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Figure 1: Denoising Angel model with Non-Local means. (a) Original noisy mesh (flat-shading is used). (b) Original noisy mesh colored
by mean curvature; the curvature map helps us to identify surface defects and roughness. (c) Coloring by similarity. A mesh vertex is
chosen at the left corner of the right eye of the original mesh. The mesh is colored according to a similarity with the shape of the model at
the chosen vertex. The similarity increases from white to blue. The vertices with higher similarity values have a stronger contribution to the
new (smoothed) position of the chosen vertex. (d) Mesh is smoothed by the similarity-based method developed in this paper (flat-shading
is used). (e) Smoothed mesh colored by mean curvature; the curvature map indicates high quality of the smoothed surface.

Abstract

In this paper, we propose a new and powerful shape de-
noising technique for processing surfaces approximated by
triangle meshes and soups. Our approach is inspired by re-
cent non-local image denoising schemes and naturally ex-
tends bilateral mesh smoothing methods. The main idea
behind the approach is very simple. A new position of ver-
tex P of a noisy mesh is obtained as a weighted mean of
mesh vertices (Q with nonlinear weights reflecting a simi-
larity between local neighborhoods of P and Q. We demon-
strate that our technique outperforms recent state-of-the-art
smoothing methods. We also suggest a new scheme for com-
paring different mesh/soup denoising methods.

1 Introduction

Real-world signals do not exist without noise. Denoising
digital images and their 3D geometry counterparts, polyg-
onal meshes and point clouds, remains to be an active
area of research. In geometric modeling, recent advances
in developing feature preserving smoothing techniques in-
clude diffusion-driven methods [23, 13], projection-based
approaches [8, 20], and the so-called bilateral mesh filter-
ing schemes [9, 14]. The latter were inspired by image pro-
cessing techniques based on spatial-tonal normalized con-

volutions [22, 24] which in their turn can be considered as
generalizations of the Yaroslavsky neighborhood filter [25].

Very recently, the so-called Non-Local means (or NL-
means) concept, a natural and elegant extension of the im-
age bilateral filtering paradigm was proposed by Buades,
Coll, and Morel [5, 6, 4]. The NL-means method was
inspired by the famous Texture-Synthesis-by-Example ap-
proach of Efros and Leung [7]. The method and its appli-
cations and extensions are currently a subject of intensive
research in image and video processing [15, 17]. The basic
idea behind NL-means is very simple: for a given pixel, its
new (denoised) intensity value is computed as a weighted
average of the other image pixels with weights reflecting
the similarity between local neighborhoods of the pixel be-
ing processed and the other pixels. A similar idea was in-
dependently proposed in [2] where it was used for video
enhancement purposes.

In this paper, we extend the NL-means concept to mesh
denoising and develop a new mesh smoothing method
which has a number of important advantages over the
main state-of-the-art mesh denoising techniques. Fig. 1
demonstrated the idea and potential of our NL-means mesh
smoothing method.

Recently semi-local similarity-based shape descriptors
received a considerable attention in connection with shape
matching, retrieval, and modeling applications [3, 10, 11,
21, 27] which are too expensive for practical mesh smooth-



Figure 2: Center: “Trui” image corrupted by noise. Left: smoothed by bilateral filtering; the difference between the original noisy and
smoothed images contains important image structures. Right: smoothed by NL-means filter of Buades, Coll, and Morel; the difference
between the noisy and NL-smoothed images contains much less features of the original image. Thus the NL-means filter does a much
better denoising job than the bilateral filter.

ing. The approach we use in this paper is much simpler.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly overview the Non-Local means approach
of Buades, Coll, and Morel. We also explain their very
simple and extremely useful SNR (Signal-to-Noise Ratio)
analysis of the image smoothing process. In Section 3, we
present our similarity-based method for mesh denoising. In
Section 4, we compare our method with two state-of-the-art
mesh denosing techniques and discuss advantages and lim-
itations of the method. For the comparison, we extend the
SNR analysis of Buades et al. from images to meshes. We
conclude in Section 5.

