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Abstract

We propose a fast and robust method for detecting crest lines on
surfaces approximated by dense triangle meshes. The crest lines,
salient surface features defined via first- and second-order curvature
derivatives, are widely used for shape matching and interrogation
purposes. Their practical extraction is difficult because it requires
good estimation of high-order surface derivatives. Our approach to
the crest line detection is based on estimating the curvature tensor
and curvature derivatives via local polynomial fitting.

Since the crest lines are not defined in the surface regions where
the surface focal set (caustic) degenerates, we introduce a new
thresholding scheme which exploits interesting relationships be-
tween curvature extrema, the so-called MVS functional of Moreton
and Sequin, and Dupin cyclides,

An application of the crest lines to adaptive mesh simplification
is also considered.

Introduction

Developing methods for fast and accurate detection of feature lines
on polygonal and point-sampled surfaces is currently a subject
of intensive research [Khaneja et al. 1998; Gumhold et al. 2001;
Hubeli and Gross 2001; Lee and Lee 2002; Pauly et al. 2003; Page
et al. 2002; Ohtake et al. 2004; Stylianou and Farin 2004; Cazals
and Pouget 2004a]. In this paper, we propose a fast and robust
method for detecting surface creases on surfaces approximated by
dense triangle meshes.

Surface creases, curves on a surface along which the surface
bends sharply can be intuitively defined as loci of sharp variation
points of the surface normal. Mathematically the sharp variation
points of the surface normals are described via extrema of the sur-
face principal curvatures along their corresponding lines of curva-
ture. These curvature extrema, called also ridges, have been thor-
oughly studied in connection with research on classical differen-
tial geometry and singularity theory [Koenderink 1990; Porteous
1994; Belyaev et al. 1997; Hallinan et al. 1999; Cazals and Pouget
2004b]. The ridges and their subsets have numerous applications
in image and data analysis [Monga et al. 1992] quality control
of free-form surfaces [Hosaka 1992], human perception [Hoffman
and Richards 1985], analysis and registration of anatomical struc-
tures [Pennec et al. 2000], geomorphology [Little and Shi 2001]
and non-photorealistic rendering [Interrante et al. 1995; DeCarlo
et al. 2003]. See also references therein. The so-called crest lines
are formed by the perceptually salient ridge points and consist of
the surface points where the magnitude of the largest (in absolute
value) principal curvature attains a maximum along its correspond-
ing line of curvature.

Practical detection of the crest lines and other types of curvature
extrema is a difficult computational task because it requires a high-
quality estimation of the curvature tensor and curvature derivatives.
In general, global fitting methods do a better job in estimating high-
order surface derivatives and lead to more accurate detection of
curvature extrema [Kent et al. 1996; Ohtake et al. 2004] than the
local estimation schemes. On the other hand, the local schemes
are much faster and often demonstrate a quite satisfactory per-
formance [Guéziec 1993; Stylianou and Farin 2004; Cazals and
Pouget 2004a].

Our procedure for detecting the crest lines combines local
polynomial fitting based on a modification of the method of
[Goldfeather and Interrante 2004], a finite difference scheme/test
proposed in [Ohtake et al. 2004] and used for curvature max-
ima/minima identification, and a careful thresholding based on
the MVS functional of Moreton and Sequin [Moreton and Sequin
1992]. Our method is fast since we estimate necessary surface
derivatives via local polynomial fitting. For example, for the Igea
model consisting more than 200K triangles it takes only nine sec-
onds for estimating the curvature tensor and curvature derivatives
and four seconds for detecting crest lines on a standard 1.7 GHz
Pentium 4 PC. Our approach is capable of achieving high quality
results comparable with those obtained via global fitting procedures
[Ohtake et al. 2004]. Fig. 1 shows crest line patterns found on sim-
ple and complex geometrical models for various values of a user-
specified parameter which controls the strength of detected crest
lines.

We also consider applications of the crest lines to adaptive mesh
simplification.

Differential Geometry Background

Consider a smooth oriented surface S and denote kmax and kmin
its maximal and minimal principal curvatures, kmax ≥ kmin. Let
tmax and tmin be the corresponding principal directions. Denote by
emax and emin the derivatives of the principal curvatures along their
corresponding curvatures directions:

emax = ∂kmax/∂ tmax, emin = ∂kmin/∂ tmin.

