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Figure 1: Denoising Angel model with Non-Local means. (a) Original noisy mesh (flat-shading is used). (b) Original noisy mesh colored
by mean curvature; the curvature map helps us to identify surface defects and roughness. (c) Coloring by similarity. A mesh vertex is
chosen at the left corner of the right eye of the original mesh. The mesh is colored according to a similarity with the shape of the model at
the chosen vertex. The similarity increases from white to blue. The vertices with higher similarity values have a stronger contribution to the
new (smoothed) position of the chosen vertex. (d) Mesh is smoothed by the similarity-based method developed in this paper (flat-shading
is used). (e) Smoothed mesh colored by mean curvature; the curvature map indicates high quality of the smoothed surface.

Abstract

In this paper, we propose a new and powerful shape de-
noising technique for processing surfaces approximated by
triangle meshes and soups. Our approach is inspired by re-
cent non-local image denoising schemes and naturally ex-
tends bilateral mesh smoothing methods. The main idea
behind the approach is very simple. A new position of ver-
tex P of a noisy mesh is obtained as a weighted mean of
mesh vertices Q with nonlinear weights reflecting a simi-
larity between local neighborhoods of P and Q. We demon-
strate that our technique outperforms recent state-of-the-art
smoothing methods. We also suggest a new scheme for com-
paring different mesh/soup denoising methods.

1 Introduction

Real-world signals do not exist without noise. Denoising
digital images and their 3D geometry counterparts, polyg-
onal meshes and point clouds, remains to be an active
area of research. In geometric modeling, recent advances
in developing feature preserving smoothing techniques in-
clude diffusion-driven methods [23, 13], projection-based
approaches [8, 20], and the so-called bilateral mesh filter-
ing schemes [9, 14]. The latter were inspired by image pro-
cessing techniques based on spatial-tonal normalized con-

volutions [22, 24] which in their turn can be considered as
generalizations of the Yaroslavsky neighborhood filter [25].

Very recently, the so-called Non-Local means (or NL-
means) concept, a natural and elegant extension of the im-
age bilateral filtering paradigm was proposed by Buades,
Coll, and Morel [5, 6, 4]. The NL-means method was
inspired by the famous Texture-Synthesis-by-Example ap-
proach of Efros and Leung [7]. The method and its appli-
cations and extensions are currently a subject of intensive
research in image and video processing [15, 17]. The basic
idea behind NL-means is very simple: for a given pixel, its
new (denoised) intensity value is computed as a weighted
average of the other image pixels with weights reflecting
the similarity between local neighborhoods of the pixel be-
ing processed and the other pixels. A similar idea was in-
dependently proposed in [2] where it was used for video
enhancement purposes.

In this paper, we extend the NL-means concept to mesh
denoising and develop a new mesh smoothing method
which has a number of important advantages over the
main state-of-the-art mesh denoising techniques. Fig. 1
demonstrated the idea and potential of our NL-means mesh
smoothing method.

Recently semi-local similarity-based shape descriptors
received a considerable attention in connection with shape
matching, retrieval, and modeling applications [3, 10, 11,
21, 27] which are too expensive for practical mesh smooth-
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Figure 2: Center: ”Trui” image corrupted by noise. Left: smoothed by bilateral filtering; the difference between the original noisy and
smoothed images contains important image structures. Right: smoothed by NL-means filter of Buades, Coll, and Morel; the difference
between the noisy and NL-smoothed images contains much less features of the original image. Thus the NL-means filter does a much
better denoising job than the bilateral filter.

ing. The approach we use in this paper is much simpler.
The rest of the paper is organized as follows. In Sec-

tion 2, we briefly overview the Non-Local means approach
of Buades, Coll, and Morel. We also explain their very
simple and extremely useful SNR (Signal-to-Noise Ratio)
analysis of the image smoothing process. In Section 3, we
present our similarity-based method for mesh denoising. In
Section 4, we compare our method with two state-of-the-art
mesh denosing techniques and discuss advantages and lim-
itations of the method. For the comparison, we extend the
SNR analysis of Buades et al. from images to meshes. We
conclude in Section 5.