2 Image Filtering with NL-means.

Consider a gray-scale image I(x) defined over a
bounded domain €2 (which is usually a rectangle). The NL-
means filter is defined by

J(x) = ﬁ /Q w(x,y)I(y) dy, (1)

where the convolution kernel w(x,y) is given by

exp{—%/c;aatw I(x—t) — I(y —t>|2dt}, @

and measures a similarity between neighborhoods of pixels
xandy, C(x) = [, w(x,y) dy is a normalizing factor, and
G,(+) is a Gaussian kernel of standard deviation a. Here h
and q are filtering parameters.

In practice, integration in (2) is performed over a a fixed-
size small window. The typical window size varies from
95X 5t09x09.

A pictorial explanation of the NL-means method is given
in Fig. 3.

While the NL-means method is slow, it substantially out-
performs the bilateral scheme and other similar filters. The
advantages of the NL-means method are especially mani-
fested by processing images with complex texture patterns.
We compare the NL-means and bilateral filters in Fig. 2.

Buades, Coll, and Morel also suggested a simple and
convenient technique for evaluating the quality of image
smoothing methods [5, 6]. The idea is to consider and
visualize the difference between the original noisy image
I(x) and its smoothed version J(x). If the difference
I(x) — J(x) does not contain geometric structures of the
original image I(x) and looks like a random signal, one
can conclude that the tested smoothing method removes
noise and do not destroy image features. (Of course, sim-
ilar SNR-based techniques are widely used in image pro-
cessing, see, for example, [12, 19] and references therein.)
In Fig. 2, we apply the Buades et al. image difference tech-
nique to demonstrate that the NL-means filter substantially
outperforms bilateral filtering in preserving salient image
structures.
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Figure 3: We measure similarity w(x,y) between two image win-
dows centered at x and y by convolving the squared difference
between the windows with a Gaussian kernel.



3 Mesh Filtering with NL-means

Given a triangle mesh M, consider a mesh vertex x
and denote by Q,(x) the 20-neighborhood of x on M:
O, (x) ={y € M : |x—y| < 20}. We use bilateral mesh
smoothing flow of [9] as a basis of our method and denoise
M by updating repeatedly the position of each mesh vertex
X:

X" = x" 4 k(x™)n?, 3)

where ny is the unit normal at x,

k(x) = ﬁ w(x,y)I(y)dSy, &)
Qoy (%)
= [ wixyds, 5)
Qoy (%)
I(y) = (nx,y — %), (6)
w(x,y) = exp {— D(x,y)/ (207)} . (7)

Here Sy stands for the area element of M at y, (a, b) de-
notes the inner product of vectors a and b, and D(x,y) is a
similarity kernel.

Similarity Kernel. The main difficulty of extending the
NL-means approach to meshes consists of defining an ap-
propriate similarity kernel D(x,y).

Consider mesh vertices w € Q,,(x), z € Q,(y), and
y € Q,,(x) as shown in the left-top image of Fig. 4.

Figure 4: Neighbor and Local Coordinates for RBF.

First we choose a pair of unit tangent vectors t; and t in
the tangent plane of each mesh vertex x (the tangent plane at
mesh vertex x is the plane passing through x and orthogonal
to mesh normal ny). Let us define a translation vector t, a
mesh counterpart of the image translation vector t in (2), by

t:_(uzavz) = _(<t17Z_Y>7<t27Z_y>)'

Now let use radial basis functions (RBFs) to build a local
approximation of the mesh in a neighborhood of x. Let
(Uw, Uw, Wy ) be the local coordinates of mesh vertex w
w.r.t the basis (t1,t2,nx). The local RBF approximation
near x is given by

Fy(u,v) = plu,v) + Z Aw@(VuZ +02),  (8)

WEQ,, (%)

where ®(p) = p?log(p), p(u,v) is a linear polynomial and
RBF coefficients { A, } are obtained by solving a system of
linear equations

Z /\wp(UWa Uw) =0.

wWEQs, (%)

Fx(UW7'Uw) = Ww,

We approximate /(x — t) corresponding to I(y — t) by
F(ug,v,), as seen in Fig. 4. Finally we define the similar-
ity kernel D(x,y) by

D(x,y) = Gy ([t]) [Fx (g, va) — I(y — t)[* dt, (9)

Qoyg (¥)

where I(y — t) = (ny,z
kernel.