Following [Thirion 1996] let us call emax and emin the extremal-
ity coefficients. The extremality coefficients are not defined at the
umbilical points (kmax = kmin) since the principal directions are un-
defined there. The ridges are formed by the closure of points on
S where one of the extremality coefficients vanishes. According
to this definition, the umbilical points are ridge points. In [Porteous
1994; Hallinan et al. 1999] the ridge patterns in small vicinities of
umbilical points are analyzed.

The crest lines consist of perceptually salient ridge points. We
distinguish convex and concave crest lines. The convex crest lines
are given by

emax = 0, ∂emax/∂ tmax < 0, kmax > |kmin|,

while the concave crest lines are characterized by

emin = 0, ∂emin/∂ tmin > 0, kmin < −|kmax|.



Figure 1: Crest lines detected on various triangle meshes. A scale-independent parameter T defined by (5) is used to keep the most visually
important features: T = 2.4 for the Fan model, T = 1.0 for the Feline model, T = 2.7 for the Igea model, T = 3.2 for the Mannequin Head
model, T = 0.9 for the Camel model, and T = 2.3 for the Moai model. For all the model one-ring neighborhood polynomial fitting is used
for estimating the curvature tensor and curvature derivatives.

The convex and concave crest lines are dual w.r.t. the surface ori-
entation: changing the orientation turns the convex crest lines into
concave one and vice versa.

Denote by F the focal set of S . The focal set is formed by
the principal centers of curvature and consists of two sheets cor-
responding to the maximal and minimal principal curvatures kmax
and kmin. Focal set F is not a smooth surface and has singulari-
ties. The singularities of F consist of space curves which corre-
spond to the ridges on S . There is a special family of surfaces, the
so-called Dupin cyclides, whose focal sets degenerate into space
curves (a sphere and a plane can be considered as degenerate Dupin
cyclides whose focal sets are isolated points; the focal point of a
plane is located at infinity). The ridges are not defined on a Dupin
cyclide. The Dupin cyclides were introduced by the French geome-
ter Charles Dupin at the beginning of the 19th century and since
then have been intensively studied in connection with various shape
modeling tasks. See, for example, [Chandru et al. 1989] for a short
historical survey of the Dupin cyclides and their usage and [Foufou
and Garnier 2004] for recent applications of the Dupin cyclides in
geometric modeling as a CAGD primitive. The skeleton (medial
axis) of a figure bounded by a Dupin cyclide degenerates into a
curved axis. The family of Dupin cyclides includes spheres, cylin-
ders, cones, and tori.

One can show that the Dupin cyclides are characterized by the
condition

|emax|
2 + |emin|

2 = 0. (1)

Notice that the left-hand side of (1) is the integrand of the so-called
MVS functional introduced in [Moreton and Sequin 1992] for fair
surface design purposes.

Assume that S is given in the parametric form r = r(u,v) and
let n(u,v) be the unit normal vector to S . Consider a point r0 =
r(u0,v0) and assume that (ru,rv,n) form an orthonormal basis at
r0. Further, let us assume that the basis vectors ru and rv coincide
with the principal directions tmax and tmin, respectively, at r0. Then,
according to the classical formula of Rodrigues, we have

nu = −kmaxru and nv = −kminrv,

The focal set F is given by

f = r(u,v)+R(u,v)n(u,v) with R = 1/kmax,1/kmin.

The focal set f(u,v) degenerates at (u0,v0) if the oriented area el-
ement of F corresponding to the oriented area element of S van-
ishes at r0. It gives

fu × fv = (ru +Run+Rnu)× (rv +Rvn+Rnv) = 0,

where fu and fv are the partial derivatives of f(u,v). After obvious
simplifications we arrive at

ruRu (1−Rkmin)+ rvRv (1−Rkmax)+
+n(1−Rkmax)(1−Rkmin) = 0,

where R = 1/kmax,1/kmin. Thus the kmax-branch of F degener-
ates at f(u0,v0) if emax = 0, the kmin-branch of F degenerates at
f(u0,v0) if emin = 0, and both the branches degenerate at common
point f(u0,v0) if kmax = kmin. The focal points corresponding to
surface points where either emax = 0 or emin = 0 (ridges) form the
so-called cuspidal edges called also focal ribs [Porteous 1987; Por-
teous 1994]. For a generic surface, focal ribs always go through the
focal set singularities corresponding to the umbilics of the surface.
Now we can conclude that a generic surface region where the left
hand-side of (1) is small is close to a part of a Dupin cyclide.

Practical detections of the ridges and their subsets is extremely
difficult in those surface regions which are slightly perturbed Dupin
cyclide patches and where, therefore, the left hand-side of (1) is
close to zero. Such regions may contain many spurious ridges (and
crest lines). Thus it seems natural to use the left hand-side of (1) as
a measure for selecting geometrically important crest lines.