2 Image Filtering with NL-means.

Consider a gray-scale image I(x) defined over a
bounded domain Ω (which is usually a rectangle). The NL-
means filter is defined by

J(x) =
1

C(x)

∫

Ω

w(x,y)I(y) dy, (1)

where the convolution kernel w(x,y) is given by

exp

{

−
1

h2

∫

Ga(|t|) |I(x − t) − I(y − t)|
2
dt

}

, (2)

and measures a similarity between neighborhoods of pixels
x and y, C(x) =

∫

Ω
w(x,y) dy is a normalizing factor, and

Ga(·) is a Gaussian kernel of standard deviation a. Here h

and a are filtering parameters.
In practice, integration in (2) is performed over a a fixed-

size small window. The typical window size varies from
5 × 5 to 9 × 9.

A pictorial explanation of the NL-means method is given
in Fig. 3.

While the NL-means method is slow, it substantially out-
performs the bilateral scheme and other similar filters. The
advantages of the NL-means method are especially mani-
fested by processing images with complex texture patterns.
We compare the NL-means and bilateral filters in Fig. 2.

Buades, Coll, and Morel also suggested a simple and
convenient technique for evaluating the quality of image
smoothing methods [5, 6]. The idea is to consider and
visualize the difference between the original noisy image
I(x) and its smoothed version J(x). If the difference
I(x) − J(x) does not contain geometric structures of the
original image I(x) and looks like a random signal, one
can conclude that the tested smoothing method removes
noise and do not destroy image features. (Of course, sim-
ilar SNR-based techniques are widely used in image pro-
cessing, see, for example, [12, 19] and references therein.)
In Fig. 2, we apply the Buades et al. image difference tech-
nique to demonstrate that the NL-means filter substantially
outperforms bilateral filtering in preserving salient image
structures.
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Figure 3: We measure similarity w(x,y) between two image win-
dows centered at x and y by convolving the squared difference
between the windows with a Gaussian kernel.
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3 Mesh Filtering with NL-means

Given a triangle mesh M, consider a mesh vertex x

and denote by Ωσ(x) the 2σ-neighborhood of x on M:
Ωσ(x) = {y ∈ M : |x−y| ≤ 2σ}. We use bilateral mesh
smoothing flow of [9] as a basis of our method and denoise
M by updating repeatedly the position of each mesh vertex
x:

xn+1 = xn + k(xn)nn
x
, (3)

where nx is the unit normal at x,

k(x) =
1

C(x)

∫

Ωσ2
(x)

w(x,y)I(y) dSy, (4)

C(x) =

∫

Ωσ2
(x)

w(x,y) dSy, (5)

I(y) = 〈nx,y − x〉, (6)
w(x,y) = exp

{

− D(x,y)/ (2σ2
1)

}

. (7)

Here Sy stands for the area element of M at y, 〈a,b〉 de-
notes the inner product of vectors a and b, and D(x,y) is a
similarity kernel.

Similarity Kernel. The main difficulty of extending the
NL-means approach to meshes consists of defining an ap-
propriate similarity kernel D(x,y).

Consider mesh vertices w ∈ Ωσ3
(x), z ∈ Ωσ3

(y), and
y ∈ Ωσ2

(x) as shown in the left-top image of Fig. 4.
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Figure 4: Neighbor and Local Coordinates for RBF.

First we choose a pair of unit tangent vectors t1 and t2 in
the tangent plane of each mesh vertex x (the tangent plane at
mesh vertex x is the plane passing through x and orthogonal
to mesh normal nx). Let us define a translation vector t, a
mesh counterpart of the image translation vector t in (2), by

t = − (uz, vz) = − (〈t1, z − y〉, 〈t2, z − y〉) .

Now let use radial basis functions (RBFs) to build a local
approximation of the mesh in a neighborhood of x. Let
(uw, vw, ww) be the local coordinates of mesh vertex w

w.r.t the basis (t1, t2,nx). The local RBF approximation
near x is given by

Fx(u, v) = p(u, v) +
∑

w∈Ωσ3
(x)

λwΦ(
√

u2 + v2), (8)

where Φ(ρ) = ρ2log(ρ), p(u, v) is a linear polynomial and
RBF coefficients {λw} are obtained by solving a system of
linear equations

Fx(uw, vw) = ww,
∑

w∈Ωσ3
(x)

λwp(uw, vw) = 0.