— x) and G,(+) is a Gaussian

4 Results and Discussion

In our numerical experiments, we use gcc3.3.5 C++
compiler on a 1.7GHz Pentium4 computer with 1GB of
RAM. We use the N. Max weights [18] for computing the
mesh normals.

Parameters. Four user-specified parameters are used in
our method:
1. o1, the standard deviation of the similarity kernel (7);
2. oy the size of the integration domain in (4) and (5);
3. o3, the size of the similarity domain in (9);
4. n, the number of iterations of (3).

Similar to [14], we make the parameters os proportional
to the average edge length e of the evolving mesh M =
M™:
1=1,2,3.

ag; = 1€,



Ideally o; represents the noise deviation, therefore sim-
ilar to [9] it could be chosen as a standard deviation of the
heights of vertices y for either a user-specified flat region or
an average standard deviation of an entire mesh. The other
two coefficients 72 and 13 are constant for the most of mod-
els, similar to the image case [6, 4, 15]. According to our
experiments, setting 7, = {1.0,2.0} and 3 = {0.75,1.0}
leads to good results.

Quality Evaluation and Comparison. We have imple-
mented two recent state-of-the-arts mesh denoising tech-
niques: the Anisotropic Mean Curvature Flow (AMCF)
[13] and Bilateral Mesh Filter [9]. In our implementation
of AMCEF, the weight for ij edge is given by G, (k;;)hi;,
where h;; is a cotangent-based weight associated with i
and k;; is a directional curvature [16]. In our experiments,
for both these methods we try to choose parameter settings
producing the best results.

We use two visualization schemes to compare the tech-
niques with our method. The first scheme consists of col-
oring by the mean curvature. The second scheme mea-
sures the difference between the original and smoothed
meshes. More precisely, we visualize the differences in

the positions of the corresponding vertices of the meshes
noisy _ _smoothed

X Xk -

We use three models in our comparison: a noisy Fandisk

model (Fig.5), a noisy Dragon-head model (Fig. 6), and the
Angel model (Fig. 10). For these models, Table 1 presents
timing results and parameter settings used for our method
and our implementations of methods of [13] and [9].

Fig. | Method | n m 2 73 Time
[13] 3 10 25 1.2s

5 [9] 3 0.25 1 1 0.8s

our 3 04 1 0.75 | 13.2s

[13] 1 ]2x10*] 100 14.7s

9 [9] 2 1.5 4 1 126s

our 3 0.35 1 0.75 | 606s

[13] 1 100 25 1.67s

10 [9] 2 0.25 1 0.75 | 3.7s
our 2 0.25 1 0.75 | 64.5s

Table 1: Parameter Setting and Timing results. Here n stands for
the number of iterations. For AMCF [13], ni1e and n2e denotes
the step-size (implicit scheme) and the size o of the Gaussian ker-
nel, respectively. For bilateral filtering [9], the deviation of the
hight Gaussian kernel is equal to 7 e, the integration domain size
is given by n2e, and the deviation of the spatial Gaussian kernel
is set equal to nze. Here e denotes the average edge length of the
evolving mesh M = M™.

As seen in Fig. 8 our method outperforms its rivals in
restoring sharp edges and low-curvature regions. In ad-

dition, the max-norm and average errors produced by the
method and measured w.r.t. the original clean Fandisk mesh
are substantially smaller than those of the Anisotropic Mean
Curvature Flow [13] and Bilateral Mesh Filter [9]. Fig.9
demonstrates that our method delivers the best performance
according the entropy of the differences between the origi-
nal (noisy) and smoothed models. It also indicates that the
method preserves fine geometric features better than two its
competitors. Fig. 10 shows that our method produces low-
est oversmoothing to compare with the two other smoothing
techniques.