Estimating Surface Derivatives
Given a mesh M approximating a smooth surface S , in order to
achieve a fast and accurate estimation of the principal curvatures
and their derivatives a bivariate polynomial is fitted locally to each
mesh vertex. To date, two polynomial fitting strategies are used
for estimating surface derivatives at a mesh vertex. According to
one strategy, it is assumed that the surface normal at vertex is pre-
liminary estimated. It leads to the so-called adjacent-normal cubic
approximation method [Goldfeather and Interrante 2004]. The sec-
ond strategy [Cazals and Pouget 2003] does not assume that the
mesh normal is already given. According to our numerical expe-
rience, if the vertex normal is approximated appropriately, the first
strategy leads to a better estimation of the surface curvatures and
their derivatives at the vertex.

In our numerical experiments we use the following enhancement
of adjacent-normal cubic approximation method. For each mesh
vertex p ∈ M its one-link neighborhood is considered and a new
vertex p′ is obtained as the arithmetic mean of the centroids of the
mesh triangles adjacent to p. These new vertices {p′} form a new
mesh M ′ which is smoother than M . Now for each vertex p′ ∈M ′

its unit normal is estimated via Nelson Max’s method [Max 1999].
Then a cubic polynomial

h(x,y) =
1
2

(

b0x2 +2b1xy+b2y2
)

+ (2)

+
1
6

(

c0x3 +3c1x2y+3c2xy2 + c3y3
)



is fitted in the least-square sense [Goldfeather and Interrante 2004]
to p′ and a set of its neighboring vertices. That set of neighbors
of p′ is obtained from the k-link neighborhood of p′ by removing
those vertices whose normals make obtuse angles with the normal
at p′. In practice we use k = 1,2,3,4. Next the curvature tensor and
extremality coefficients are expressed via derivatives of local cubic
polynomial h(x,y). Finally these curvature attributes are assigned
to the original vertices {p} of mesh M .

We have also derived an elegant formula for an extremality co-
efficient at a surface point where S is locally approximated by (2)

e = ∂k/∂ t =

(

t2
1

t2
2

)T (

c0 c1
c2 c3

)(

t1
t2

)

. (3)

Here t = (t1, t2)
T is the principal direction corresponding to a prin-

cipal curvature k. Because of its simplicity, (3) leads to a significant
reduction of computational time.

To prove (3) let us consider the well-known formula for an ex-
tremality coefficient e = ∂k/∂ t for a surface given in implicit form
F(x) = 0, x = (x1,x2,x3), (see, for example, [Porteous 1994, Ex-
ercise 11.8] and also [Monga et al. 1992] where a small mistake in
the final formulas for the curvature derivatives is made)

e = ∇k · t =
Fi jltit jtl +3kFi jtin j

|∇F|
, (4)

where Fi j and Fi jl denote the second and third partial derivatives
of F(x), respectively, t = (t1, t2, t3) is the principal direction corre-
sponding to a principal curvature k, n = (n1,n2,n3) is the unit sur-
face normal, and the summation over repeated indices is implied. In
our case, F = z−h(x,y) and at the origin of coordinates n = (0,0,1)
and t = (t1, t2,0). Thus, since the polynomial h(x,y) does not con-
tain linear terms, at the origin of coordinates (4) simplifies into

e = Fi jltit jtl

and (3) immediately follows.
Fig. 2 compares the sets of crest lines detected on a 3D text

mesh via the straightforward polynomial fitting (the top image) and
the enhanced adjacent-normal cubic approximation method (we use
k = 1 in this example).

Although our scheme for estimating surface derivatives seems
complicated, it leads to highly effective crest line detection pro-
cedure which only slightly depends on the mesh connectivity and
triangle aspect ratios. In Fig. 3 we compare the patterns of the crest
lines detected on the original Stanford bunny mesh and on the mesh
obtained via an implicitization of the bunny model and then poly-
gonizing using Bloomental’s method [Bloomenthal 1994]. Despite
the fact that the new bunny mesh contains many sliver triangles and
has irregular connectivity, the patterns of the crest lines found on
the meshes are remarkably similar.