We approximate I(x − t) corresponding to I(y − t) by
Fx(uz, vz), as seen in Fig. 4. Finally we define the similar-
ity kernel D(x,y) by

D(x,y) =

∫

Ωσ3
(y)

Gσ3
(|t|) |Fx(uz, vz) − I(y − t)|

2
dt, (9)

where I(y − t) = 〈nx, z − x〉 and Gσ(·) is a Gaussian
kernel.

4 Results and Discussion

In our numerical experiments, we use gcc 3.3.5 C++
compiler on a 1.7GHz Pentium 4 computer with 1GB of
RAM. We use the N. Max weights [18] for computing the
mesh normals.

Parameters. Four user-specified parameters are used in
our method:

1. σ1, the standard deviation of the similarity kernel (7);

2. σ2 the size of the integration domain in (4) and (5);

3. σ3, the size of the similarity domain in (9);

4. n, the number of iterations of (3).

Similar to [14], we make the parameters σs proportional
to the average edge length e of the evolving mesh M =
Mn:

σi = ηie, i = 1, 2, 3.
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Ideally σ1 represents the noise deviation, therefore sim-
ilar to [9] it could be chosen as a standard deviation of the
heights of vertices y for either a user-specified flat region or
an average standard deviation of an entire mesh. The other
two coefficients η2 and η3 are constant for the most of mod-
els, similar to the image case [6, 4, 15]. According to our
experiments, setting η2 = {1.0, 2.0} and η3 = {0.75, 1.0}
leads to good results.

Quality Evaluation and Comparison. We have imple-
mented two recent state-of-the-arts mesh denoising tech-
niques: the Anisotropic Mean Curvature Flow (AMCF)
[13] and Bilateral Mesh Filter [9]. In our implementation
of AMCF, the weight for ij edge is given by Gσ(kij)hij ,
where hij is a cotangent-based weight associated with ij

and kij is a directional curvature [16]. In our experiments,
for both these methods we try to choose parameter settings
producing the best results.

We use two visualization schemes to compare the tech-
niques with our method. The first scheme consists of col-
oring by the mean curvature. The second scheme mea-
sures the difference between the original and smoothed
meshes. More precisely, we visualize the differences in
the positions of the corresponding vertices of the meshes
|xnoisy

k − xsmoothed
k |.

We use three models in our comparison: a noisy Fandisk
model (Fig. 5), a noisy Dragon-head model (Fig. 6), and the
Angel model (Fig. 10). For these models, Table 1 presents
timing results and parameter settings used for our method
and our implementations of methods of [13] and [9].

Fig. Method n η1 η2 η3 Time
[13] 3 10 25 1.2s

5 [9] 3 0.25 1 1 0.8s
our 3 0.4 1 0.75 13.2s
[13] 1 2 × 104 100 14.7s

9 [9] 2 1.5 4 1 126s
our 3 0.35 1 0.75 606s
[13] 1 100 25 1.67s

10 [9] 2 0.25 1 0.75 3.7s
our 2 0.25 1 0.75 64.5s

Table 1: Parameter Setting and Timing results. Here n stands for
the number of iterations. For AMCF [13], η1e and η2e denotes
the step-size (implicit scheme) and the size σ of the Gaussian ker-
nel, respectively. For bilateral filtering [9], the deviation of the
hight Gaussian kernel is equal to η1e, the integration domain size
is given by η2e, and the deviation of the spatial Gaussian kernel
is set equal to η3e. Here e denotes the average edge length of the
evolving mesh M = Mn.

As seen in Fig. 8 our method outperforms its rivals in
restoring sharp edges and low-curvature regions. In ad-

dition, the max-norm and average errors produced by the
method and measured w.r.t. the original clean Fandisk mesh
are substantially smaller than those of the Anisotropic Mean
Curvature Flow [13] and Bilateral Mesh Filter [9]. Fig. 9
demonstrates that our method delivers the best performance
according the entropy of the differences between the origi-
nal (noisy) and smoothed models. It also indicates that the
method preserves fine geometric features better than two its
competitors. Fig. 10 shows that our method produces low-
est oversmoothing to compare with the two other smoothing
techniques.