Finally in Fig. 11 we demonstrate how our method han-
dles triangle soups. Denoising a complex Gargoyle model
(about 98 K triangles) by our method is rather slow (five it-
erations took 31 minutes) but the result is worth seeing.

Figure 5: Left: initial Fandisk model colored by mean curvature.
Center and Right: noisy Fandisk (Gaussian noise with o = 0.1e
is added).

Figure 6: Noisy Dragon-head model (Gaussian noise with o =
0.2e is added) from [14] is colored by mean curvature.
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Figure 7: Left: mean curvature profile palette. Right: this palette
is used for visualizing the differences in vertex positions of noisy
and smoothed meshes.

Complexity. The average computational complexity of
our method is given by O(V, Vi, V,V +V log V') where V
is the number of vertices of M, Vy, V4, and V,, are the av-
erage numbers of vertices of local patches {2, (x), Qs (%)
and Q,,(y). Retrieving 205-neighborhood of x requires
O(log V') operations by using a kd-tree, and evaluating the



Ave error = 0.021 Ave error = 0.0067 Ave error = 0.0048
Max error =0.11 Max error = 0.069 Max error = 0.03

Figure 8: Smoothing noisy Fandisk model (V' = 6474, F' = 12944). Mean curvature coloring enhances surface defects and roughness
of the smoothed meshes which can not be recognized by human eyes if we use a flat/smooth shading. Left: Anisotropic Mean Curvature
Flow [13] is used. Middle: Bilateral Mesh Filter [9] is applied. Right: our method is employed.
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Figure 9: Smoothing noisy Dragon-head model (V' = 100056, F' = 199924). Left: Anisotropic Mean Curvature Flow [13] is used.
Middle: Bilateral Mesh Filter [9] is applied. Right: our method is employed. Top: coloring by mean curvature indicates that our method
outperforms its rivals in preserving fine surface features. Bottom: our method delivers the best performance according the entropy of the
difference between the original (noisy) and smoothed models.
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Figure 10: Smoothing noisy Angel model (V' = 24566, F' = 48090). Left: Anisotropic Mean Curvature Flow [13] is used. Middle:

Bilateral Mesh Filter [9] is applied. Right: our method is employed. Our method produces lowest oversmoothing to compare with two
other smoothing techniques.



Figure 11: Denoising a complex Gargoyle model (V' = 54907, F' = 97769) by our method with {71, 72,73} = {0.28,2,1}. Left and
top-center: original data colored by mean curvature. Right and bottom-center: smoothed data colored by mean curvature; noise is gently

removed and fine geometric features are accurately preserved.

similarity kernel (9) is done using O(V4, V,,) operations for
each pair x and y.

At the first glance, O(V, Vi, V,V + V log V) looks too
large. However Vy, V4, V, are the number of vertices
in local neighborhoods of mesh vertices y, w, z used in
our method. For a typical uniformly dense mesh, we have
Vy = 2012 and Vi, = 20m3 =~ V,. If 1y is large, a fast
implementation of RBFs [1] should be used.

Although the influence of each parameter o1, o5 and o3
is clear, an optimal selection of all of them is not trivial.
Further work is required for a deeper understanding corre-
lations between these parameters.

5 Conclusion

In this paper, we have extended the recent NL-means im-
age filtering approach [5, 6, 4] to the 3D meshes and triangle
soups approximating piecewise smooth surfaces. The ex-
tension is far from being straightforward, since the original
NL-means approach relies heavily on the image structure
regularity. We think we have found a simple and elegant
solution to the problem by employing local RBF approxi-
mations.

We have demonstrated that our method outperforms
two recent state-of-the-art smoothing techniques which are
among best up-to-date mesh denoising schemes.

Finally we have suggested a new way to compare differ-

ent mesh/soup denoising methods. We believe that statis-
tical analysis (entropy measurements, etc.) of the differ-
ence between the original (noisy) and smoothed datasets
will lead to developing new surface denoising techniques
and new principles for a fair comparison of existing ones.

The source code of our method is available on the Web
for evaluation [26].
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