Tracing and Thresholding Crest Lines

Once the curvature tensor and extremality coefficients are esti-
mated at each vertex of M , we inspect the edges M and check
whether they contain curvature maxima and minima. We detect the
crest line vertices and connect them together following the proce-
dure proposed in [Ohtake et al. 2004] with one small, but impor-
tant, addition. It turns out that the procedure may generate several
close disconnected crest lines in situations similar to those shown
in the left image of Fig. 4. In order to reduce the fragmentation
of the crest lines we inspect the mesh vertices and their one-ring
neighborhoods. For each one-ring vertex neighborhood contain-
ing crest line end-points we connect two end-points if α ≤ π/3,
β ≤ π/3, γ ≤ π/2, where α , β , and γ are the angles between the

end-segments and the segment connecting the end-points, as seen
the right image of Fig. 4.

Figure 2: Crest lines detected on 3D text. Top: polynomial fit
without preliminary estimation of mesh normals is used. Bottom:
the enhanced adjacent-normal cubic approximation method is em-
ployed for estimating surface curvatures and their derivatives. In
both the cases preliminary smoothing p → p′ was applied.

Figure 3: Patterns of crest lines and mesh triangles for two bunny
models. Left: original Stanford bunny mesh with 69,451 triangles
is used. Right: another bunny mesh with 279,984 triangles is used.
The necessary surface derivatives are estimated via the enhanced
cubic polynomial fitting with k = 1 for the original Stanford bunny
mesh and k = 3 for the remeshed bunny since the latter is more than
three times bigger than the original one.

As we mentioned before, the sum of squared extremality coeffi-
cients is very appropriate for measuring saliency of the crest lines.
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Figure 4: Left: a situation when we may want to connect the crest
lines (shown in bold) together. Right: angles α , β , and γ generated
by crest line end-segments and the segment connecting crest line
end-points are used to measure when gap-jumping is necessary.

In practice we use the following scale-independent quantity to mea-
sure the strength of a crest line

T =
∫

ds ·
∫

√

|emax|
2 + |emin|

2 ds, (5)

where the integrals are taken over the crest line. This threshold-
ing parameter involves third-order surface derivatives and is more
complex than that used in [Ohtake et al. 2004] where the integral
of a principal curvature along a feature line was used. On the other
hand, thresholding with (5) is simpler than the thresholding scheme
proposed in [Cazals and Pouget 2004a] where a second-order cur-
vature derivative is used for filtering out spurious ridges and crest
lines.

We use a linear interpolation scheme for estimating the cyclide-
ness

C =

√

|emax|
2 + |emin|

2 (6)

at crest line vertex v located on mesh edge [p,q]:

C(p) =
aC(p)+bC(q)

a+b
,

where a = |emax(q)|, b = |emax(p)| for the convex crest lines and
a = |emin(q)|, b = |emin(p)| for the concave ones. Now the integrals
in (5) are estimated by a simple trapezoid approximation similar to
that used in [Ohtake et al. 2004].

Roughly speaking, cyclideness (6) measures how far a surface
region is from being a part of a Dupin cyclide. If x lies on a con-
vex (concave) crest line, then emax(x) = 0 and C(x) = |emin(x)|
(emin(x) = 0 and C(x) = |emax(x)|).

At the first glance, it looks that (5) does not affect umbilical re-
gions. In fact it does: by continuity cyclideness (6) vanishes at the
isolated umbilics. A small perturbation of an umbilic region cre-
ates a non-umbilical region containing isolated umbilics. Further,
as it was shown in [Belyaev et al. 1997], the crest lines do not pass
through the generic (typical) umbilics.

Fig. 5 demonstrates how our crest line filtering scheme works for
a model with spherical and cylindrical regions. Notice how well the
crest lines detected at the mesh parts approximated those regions
are filtered out.

T = 0 T = 0.2 T = 6.7
Figure 5: Detecting crest lines for a model containing spherical
and cylindrical regions for various values of threshold T . For each
mesh vertex, its three-ring neighborhood (k = 3) is used for local
polynomial fitting.

Fig. 6 exposes detecting crest lines on a more complex model
containing flat, cylindrical, and slightly curved regions and small
features. Increasing T allows us to remove inessential crest lines
while preserving salient ones. The figure also demonstrates how
the size of vertex neighborhoods used for polynomial fitting affects
the crest line detection procedure. A larger neighborhood leads to
smoother approximation of the mesh and, therefore, allows us to
disregard the crest lines located in slightly convex/concave regions.
See also Fig. 1 where one-ring neighborhood polynomial fitting is
used for all the models.

Crest Lines and Mesh Simplification

In this section, we develop a quadric-based mesh simplification pro-
cedure guided by the distance field from crest lines. Our use of crest
lines for adaptive mesh simplification purposes is inspired by re-
cent work [Kho and Garland 2003]. Since crest lines on a mesh are
important shape features, it is natural to simplify the mesh aggres-
sively far from the most salient crest lines and preserve the mesh in
a vicinity of them.

