7 3.12e-14 0.43 3.57 43

Table 2 Timing and accuracy comparisons of J0 where d = 1,
n = 104, h(·) ∈ [0, 1], averaged PSNR of 20 σ ∈ {5, 10, ..., 100},
and 100 datasets randomly generated for each σ were employed. Time
shows averaged computational time (milliseconds) for n ∈ 10{4,5,6}.

RG SiR AG
Name s box our box our box our
Balloon 4 2.4 4 4.1 4.2 10.2 9.9

20 11 19 20 19.5 50.2 48
Face 4 0.32 0.57 0.37 0.62 1.07 1.41

20 1.44 2.7 1.75 2.92 5.34 6.9
Glass 4 3.5 5.35 3.3 5.36 9.5 12.8

20 15.5 25.4 15.4 25.7 46 63
Snack 4 0.93 1.55 1.4 1.6 3.2 3.9

20 4.2 7.4 6.6 7.6 15.8 19
Ham 4 0.74 0.97 0.9 1.06 2.4 2.51

20 3 4.7 4.4 5.01 11.1 12.5

Table 3 Timings (seconds) by box and our framework, where s repre-
sents the iteration number in Eq. (1). The image sizes and figure num-
bers (ϕ and σ are described in the captions) are listed in Fig. 13.

RG-box RG-our SiR-box SiR-our AG-box AG-our
5.41/s 3.072/s 3.902/s 3.014/s 1.597/s 1.244/s

Table 4 Speed comparison of box [26] and our scale-aware filters
(megapixels per second), where s is the iteration number in Eq. (1).

quality of both J0 and the convolutions used in the joint fil-
ter are important, the approximation described in Section 4
is suitable for scale-aware filters.

We next evaluated the quality and computational speed
of our scale-aware filters. The input images are listed in Fig.
13, and the timings are shown in Table 3. Figures 3, 4, and
18 demonstrate our scale-aware filtering results with vary-
ing scales (σ). The scale-space and salient edge features are
clearly apparent. Our filters did not produce undesired arti-
facts generated by box-based convolutions (moving average
[26], where

√
3σ radius was employed to obtain the visually

similar results), as illustrated in Figs. 1, 15, and 16. Figure
14 shows timing comparisons for various numbers of itera-
tions s and images sizes, and it is summarized in Table 4.

Our filters achieved linear computational speeds (slightly
slower than the box kernel convolutions3), and their conver-
gence properties were similar to those of the RG, SiR, and
AG filters, as shown in Fig. 5. See Fig. 17 for the filtering
effects of iterations s ∈ {4, 20} recommended by [36].

3 Note that the timing results in Table 2 was optimized for one-
dimensional array. In contrast, the results shown in Fig. 14 and Tables
3 and 4 were based on two-dimensional arrays which are not optimized
for random memory access in the separable implementation.
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Fig. 11 1-D Gaussian filtering J0 comparisons for w = n = 104

pixels with σ ∈ {102, 103}, where differences between the approx-
imations and their correct results are shown. Top-left: input and the
correct results with σ = 102 based on FIR and exact L1 Gauss trans-
form. Top-right: A boundary artifact of the Deriche [6] with σ = 103.
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Fig. 12 1-D Gaussian filtering J0 comparisons with artifacts where
n = 105 and σ: 104 (left) and 2 × 104 (right). The PSNRs of the
Deriche, VYV, Our, and Our NU in the left (right) image are equal to
24.7 (6.6), 9.2 (10.3), 280 (280), and 278 (280), respectively.

Balloon [27] Face Glass Snack Ham
w 2121 610 1654 1368 1032
h 1414 752 2181 912 774

Fig. 3 15 16 17 18

Fig. 13 Input images with their numbers of pixels (w: width and h:
height) and numbers of figures employed.
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Fig. 14 Timings versus iterations (left: three different sizes) and ver-
sus numbers of pixels (right), where scaled Lena images represent-
ing an average of 10 iterations for each of 10 different scales (σ ∈
{5, 10, 15..., 50}) were employed. Note that the SiR graphs are omit-
ted because their profiles are similar to the RG graphs visually.
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Input RG-box RG-our SiR-box SiR-our AG-box AG-our

Fig. 15 Quality comparison of image of face for the RG, SiR, and AG filters with the box kernel (
√
3σ radius was used) and our framework (L1

Gaussian), where s = 20, ϕ = 1, σ = 6 (RG and AG) and ϕ = 0.5, σ = 3 (SiR). Bottom images correspond to the square root of the magnitude
of the gradient (||∇J20||1/2) of the eye and mouth parts of the upper images, where some artifacts appeared in the box-based results.

Input RG-box RG-our SiR-box SiR-our AG-box AG-our

Fig. 16 Quality comparison of image of glass for the RG, SiR, and AG filters with the box kernel (
√
3σ radius was used) and our framework (L1

Gaussian), where ϕ = 1.5, σ = 8, and s = 20. Bottom images correspond to the same square root of the magnitude of the gradient (||∇J20||1/2)
as the bottom images in Fig. 15.

Input RG: J4 RG: J20 SiR: J4 SiR: J20 AG: J4 AG: J20

Fig. 17 Iteration effects of image of snack via our framework with ϕ = 1.5, σ = 16, and s ∈ {4, 20}.

Input σ = 4 σ = 8 σ = 16 σ = 32

Fig. 18 Various scales of image of ham via our framework with the AG filter where ϕ = 0.5, s = 20, and σ ∈ {4, 8, 16, 32}.
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6 Conclusion

We have proposed a fast and accurate computational frame-
work for scale-aware image filters. Our new framework is
based on accurately approximating L1 Gaussian convolu-
tion with respect to a transformed pixel domain representing
geodesic distance on a guidance image manifold in order to
recover salient edges in a manner faithful to scale-space the-
ory while removing small image structures. Our framework
achieved linear computational complexity with high-quality
filtering results. We compared our framework numerically
in terms of speed, precision, and visual quality with popular
conventional methods.

Since our framework is robustly applicable to HDR im-
ages with a wide range of scale σ, applications to compu-
tational photography, engineering, and science are promis-
ing future work. Limitations of our framework are related
to domain transformations and scale-aware filters, such as
slow convergence of elongated image regions (Fig. 17) and
reduced intensity (SiR, Fig. 4). Combining our framework
with a guided filter [17] may reduce such artifacts. Future
work will also include numerical comparisons with the non-
uniform recursive method [12] (an extension of Deriche [6]).
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