Finally in Fig. 11 we demonstrate how our method han-
dles triangle soups. Denoising a complex Gargoyle model
(about 98 K triangles) by our method is rather slow (five it-
erations took 31 minutes) but the result is worth seeing.

Figure 5: Left: initial Fandisk model colored by mean curvature.
Center and Right: noisy Fandisk (Gaussian noise with σ = 0.1e

is added).

Figure 6: Noisy Dragon-head model (Gaussian noise with σ =
0.2e is added) from [14] is colored by mean curvature.

Min Average Max Low Average High

Figure 7: Left: mean curvature profile palette. Right: this palette
is used for visualizing the differences in vertex positions of noisy
and smoothed meshes.

Complexity. The average computational complexity of
our method is given by O(VyVwVzV +V log V ) where V

is the number of vertices of M, Vy, Vw and Vz are the av-
erage numbers of vertices of local patches Ωσ2

(x), Ωσ3
(x)

and Ωσ3
(y). Retrieving 2σ2-neighborhood of x requires

O(log V ) operations by using a kd-tree, and evaluating the
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Ave error = 0.021 Ave error = 0.0067 Ave error = 0.0048
Max error = 0.11 Max error = 0.069 Max error = 0.03

Figure 8: Smoothing noisy Fandisk model (V = 6474, F = 12944). Mean curvature coloring enhances surface defects and roughness
of the smoothed meshes which can not be recognized by human eyes if we use a flat/smooth shading. Left: Anisotropic Mean Curvature
Flow [13] is used. Middle: Bilateral Mesh Filter [9] is applied. Right: our method is employed.

Figure 9: Smoothing noisy Dragon-head model (V = 100056, F = 199924). Left: Anisotropic Mean Curvature Flow [13] is used.
Middle: Bilateral Mesh Filter [9] is applied. Right: our method is employed. Top: coloring by mean curvature indicates that our method
outperforms its rivals in preserving fine surface features. Bottom: our method delivers the best performance according the entropy of the
difference between the original (noisy) and smoothed models.

Figure 10: Smoothing noisy Angel model (V = 24566, F = 48090). Left: Anisotropic Mean Curvature Flow [13] is used. Middle:
Bilateral Mesh Filter [9] is applied. Right: our method is employed. Our method produces lowest oversmoothing to compare with two
other smoothing techniques.
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Figure 11: Denoising a complex Gargoyle model (V = 54907, F = 97769) by our method with {η1, η2, η3} = {0.28, 2, 1}. Left and
top-center: original data colored by mean curvature. Right and bottom-center: smoothed data colored by mean curvature; noise is gently
removed and fine geometric features are accurately preserved.

similarity kernel (9) is done using O(VwVz) operations for
each pair x and y.

At the first glance, O(VyVwVzV + V log V ) looks too
large. However Vy, Vw, Vz are the number of vertices
in local neighborhoods of mesh vertices y, w, z used in
our method. For a typical uniformly dense mesh, we have
Vy ≈ 20η2 and Vw ≈ 20η3 ≈ Vz. If η2 is large, a fast
implementation of RBFs [1] should be used.

Although the influence of each parameter σ1, σ2 and σ3

is clear, an optimal selection of all of them is not trivial.
Further work is required for a deeper understanding corre-
lations between these parameters.

5 Conclusion

In this paper, we have extended the recent NL-means im-
age filtering approach [5, 6, 4] to the 3D meshes and triangle
soups approximating piecewise smooth surfaces. The ex-
tension is far from being straightforward, since the original
NL-means approach relies heavily on the image structure
regularity. We think we have found a simple and elegant
solution to the problem by employing local RBF approxi-
mations.

We have demonstrated that our method outperforms
two recent state-of-the-art smoothing techniques which are
among best up-to-date mesh denoising schemes.

Finally we have suggested a new way to compare differ-

ent mesh/soup denoising methods. We believe that statis-
tical analysis (entropy measurements, etc.) of the differ-
ence between the original (noisy) and smoothed datasets
will lead to developing new surface denoising techniques
and new principles for a fair comparison of existing ones.

The source code of our method is available on the Web
for evaluation [26].
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