Given a set of feature lines (crest lines, in our case) on surface S ,
following [Lévy et al. 2002] for a surface point p ∈ S we consider
d(p) the geodesic distance between p and the closest feature line
(crest line) point. Let max(d) be the maximum of the geodesic dis-
tances d(p) over all points of S . We introduce a scale-independent
weighted distance function

F(d) =

(

d
max(d)

+ ε
)η

, (7)

where ε is a regularization parameter (in all our experiments we use
ε = 0.1) and η is a positive user-specified parameter which is used
to control a degree of influence of the crest lines.

Once the crest lines are detected and filtered, we compute a dis-
crete feature distance di for each triangle Ti ∈ M . Let us define the
distance between two triangles Tj of Ti of M sharing a common
edge as the sum of distances between the triangle centroids and
the edge midpoint. To compute {di} we use a variant the Floyd-
Warshall all-pairs shortest path algorithm.

Fig. 7 visualizes the distance fields computed on the Max-Planck
and Stanford bunny meshes.

Similar to [Kho and Garland 2003] a weighted quadric error
metric w jQ(Tj) is assigned to each triangle Tj of mesh M , where
Q(Tj) is the standard Garland-Heckbert QEM [Garland and Heck-
bert 1997]. We set w j = 1/F(d j) and control the degree of influence
of crest lines via parameter η in (7). Fig. 8 presents the Max-Planck
mesh its eye region 90%-decimated for various values of η . The
detected crest line are those shown in the left image of Fig. 7. The
mesh density is changing smoothly according to geodesic distance
to the crest lines.

Discussion

We have presented a fast method for detecting salient curvature ex-
trema on surfaces approximated by dense triangle meshes. It pro-
cesses about 20K/k triangles per second on a standard 1.7 GHz Pen-
tium 4 PC with 512 MB RAM for k-ring neighborhood polynomial
fitting and estimating the curvature tensor and curvature derivatives.
The crest line tracing stage at the method is faster than the estima-
tion stage although the former depends on geometric complexity of
models. The source code of our method is available on the Web for
evaluation [Yoshizawa ].

The method is robust. The results of our crest line detection pro-
cedure depends only slightly on the quality of the mesh, as demon-
strated in Fig. 3.



T = 0, k = 1, T = 4.8, k = 1

T = 0, k = 4 T = 2.2, k = 4

Figure 6: Crest lines detected on a mechanical part model with different values of threshold T and vertex neighborhood size k used for local
polynomial fitting.

Figure 7: Distance from salient crest lines is visualized for Max-
Planck and Stanford bunny meshes. The crest lines are found with
three-ring neighborhood fitting (k = 3) and T = 40 for both the mod-
els.

η = 0 η = 3 η = 6

Figure 8: Max-Planck mesh and its eye part 90%-decimated for var-
ious values of η . The left image (η = 0) shows the result of the
standard Garland-Heckbert decimation procedure.

(a) (b) (c) (d)
Figure 9: (a) Crest lines detected using the method of this paper, one-ring neighborhood fitting is used. (b) Crest lines detected using a global
implicit fitting method [28]. In both the cases, no filtering is applied. (c) The exact crest lines on a simple analytical surface. (d) The crest
lines detected with our method, one-ring neighborhood fitting is employed.



Our method is capable of achieving high quality results in de-
tecting salient curvature extrema to compare with schemes based
on global fitting procedures. In Fig. 9 we give a visual compari-
son of our method with that developed in [Ohtake et al. 2004] (the
two left images) and with the exact detection of the crest lines on
analytical waving surface r(u,v) = [ucosv,usinv,cosu] (two right
images).1

Our filtering scheme for removing unessential crest lines is based
on interesting relationships between Dupin cyclides, focal sets, cur-
vature extrema, and variational functionals. We use cyclideness
(6) as the main ingredient of our filtering scheme and measure
the strength of crest lines by scale-independent quantity (5). Thus
long but weak crest lines are preferred to strong but short ones. Of
course, different filtering procedures can be also used instead of that
based on (5). Similar manual thresholding schemes were also used
in [Ohtake et al. 2004; Cazals and Pouget 2004a]. Manual filtering
is hardly avoidable for complex geometry surfaces, since the crest
lines are local surface features while saliency-based thresholding
should take into account global surface shape.

Finally we have demonstrated how crest lines can be used for
adaptive mesh simplification preserving visually important shape
features.
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